The Protective Role of Ozone Therapy in Kidney Disease: A Review
Abstract
:1. Introduction
2. O₃ Mechanism of Action
3. Damage Models and O3 Effect
3.1. O3 Therapy Protects the Kidney against Ischemic Damage
3.2. O3 Therapy Protects the Kidney against Xenobiotic-Induced Damage
Damage Model | Induced Procedure | O3 Administration | Effects in O3 Treated Rats | Ref. |
---|---|---|---|---|
APAP toxicity | A 1.0 g/kg dose suspended in H2O, 3 mL: orally | Single i.p. 0.7 mg/kg dose at [60 mg/mL] Immediately after APAP induction | ↑ SOD, GSH-Px ↓ SCr, BUN ↓ MDA ↓ Morphologic damage | [51] |
APAP toxicity | A 1.0 g/kg dose suspended in H2O, 3 mL: gastric tube | 5 daily 0.7 mg/kg doses i.p. at [60 mg/mL] Immediately after APAP induction | ↑ GSH-Px, IL-10 ↓ Morphologic damage ↓ MDA ↓TNF-α | [53] |
Experimental toxic adriamycin-induced glomerulonephritis | Adriamycin single 7.5 mg/kg dose through a jugular vein; 10-week evolution | After 10 weeks, daily for 15 days at 0.3 mg/kg or 0.5 mg/kg or 0.7 mg/kg, or 1.1 mg/kg | (0.3 mg/kg) ↓ Arterial pressure ↓ Proteinuria (0.5 mg/kg) ↓ Morphologic damage (0.7 and 1.1 mg/kg) No significant changes | [68] |
Cd intoxication | Drinking water with Cd2⁺ (50 mg/L) in the form of Cadmium Acetate for 12 weeks | 10 (1 daily) 1 mL i.p. doses at [40 μg/mL] | ↓ Morphologic damage ↓ Glomerulonephritis ↓ NAG | [61] |
Cd Intoxication | Drinking water with Cd2⁺ (50 mg/L) in the form of Cadmium Acetate for 12 weeks | 10 (1 daily) 1 mL i.p. doses at [40 μg/mL] | ↑ MT ↓ Morphologic damage | [59] |
CDDP induced nephrotoxicity | Single 6 mg/kg CDDP injection | Preconditioning 15 (1 daily) doses by rectal insufflation, 9 mL at concentrations of [0.36, 0.72, 1.1, 1.8, 2.5 mg/kg] | ↑ GSH, SOD, CAT, GSH-Px ↓ SCr ↓ TBARS | [73] |
CDDP induced nephrotoxicity | Single 6 mg/kg CDDP injection | Postconditioning 6 (1 daily) rectal insufflations, 9 mL volume with concentrations of: 10 mg at [0.36 mg/kg] or 30 mg at [1.10 mg/kg] or 50 mg at [1.80 mg/kg] | ↑ GSH, SOD, CAT, GSH-Px ↓ SCr ↓ TBARS | [75] |
CDDP induced nephrotoxicity | Single 6 mg/kg CDDP injection | Daily; 5 days before and 5 days after CDDP injection. i.p.at 1.1 mg/kg | ↑ CAT, SOD ↑ NAG, TGF-β1, IL-6 ↓ Morphologic damage ↓Urea, creatinine, uric acid, phosphorus, calcium, sNGAL, albumin ↓ NF-a, IL-1B, | [74] |
CIN | 10 mg/kg injected through the tail vein | 1. 6 h before and 6 h after OR 2. For 5 days after; contrast agent introduction. O3 at 1 mg/kg, 95% i.p. | 1. ↑ NGAL ↓Hemorrhage 2. ↑TAC, similar SCr ↓Renal tubular injury | [79] |
