Protective and Therapeutic Capacities of Lactic Acid Bacteria Postmetabolites against Koi Herpesvirus Infection In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lactobacilli and Postmetabolites Tested
2.2. Virus and Cells
2.3. Cytotoxicity Assay
2.4. Antiviral Activity Assessment
2.5. Virucidal Effect
2.6. Virus Adsorption Test
2.7. Pre-Treatment of CCB Cells
2.8. Statistical Analyses
3. Results
3.1. Cytotoxicity
3.2. Antiviral Activity
3.3. Virucidal Effect
3.4. Influence on the Stage of Viral Adsorption
3.5. Pre-Treatment of CCB Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on The Scope and Appropriate Use of The Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 8, 1077. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Minj, J.; Chandra, P.; Paul, C.; Sharma, R.K. Bio-Functional Properties of Probiotic Lactobacillus: Current applications and research perspectives. Crit. Rev. Food Sci. Nutr. 2021, 61, 2207–2224. [Google Scholar] [CrossRef]
- Wafula, E.N.; Muhonja, C.N.; Kuja, J.O.; Owaga, E.E.; Makonde, H.M.; Mathara, J.M.; Kimani, V.W. Lactic Acid Bacteria from African Fermented Cereal-Based Products: Potential Biological Control Agents for Mycotoxins in Kenya. J. Toxicol. 2022, 2022, 2397767. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Rad, A.H.; Hosseini, S.; Pourjafar, H. Postbiotics as Dynamic Biological Molecules for Antimicrobial Activity: A Mini-Review. Biointerface Res. Appl. Chem. 2022, 12, 6543–6556. [Google Scholar]
- Thorakkattu, P.; Khanashyam, A.C.; Shah, K.; Babu, K.S.; Mundanat, A.S.; Deliephan, A.; Deokar, G.S.; Santivarangkna, C.; Nirmal, N.P. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022, 11, 3094. [Google Scholar] [CrossRef] [PubMed]
- Aghebati-Maleki, L.; Hasannezhad, P.; Abbasi, A.; Khani, N. Antibacterial, Antiviral, Antioxidant, and Anticancer Activities of Postbiotics: A Review of Mechanisms and Therapeutic Perspectives. Biointerface Res. Appl. Chem. 2022, 12, 2629–2645. [Google Scholar]
- Bourebaba, Y.; Marycz, K.; Mularczyk, M.; Bourebaba, L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed. Pharmacother. 2022, 153, 113138. [Google Scholar] [CrossRef]
- Moradi, M.; Molaei, R.; Guimarães, J.T. A Review on Preparation and Chemical Analysis of Postbiotics from Lactic Acid Bacteria. Enzym. Microb. Technol. 2020, 143, 109722. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, R.P.; Gilad, O.; Yun, S.; Spangenberg, J.V.; Marty, G.D.; Nordhausen, R.W.; Kebus, M.J.; Bercovier, H.; Eldar, A. A Herpesvirus Associated with Mass Mortality of Juvenile and Adult Koi, a Strain of Common Carp. J. Aquat. Anim. Health 2000, 12, 44–57. [Google Scholar] [CrossRef]
- Bergmann, S.M.; Jin, Y.; Franzke, K.; Grunow, B.; Wang, Q.; Klafack, S. Koi Herpesvirus (KHV) and KHV Disease (KHVD)—A Recently Updated Overview. J. Appl. Microbiol. 2020, 129, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Pokorova, D.; Vesely, T.; Piackova, V.; Reschova, S.; Hulova, J. Current knowledge on koi herpesvirus (KHV): A review. Vet. Med.-Czech. 2005, 50, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Hartman, K.H.; Yanong, R.P.; Pouder, D.B.; Petty, B.D.; Francis-Floyd, R.; Riggs, A.C.; Waltzek, T.B. Koi Herpesvirus Disease (KHVD). Extension Factsheet VM-149; University of Florida, Institute of Food and Agricultural Sciences (IFAS): Gainesville, FL, USA, 2019; Available online: https://edis.ifas.ufl.edu/publication/VM113 (accessed on 22 November 2019).