CIN | 6 mL/kg of meglumine/sodium diatrizoate through the tail vein | Five 0.7 mg/kg/d doses i.p. [70 µg/mL] For 5 days before CIN | ↑ NO ↑ TAS ↓ SCr, BUN ↓ MDA ↓ Tubular necrosis | [78] |
3.3. O3 Therapy Protects the Kidney against CKD
Damage Model | Induced Procedure | O3 Administration | Effects in O3 Treated Rats | Ref. |
---|---|---|---|---|
Adenine Induced CKD | 0.75% adenine diet for 4 weeks | 1.1 mg/kg at [50 μg/mL] Via rectal insufflation | ↓ SCr, BUN, K, Ca ↓ Morphologic damage ↓ MCP-1, TNFα, IL-1b, IL-6 ↓TLR 4, NFkB, p65 | [85] |
Subtotal Nephrectomy CKD | Right nephrectomy and left subtotal ablation. 10-week evolution | 1.1 mg/kg at [50 μg/mL] Via rectal insufflation Once a day for 2 weeks | ↓ TNFα, IL-1β, IL-6, ↓ SCr, BUN, K, Ca ↓ Morphologic damage ↓NLRP3, NFkB, ASC, Caspase 1 | [82] |
Subtotal Nephrectomy CKD | Right nephrectomy and left subtotal ablation. 10-week evolution | 2.5 mL at [50 μg/mL] Dose of 0.5 mg/kg Once a day for 15 days | ↑ RPF, GFR ↑ SOD, CAT, GSH, TBARS ↓ Systolic arterial pressure ↓ SCr, BUN ↓ Morphologic damage | [83] |
Diabetic Nephropathy | Streptozotocin induced Diabetes 6-week evolution | 1.1 mg/kg [50 μg/mL] i.p. | ↑ SOD, GPx, CAT ↓ BP, Hb A1c % ↓ BUN, SCr, AR, MDA | [89] |
Diabetic Nephropathy | Streptozotocin induced Diabetes 6-week evolution | 1.1 mg/kg [50 μg/mL] once a day for 6 weeks | ↓ Caspases 1, 3, 9; HIF-1α, TNF-α, Glc, morphologic damage | [90] |
3.4. Otherapeutic Uses of O3 in Kidney
4. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pawlina, W.; Ross, M. Histology: A Text and Atlas: With Correlated Cell and Molecular Biology, 8th ed.; Wolters Kluwer Health: Philadelphia, PA, USA, 2018. [Google Scholar]
- Susantitaphong, P.; Cruz, D.N.; Cerda, J.; Abulfaraj, M.; Alqahtani, F.; Koulouridis, I.; Jaber, B.L. World Incidence of AKI: A Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 1482–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef] [PubMed]
- Ku, E.; Lee, B.J.; Wei, J.; Weir, M.R. Hypertension in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 120–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Kidney Disease Education Program. Making Sense of CKD—A Concise Guide for Managing Chronic Kidney Disease in the Primary Care Setting; NIH Publication: Bethesda, MD, USA, 2014; No. 14-7989.
- Centers for Disease Control and Prevention (CDC). Estimated Hypertension Prevalence, Treatment, and Control among U.S. Adults; US Department of Health and Human Services: Atlanta, GA, USA, 2021.
- CENETEC. Prevención, Diagnóstico y Tratamiento de La Enfermedad Renal Crónica; Guía de Referencia Rápida, Guía de Práctica Clínica; CENETEC: Cuauhtémoc, Mexico, 2012.
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.-J. Acute kidney injury. Nat. Rev. Dis. Prim. 2021, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Nordio, M.; Limido, A.; Maggiore, U.; Nichelatti, M.; Postorino, M.; Quintaliani, G. Survival in Patients Treated by Long-term Dialysis Compared with the General Population. Am. J. Kidney Dis. 2012, 59, 819–828. [Google Scholar] [CrossRef] [Green Version]
- De Vecchi, A.F.; Bamonti, F.; Novembrino, C.; Ippolito, S.; Guerra, L.; Lonati, S.; Salini, S.; Aman, C.S.; Scurati-Manzoni, E.; Cighetti, G.M. Free and total plasma malondialdehyde in chronic renal insufficiency and in dialysis patients. Nephrol. Dial. Transplant. 2009, 24, 2524–2529. [Google Scholar] [CrossRef] [Green Version]
- KDIGO Guidelines. Chapter 3: Management of progression and complications of CKD. Kidney Int. Suppl. 2013, 3, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Honeycutt, A.A.; Segel, J.E.; Zhuo, X.; Hoerger, T.J.; Imai, K.; Williams, D. Medical Costs of CKD in the Medicare Population. J. Am. Soc. Nephrol. 2013, 24, 1478–1483. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.L.; Cerdá, J.; Burdmann, E.A.; Tonelli, M.; García-García, G.; Jha, V.; Susantitaphong, P.; Rocco, M.; Vanholder, R.; Sever, M.S.; et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): A human rights case for nephrology. Lancet 2015, 385, 2616–2643. [Google Scholar] [CrossRef]
- Heim, C.; Glas, K. Ozone I: Characteristics/Generation/Possible Applications. Brew. Sci. 2011, 64, 8–12. [Google Scholar]
- Nogales, C.G.; Ferreira, M.B.; Lage-Marques, J.L. Comparison of the Antimicrobial Activity of Three Different Concentrations of Aqueous Ozone on Pseudomonas Aeruginosa, Staphylococcus Aureus, and Entero-Coccus Faecalis—In Vitro Study. Rev. Española Ozonoterapia 2014, 4, 9–15. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015; ISBN 9780198717478. [Google Scholar]
- Greene, A.K.; Güzel-Seydim, Z.B.; Seydim, A.C. Chemical and Physical Properties of Ozone. In Ozone in Food Processing; Wiley-Blackwell: Oxford, UK, 2012; pp. 19–32. [Google Scholar]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo-Tallón, F.J.; Torres-Morera, L.M.; Baeza-Noci, J.; Carrillo-Izquierdo, M.D.; Pinto-Bonilla, R. Updated Review on Ozone Therapy in Pain Medicine. Front. Physiol. 2022, 13, 840623. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Smith, N.L.; Wilson, A.L.; Gandhi, J.; Vatsia, S. Ozone therapy: An overview of pharmacodynamics, current research, and clinical utility. Med. Gas Res. 2017, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Roche, L.; Riera-Romo, M.; Mesta, F.; Hernández-Matos, Y.; Barrios, J.M.; Martínez-Sánchez, G.; Al-Dalaien, S.M. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur. J. Pharmacol. 2017, 811, 148–154. [Google Scholar] [CrossRef]
- Viebahn-Hänsler, R.; Fernández, O.S.L.; Fahmy, Z. Ozone in Medicine: The Low-Dose Ozone Concept—Guidelines and Treatment Strategies. Ozone Sci. Eng. 2012, 34, 408–424. [Google Scholar] [CrossRef]
- Cenci, A.; Macchia, I.; La Sorsa, V.; Sbarigia, C.; Di Donna, V.; Pietraforte, D. Mechanisms of Action of Ozone Therapy in Emerging Viral Diseases: Immunomodulatory Effects and Therapeutic Advantages With Reference to SARS-CoV-2. Front. Microbiol. 2022, 13, 871645. [Google Scholar] [CrossRef]
- Bocci, V. Biological and Clinical Effects of Ozone. Has Ozone Therapy a Future in Medicine? Br. J. Biomed. Sci. 1999, 56, 270–279. [Google Scholar]