- Ruiz, L.; Margolles, A.; Sánchez, B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol. 2013, 4, 396. [Google Scholar] [CrossRef] [Green Version]
- Ansari, F.; Pourjafar, H.; Tabrizi, A.; Homayouni, A. The Effects of Probiotics and Prebiotics on Mental Disorders: A Review on Depression, Anxiety, Alzheimer, and Autism Spectrum Disorders. Curr. Pharm. Biotechnol. 2020, 21, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Shin, H.S. Antimicrobial and Immunomodulatory Effects of Bifidobacterium strains: A Review. J. Microbiol. Biotechnol. 2020, 30, 1793–1800. [Google Scholar] [CrossRef]
- Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Zavoshti, H.F.; Abbasi, A. Postbiotics as Novel Health-Promoting Ingredients in Functional Foods. Health Promot. Perspect. 2020, 10, 3–4. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.R.; Sardi, J.D.C.O.; Pitangui, N.D.S.; Roque, S.M.; da Silva, A.C.B.; Rosalen, P.L. Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J. Funct. Foods 2020, 73, 104080. [Google Scholar] [CrossRef]
- Baral, K.C.; Bajracharya, R.; Lee, S.H.; Han, H.K. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int. J. Nanomed. 2021, 16, 7535–7556. [Google Scholar] [CrossRef]
- Kesika, P.; Sivamaruthi, B.S.; Thangaleela, S.; Chaiyasut, C. The Antiviral Potential of Probiotics—A Review on Scientific Outcomes. Appl. Sci. 2021, 11, 8687. [Google Scholar] [CrossRef]
- Dobreva, L.; Danova, S.; Georgieva, V.; Koprinarova, M. Anti-Salmonella activity of lactobacilli from different habitats. Bulg. J. Veter- Med. 2022, 25, 564–577. [Google Scholar] [CrossRef]
- Vilhelmova-Ilieva, N.; Atanasov, G.; Simeonova, L.; Dobreva, L.; Mancheva, K.; Trepechova, M.; Danova, S. Anti-Herpes Virus Activity of Lactobacillus’ Postbiotics. BioMedicine. 2022, 12, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Mancheva, K.; Danova, S.; Vilhelmova-Ilieva, N.; Simeonova, L.; Dobreva, L.; Atanasov, G. Koi Herpesvirus Highlights and Potential of Probiotics to Reduce or Even to Prevent Koi Herpesvirus Infection. Acta Microbiol. Bulg. 2023, in press. [Google Scholar]
- Huang, X.; Ma, Y.; Wang, Y.; Niu, C.; Liu, Z.; Yao, X.; Jiang, X.; Pan, R.; Jia, S.; Li, D.; et al. Oral Probiotic Vaccine Expressing Koi Herpesvirus (KHV) ORF81 Protein Delivered by Chitosan-Alginate Capsules Is a Promising Strategy for Mass Oral Vaccination of Carps against KHV Infection. J. Virol. 2021, 95, e00415-21. [Google Scholar] [CrossRef]
- Ogier, J.-C.; Serror, P. Safety Assessment of Dairy Microorganisms: The Enterococcus Genus. Int. J. Food Microbiol. 2008, 126, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Devirgiliis, C.; Zinno, P.; Perozzi, G. Update on Antibiotic Resistance in Foodborne Lactobacillus and Lactococcus Species. Front. Microbiol. 2013, 4, 301. [Google Scholar] [CrossRef] [Green Version]
- Mathur, S.; Singh, R. Antibiotic Resistance in Food Lactic Acid Bacteria—A Review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef]
- Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral Potential of Lactic Acid Bacteria and Their Bacteriocins. Probiotics Antimicrob. Proteins 2014, 6, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Y.; Ye, L.; Wang, C. The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydr. Polym. 2020, 253, 117308. [Google Scholar] [CrossRef]
- Baud, D.; Dimopoulou Agri, V.; Gibson, G.R.; Reid, G.; Giannoni, E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front. Public Health 2020, 8, 186. [Google Scholar] [CrossRef]
- Kalinichenko, S.V.; Melentyeva, K.V.; Manee, H.; Dubinina, N.V.; Zvereva, N.V.; Toryanik, I.I.; Popova, N.G.; Pakhomov, O.V. Study of Anti-Virus Actions of Metabolites of Lactobacteria. Wiad. Lek. 2020, 73, 1484–1488. [Google Scholar] [CrossRef]
- Mousavi, E.; Makvandi, M.; Teimoori, A.; Ataei, A.; Ghafari, S.; Samarbaf-Zadeh, A. Antiviral Effects of Lactobacillus crispatus against HSV-2 in Mammalian Cell Lines. J. Chin. Med. Assoc. 2018, 81, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sci. 2020, 255, 117831. [Google Scholar] [CrossRef]
- Sundararaman, A.; Ray, M.; Ravindra, P.; Halami, P.M. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl. Microbiol. Biotechnol. 2020, 104, 8089–8104. [Google Scholar] [CrossRef]
- Conti, C.; Malacrino, C.; Mastromarino, P. Inhibition of Herpes simplex virus type 2 by vaginal lactobacilli. J. Physiol. Pharmacol. 2009, 60, 19–26. [Google Scholar] [PubMed]
- Yang, Y.; Song, H.; Wang, L.; Dong, W.; Yang, Z.; Yuan, P.; Wang, K.; Song, Z. Antiviral Effects of a Probiotic Metabolic Products against Transmissible Gastroenteritis Coronavirus. J. Prob. Health 2017, 5, 3. [Google Scholar] [CrossRef]
- Wachsman, M.B.; Castilla, V.; de Ruiz Holgado, A.P.; de Torres, R.A.; Sesma, F.; Coto, C.E. Enterocin CRL35 Inhibits Late Stages of HSV-1 and HSV-2 Replication in Vitro. Antiviral Res. 2005, 58, 17–24. [Google Scholar] [CrossRef] [PubMed]
Designation | Sample | Specifications |
---|---|---|
S1 | L3-24 h MRS | Filtered cell-free supernatants (CFS) from exponential culture (24 h) of strain Lactiplantibacillus plantarum L3 in MRS broth (Merck, Germany) |
S2 | L3-48 h MRS | CFS from stationary phase culture (48 h) of strain L. plantarum L3 in MRS broth (Merck, Germany) |
S3 | L3-48 h HiVegMRS | CFS from stationary phase culture (48 h) of strain L. plantarum L3 in MRS broth (HiVeg, HiMedia, India) |
S4 | L3- C | CFS from stationary phase culture (48 h) of strain L. plantarum L3 in MRS broth (HiMedia, India) |
S5 | L3-96 h | CFS first bouillon in MRS broth (HiVeg, HiMedia, India) from late stationary phase culture (96 h) of the strain L. plantarum L3 |
S6 | L. gasseri VS | Filtered CFS from exponential culture (24 h) of strain Lactobacillus gasseri in MRS broth (Merck, Germany) |
S7 | Lf54S-MRS | Filtered Cell-free supernatants (CFS) from exponential culture (24 h) of strain L54S in MRS broth (Merck, Germany) |
S8 | Lf54S-WF | Whey fraction from fermented sterile skimmed milk (10% w/v Fluka) with strain Limosilactobacillus fermentum Lf54S |
S9 | Lpl. HS | Filtered Cell-free supernatants (CFS) from exponential culture (24 h) of strain Lactiplantibacillus plantarum 2HS in MRS broth (Merck, Germany) |
Tested Samples | Cytotoxicity (µg/mL) | Antiviral Activity | ||
---|---|---|---|---|