- Huidobro, E.J.; Tagle, R.; Guzmán, A.M. Creatinina y Su Uso Para La Estimación de La Velocidad de Filtración Glomerular. Rev. Med. Chil. 2018, 146, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Xing, B.; Chen, H.; Wang, L.; Weng, X.; Chen, Z.; Li, X. Ozone oxidative preconditioning protects the rat kidney from reperfusion injury via modulation of the TLR4-NF-κB pathway. Acta Cir. Bras. 2015, 30, 60–66. [Google Scholar] [CrossRef]
- Foglieni, C.; Fulgenzi, A.; Belloni, D.; Sciorati, C.; Ferrero, E.; Ferrero, M.E. Ozonated autohemotherapy: Protection of kidneys from ischemia in rats subjected to unilateral nephrectomy. BMC Nephrol. 2011, 12, 61. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xing, B.; Liu, X.; Zhan, B.; Zhou, J.; Zhu, H.; Chen, Z. Ozone Oxidative Preconditioning Protects the Rat Kidney from Reperfusion Injury: The Role of Nitric Oxide. J. Surg. Res. 2008, 149, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Su, Y.; Chen, Q.; Dong, L.; Zhou, W.; Li, H.; Wang, Y. Protective Effects of Ozone Oxidative Postconditioning on Long-term Injury after Renal Ischemia/Reperfusion in Rat. Transplant. Proc. 2020, 52, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Z.; Liu, Y.; Du, Y.; Liu, X. Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway. Drug Des. Dev. Ther. 2018, 12, 1293–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oztosun, M.; Akgul, E.O.; Cakir, E.; Cayci, T.; Uysal, B.; Ogur, R.; Ozcan, A.; Ozgurtas, T.; Guven, A.; Korkmaz, A. The Effects of Medical Ozone Therapy on Renal Ischemia/Reperfusion Injury. Ren. Fail. 2012, 34, 921–925. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.; González, L.; Calunga, J.L.; Rodríguez, S.; Santos, E. Ozone Postconditioning in Renal Ischaemia-Reperfusion Model. Functional and Morphological Evidences. Soc. Española Nefrol. 2011, 31, 379–504. [Google Scholar]
- Wang, L.; Chen, H.; Liu, X.-H.; Chen, Z.-Y.; Weng, X.-D.; Qiu, T.; Liu, L.; Zhu, H.-C. Ozone oxidative preconditioning inhibits renal fibrosis induced by ischemia and reperfusion injury in rats. Exp. Ther. Med. 2014, 8, 1764–1768. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.; Lichtman, A.; Pillai, S. Cellular and Molecular Immunology, 10th ed.; Elsevier: Edinburgh, UK, 2021. [Google Scholar]
- Repetto, M.; Semprine, J.; Boveris, A. Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination. In Lipid Peroxidation; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Pérez Fernandez, R.; Martín Mateo, M.C.; De Vega, L.; Bustamante Bustamante, J.; Herrero, M.; Bustamante Munguira, E. Antioxidant enzyme determination and a study of lipid peroxidation in renal transplantation. Ren. Fail. 2002, 24, 353–359. [Google Scholar] [CrossRef]
- Linas, S.L.; Whittenburg, D.; Repine, J.E. Role of xanthine oxidase in ischemia/reperfusion injury. Am. J. Physiol. Physiol. 1990, 258, F711–F716. [Google Scholar] [CrossRef]
- Zhou, J.-Q.; Qiu, T.; Zhang, L.; Chen, Z.-B.; Wang, Z.-S.; Ma, X.-X.; Li, D. Allopurinol preconditioning attenuates renal ischemia/reperfusion injury by inhibiting HMGB1 expression in a rat model. Acta Cir. Bras. 2016, 31, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.-h.; Lv, J.; Garg, A.X.; Knight, J.; et al. World-wide access to treatment for end-stage kidney disease: A systematic review. Lancet 2015, 385, 1975–1982. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xing, B.; Liu, X.; Zhan, B.; Zhou, J.; Zhu, H.; Chen, Z. Ozone oxidative preconditioning inhibits inflammation and apoptosis in a rat model of renal ischemia/reperfusion injury. Eur. J. Pharmacol. 2008, 581, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Barber, E.; Menéndez, S.; León, O.S.; Barber, M.O.; Merino, N.; Calunga, J.L.; Cruz, E.; Bocci, V. Prevention of renal injury after induction of ozone tolerance in rats submitted to warm ischaemia. Mediat. Inflamm. 1999, 8, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Calunga, J.L.; Trujillo, Y.; Zamora, Z.; Alonso, Y.; Merino, N.; Montero, T.; Menéndez, S. Ozone oxidative post-conditioning in acute renal failure. J. Pharm. Pharmacol. 2009, 61, 221–227. [Google Scholar] [CrossRef]
- Chen, H.; Xing, B.; Liu, X.; Zhan, B.; Zhou, J.; Zhu, H.; Chen, Z. Similarities Between Ozone Oxidative Preconditioning and Ischemic Preconditioning in Renal Ischemia/Reperfusion Injury. Arch. Med. Res. 2008, 39, 169–178. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Weng, X.; Wang, M.; Du, Y.; Liu, X. Combined Ischemic Postconditioning and Ozone Postconditioning Provides Synergistic Protection Against Renal Ischemia and Reperfusion Injury Through Inhibiting Pyroptosis. Urology 2019, 123, 296.e1–296.e8. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Q.; Guo, Y.-L.; Liu, X.-H.; Qiu, T. Effect of ozone oxidative preconditioning on inflammation and oxidative stress injury in rat model of renal transplantation. Acta Cir. Bras. 2018, 33, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Qiu, T.; Wang, Z.-S.; Liu, X.-H.; Chen, H.; Zhou, J.-Q.; Chen, Z.-Y.; Wang, M.; Jiang, G.-J.; Wang, L.; Yu, G.; et al. Effect of ozone oxidative preconditioning on oxidative stress injury in a rat model of kidney transplantation. Exp. Ther. Med. 2017, 13, 1948–1955. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, H.; Liu, X.-H.; Chen, Z.-Y.; Weng, X.-D.; Qiu, T.; Liu, L. The protective effect of ozone oxidative preconditioning against hypoxia/reoxygenation injury in rat kidney cells. Ren. Fail. 2014, 36, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Gengaro, P.; Niederberger, M.; Burke, T.J.; Schrier, R.W. Nitric oxide: A mediator in rat tubularhypoxia/reoxygenation injury. Proc. Natl. Acad. Sci. USA 1994, 91, 1691–1695. [Google Scholar] [CrossRef] [Green Version]
- Tripatara, P.; Patel, N.S.; Webb, A.; Rathod, K.; Lecomte, F.M.; Mazzon, E.; Cuzzocrea, S.; Yaqoob, M.M.; Ahluwalia, A.; Thiemermann, C. Nitrite-Derived Nitric Oxide Protects the Rat Kidney against Ischemia/Reperfusion Injury In Vivo: Role for Xanthine Oxidoreductase. J. Am. Soc. Nephrol. 2007, 18, 570–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juchau, M.R.; Chen, H. Developmental Enzymology. In Handbook of Developmental Neurotoxicology; Elsevier: Humana Totowa, NJ, USA, 1998; pp. 321–337. [Google Scholar]
- Demirbag, S.; Uysal, B.; Guven, A.; Cayci, T.; Ozler, M.; Ozcan, A.; Kaldirim, U.; Surer, I.; Korkmaz, A. Effects of medical ozone therapy on acetaminophen-induced nephrotoxicity in rats. Ren. Fail. 2010, 32, 493–497. [Google Scholar] [CrossRef] [Green Version]