CC50 | MTC | IC50 (µg/mL) | SI | |
S1 | 7.5 ± 0.7 *** | 1.0 | 0.035 ± 0.002 *** | 214.3 |
S2 | 6.2 ± 0.9 *** | 1.0 | 0.03 ± 0.006 *** | 221.4 |
S3 | 8.3 ± 0.8 *** | 5.0 | 0.05 ± 0.003 *** | 180.4 |
S4 | 8.2 ± 0.7 *** | 5.0 | 0.05 ± 0.002 *** | 164.0 |
S5 | 5.3 ± 0.4 *** | 1.0 | 0.2 ± 0.009 *** | 26.5 |
S6 | 4.5 ± 0.2 *** | 1.0 | 0.18 ± 0.008 *** | 24.0 |
S7 | 3.1 ± 0.2 *** | 1.0 | 1.72 ± 0.04 *** | 1.8 |
S8 | 6.5 ± 0.6 *** | 1.0 | 1.22 ± 0.02 *** | 5.3 |
S9 | 6.4 ± 0.5 *** | 1.0 | 0.04 ± 0.002 *** | 16.0 |
MRS broth | - | - | - | - |
ACV | 820.0 ± 6.8 | 320.0 | 16.2 | 50.6 |
Tested Samples | Δlg | |||
---|---|---|---|---|
15 min | 30 min | 60 min | 90 min | |
S1 | 1.0 | 1.5 | 2.0 | 2.0 |
S2 | 1.0 | 1.5 | 2.0 | 2.0 |
S3 | 1.25 | 1.75 | 2.0 | 2.0 |
S4 | 1.0 | 1.0 | 1.5 | 1.75 |
S5 | 1.0 | 1.0 | 1.5 | 1.5 |
S6 | 0.75 | 1.25 | 1.75 | 2.0 |
S7 | 0.25 | 0.25 | 0.5 | 0.75 |
S8 | 0.25 | 0.5 | 0.75 | 1.0 |
S9 | 1.0 | 1.0 | 1.5 | 2.0 |
MRS broth | 0 | 0 | 0 | 0 |
70% ethyl alcohol | 6.0 | 5.5 | 4.75 | 4.25 |
Tested Samples | Δlg | |||
---|---|---|---|---|
15 min | 30 min | 45 min | 60 min | |
S1 | 2.0 | 2.75 | 4.25 | 5.0 |
S2 | 2.0 | 3.0 | 4.5 | 5.25 |
S3 | 2.0 | 2.5 | 4.5 | 5.0 |
S4 | 2.0 | 2.5 | 4.5 | 5.0 |
S5 | 1.5 | 2.5 | 3.75 | 4.75 |
S6 | 2.0 | 3.0 | 4.0 | 5.0 |
S7 | 2.0 | 2.5 | 4.0 | 5.0 |
S8 | 2.0 | 2.75 | 4.0 | 5.0 |
S9 | 2.0 | 2.75 | 4.0 | 4.25 |
MRS broth | 0 | 0 | 0 | 0 |
Tested Samples | Δlg | ||||
---|---|---|---|---|---|
15 min | 30 min | 60 min | 90 min | 120 min | |
S1 | 1.75 | 1.75 | 2.0 | 2.0 | 2.0 |
S2 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
S3 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
S4 | 2.0 | 2.5 | 2.5 | 3.0 | 3.0 |
S5 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 |
S6 | 1.75 | 2.0 | 2.0 | 2.5 | 2.5 |
S7 | 1.75 | 1.75 | 2.0 | 2.0 | 2.0 |
S8 | 1.75 | 1.75 | 2.0 | 2.0 | 2.0 |
S9 | 1.25 | 1.25 | 1.5 | 1.75 | 2.0 |
MRS broth | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilhelmova-Ilieva, N.; Danova, S.; Petrova, Z.; Dobreva, L.; Atanasov, G.; Mancheva, K.; Simeonova, L. Protective and Therapeutic Capacities of Lactic Acid Bacteria Postmetabolites against Koi Herpesvirus Infection In Vitro. Life 2023, 13, 739. https://doi.org/10.3390/life13030739
Vilhelmova-Ilieva N, Danova S, Petrova Z, Dobreva L, Atanasov G, Mancheva K, Simeonova L. Protective and Therapeutic Capacities of Lactic Acid Bacteria Postmetabolites against Koi Herpesvirus Infection In Vitro. Life. 2023; 13(3):739. https://doi.org/10.3390/life13030739
Chicago/Turabian StyleVilhelmova-Ilieva, Neli, Svetla Danova, Zdravka Petrova, Lili Dobreva, Georgi Atanasov, Kapka Mancheva, and Lora Simeonova. 2023. "Protective and Therapeutic Capacities of Lactic Acid Bacteria Postmetabolites against Koi Herpesvirus Infection In Vitro" Life 13, no. 3: 739. https://doi.org/10.3390/life13030739
APA StyleVilhelmova-Ilieva, N., Danova, S., Petrova, Z., Dobreva, L., Atanasov, G., Mancheva, K., & Simeonova, L. (2023). Protective and Therapeutic Capacities of Lactic Acid Bacteria Postmetabolites against Koi Herpesvirus Infection In Vitro. Life, 13(3), 739. https://doi.org/10.3390/life13030739