- Reshi, M.S.; Yadav, D.; Uthra, C.; Shrivastava, S.; Shukla, S. Acetaminophen-induced renal toxicity: Preventive effect of silver nanoparticles. Toxicol. Res. 2020, 9, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Ucar, F.; Taslipinar, M.Y.; Alp, B.F.; Aydin, I.; Aydin, F.N.; Agilli, M.; Toygar, M.; Ozkan, E.; Macit, E.; Oztosun, M.; et al. The Effects of N-Acetylcysteine and Ozone Therapy on Oxidative Stress and Inflammation in Acetaminophen-Induced Nephrotoxicity Model. Ren. Fail. 2013, 35, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.; Coughlin, L.; Jusko, W.; Hartz, S. Contribution of cigarette smoking to cadmium accumulation in man. Lancet 1972, 299, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, V.; Abern, M.; Jagai, J.; Kajdacsy-Balla, A. Observational Study of the Association between Air Cadmium Exposure and Prostate Cancer Aggressiveness at Diagnosis among a Nationwide Retrospective Cohort of 230,540 Patients in the United States. Int. J. Environ. Res. Public Health 2021, 18, 8333. [Google Scholar] [CrossRef]
- Singh, P.; Mitra, P.; Goyal, T.; Sharma, S.; Sharma, P. Blood lead and cadmium levels in occupationally exposed workers and their effect on markers of DNA damage and repair. Environ. Geochem. Health 2020, 43, 185–193. [Google Scholar] [CrossRef]
- Ramon, D.; Morick, D.; Croot, P.; Berzak, R.; Scheinin, A.; Tchernov, D.; Davidovich, N.; Britzi, M. A survey of arsenic, mercury, cadmium, and lead residues in seafood (fish, crustaceans, and cephalopods) from the south-eastern Mediterranean Sea. J. Food Sci. 2021, 86, 1153–1161. [Google Scholar] [CrossRef]
- Rani, A.; Kumar, A.; Lal, A.; Pant, M. Cellular mechanisms of cadmium-induced toxicity: A review. Int. J. Environ. Health Res. 2013, 24, 378–399. [Google Scholar] [CrossRef]
- Milnerowicz, H.; Śliwińska-Mossoń, M.; Sobiech, K.A. The effect of ozone on the expression of metallothionein in tissues of rats chronically exposed to cadmium. Environ. Toxicol. Pharmacol. 2017, 52, 27–37. [Google Scholar] [CrossRef]
- Ohta, H.; Qi, Y.; Ohba, K.; Toyooka, T.; Wang, R.-S. Role of metallothionein-like cadmium-binding protein (MTLCdBP) in the protective mechanism against cadmium toxicity in the testis. Ind. Health 2019, 57, 570–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Śliwińska-Mossoń, M.; Sobiech, K.; Dolezych, B.; Madej, P.; Milnerowicz, H. N-acetyl-beta-D-Glucosaminidase in Tissues of Rats Chronically Exposed to Cadmium and Treated with Ozone. Ann. Clin. Lab. Sci. 2019, 49, 193–203. [Google Scholar] [PubMed]
- Le Hir, M.; Dubach, U.C.; Schmidt, U. Quantitative distribution of lysosomal hydrolases in the rat nephron. Histochem. 1979, 63, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Liangos, O.; Perianayagam, M.C.; Vaidya, V.S.; Han, W.K.; Wald, R.; Tighiouart, H.; MacKinnon, R.W.; Li, L.; Balakrishnan, V.S.; Pereira, B.J.; et al. Urinary N-Acetyl-β-(D)-Glucosaminidase Activity and Kidney Injury Molecule-1 Level Are Associated with Adverse Outcomes in Acute Renal Failure. J. Am. Soc. Nephrol. 2007, 18, 904–912. [Google Scholar] [CrossRef]
- Boyer, M.J.; Tannock, I.F. Lysosomes, Lysosomal Enzymes, and Cancer. Adv. Cancer Res. 1992, 60, 269–291. [Google Scholar]
- Łaszczyca, P.; Kawka-Serwecińska, E.; Witas, I.; Dolezych, B.; Falkus, B.; Mekail, A.; Ziółkowska, B.; Madej, P.; Migula, P. Lipid peroxidation and activity of antioxidative enzymes in the rat model of ozone therapy. Mater. Med. Pol. 1996, 28, 155–160. [Google Scholar]
- U.S. Food and Drug Administration (FDA). ADRIAMYCIN (DOXOrubicin HCl) for Injection; FDA: Silver Spring, MD, USA, 2020.
- Okuda, S.; Oh, Y.; Tsuruda, H.; Onoyama, K.; Fujimi, S.; Fujishima, M. Adriamycin-induced nephropathy as a model of chronic progressive glomerular disease. Kidney Int. 1986, 29, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Calunga, J.; Bello, M.; Chaple, M.; Barber, E.; Menéndez, S.; Merino, N. Ozonoterapia en la glomerulonefritis tóxica experimental por adriamicina. Rev. Cuba. Invest. Biomed. 2004, 23, 139–143. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Cisplatin Injection. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/018057s089lbl.pdf (accessed on 19 October 2022).
- Sánchez-González, P.D.; López-Hernández, F.J.; Lopez-Novoa, J.M.; Morales, A.I. An integrative view of the pathophysiological events leading to cisplatin nephrotoxicity. Crit. Rev. Toxicol. 2011, 41, 803–821. [Google Scholar] [CrossRef]
- Jo, S.-K.; Cho, W.Y.; Sung, S.A.; Kim, H.K.; Won, N.H. MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int. 2005, 67, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Ghani, M.A.; Barril, C.; Bedgood, D.R., Jr.; Prenzler, P.D. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 2017, 230, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Borrego, A.; Zamora, Z.B.; González, R.; Romay, C.; Menéndez, S.; Hernández, F.; Montero, T.; Rojas, E. Protection by ozone preconditioning is mediated by the antioxidant system in cisplatin-induced nephrotoxicity in rats. Mediat. Inflamm. 2004, 13, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.A.-R.; Khater, S.I.; Metwally, M.M.; Bin Emran, T.; Nassan, M.A.; El-Emam, M.M.A.; Mostafa-Hedeab, G.; El-Shetry, E.S. TGF-β1, NAG-1, and antioxidant enzymes expression alterations in Cisplatin-induced nephrotoxicity in a rat model: Comparative modulating role of Melatonin, Vit. E and Ozone. Gene 2022, 820, 146293. [Google Scholar] [CrossRef]
- González, R.; Borrego, A.; Zamora, Z.; Romay, C.; Hernández, F.; Menéndez, S.; Montero, T.; Rojas, E. Reversion by ozone treatment of acute nephrotoxicity induced by cisplatin in rats. Mediat. Inflamm. 2004, 13, 307–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesik, V.; Uysal, B.; Kurt, B.; Kismet, E.; Koseoglu, V. Ozone ameliorates methotrexate-induced intestinal injury in rats. Cancer Biol. Ther. 2009, 8, 1623–1628. [Google Scholar] [CrossRef] [Green Version]
- Heyman, S.N.; Rosenberger, C.; Rosen, S. Regional alterations in renal haemodynamics and oxygenation: A role in contrast medium-induced nephropathy. Nephrol. Dial. Transplant. 2005, 20, i6–i11. [Google Scholar] [CrossRef] [Green Version]
- Kurtoglu, T.; Durmaz, S.; Akgullu, C.; Gungor, H.; Eryilmaz, U.; Meteoglu, I.; Karul, A.; Boga, M. Ozone preconditioning attenuates contrast-induced nephropathy in rats. J. Surg. Res. 2015, 195, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, O.; Eroglu, H.A.; Ustebay, S.; Kuzucu, M.; Adali, Y. An experimental study on the preventive effects of N-acetyl cysteine and ozone treatment against contrast-induced nephropathy. Acta Cir. Bras. 2018, 33, 508–517. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.-S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Yu, G.; Bai, Z.; Chen, Z.; Chen, H.; Wang, G.; Wang, G.; Liu, Z. The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease. Int. Immunopharmacol. 2017, 43, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Calunga, J.L.; Zamora, Z.B.; Borrego, A.; Del Río, S.; Barber, E.; Menéndez, S.; Hernández, F.; Montero, T.; Taboada, D. Ozone Therapy on Rats Submitted to Subtotal Nephrectomy: Role of Antioxidant System. Mediat. Inflamm. 2005, 2005, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.-Y.; Feng, Y.-L.; Bai, X.; Tan, X.-J.; Lin, R.-C.; Mei, Q. Ultra Performance Liquid Chromatography-Based Metabonomic Study of Therapeutic Effect of the Surface Layer of Poria cocos on Adenine-Induced Chronic Kidney Disease Provides New Insight into Anti-Fibrosis Mechanism. PLoS ONE 2013, 8, e59617. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, X.; Yu, G.; Chen, H.; Wang, L.; Wang, Z.; Qiu, T.; Weng, X. Ozone therapy ameliorates tubulointerstitial inflammation by regulating TLR4 in adenine-induced CKD rats. Ren. Fail. 2016, 38, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Liu, X.; Chen, Z.; Chen, H.; Wang, L.; Wang, Z.; Qiu, T.; Weng, X. Ozone Therapy Could Attenuate Tubulointerstitial Injury in Adenine-Induced CKD Rats by Mediating Nrf2 and NF-ΚB. Iran J. Basic Med. Sci. 2016, 19, 1136–1143. [Google Scholar]
- Umanath, K.; Lewis, J.B. Update on Diabetic Nephropathy: Core Curriculum 2018. Am. J. Kidney Dis. 2018, 71, 884–895. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Bakris, G.L.; Bilous, R.W.; Chiang, J.L.; de Boer, I.H.; Goldstein-Fuchs, J.; Hirsch, I.B.; Kalantar-Zadeh, K.; Narva, A.S.; Navaneethan, S.D.; et al. Diabetic Kidney Disease: A Report from an ADA Consensus Conference. Diabetes Care 2014, 37, 2864–2883. [Google Scholar] [CrossRef] [Green Version]
- Morsy, M.D.; Hassan, W.N.; Zalat, S. Improvement of renal oxidative stress markers after ozone administration in diabetic nephropathy in rats. Diabetol. Metab. Syndr. 2010, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Güçlü, A.; Erken, H.A.; Erken, G.; Dodurga, Y.; Yay, A.; Özçoban, Ö.; Şimşek, H.; Akçılar, A.; Kocak, F.E. The effects of ozone therapy on caspase pathways, TNF-α, and HIF-1α in diabetic nephropathy. Int. Urol. Nephrol. 2015, 48, 441–450. [Google Scholar] [CrossRef]
- Varghese, R.T.; Jialal, I. Diabetic Nephropathy. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534200/ (accessed on 9 November 2022).
- Biedunkiewicz, B.; Tylicki, L.; Lichodziejewska-Niemierko, M.; Liberek, T.; Rutkowski, B. Ozonetherapy in a dialyzed patient with calcific uremic arteriolopathy. Kidney Int. 2003, 64, 367–368. [Google Scholar] [CrossRef] [Green Version]
- Di Paolo, N.; Bocci, V.; Cappelletti, F.; Petrini, G.; Gaggiotti, E. Necrotizing Fasciitis Successfully Treated with Extracorporeal Blood Oxygenation and Ozonization (EBOO). Int. J. Artif. Organs 2002, 25, 1194–1198. [Google Scholar] [CrossRef] [PubMed]
- Sancak, E.B.; Turkön, H.; Çukur, S.; Erimsah, S.; Akbas, A.; Gulpinar, M.T.; Toman, H.; Sahin, H.; Uzun, M. Major Ozonated Autohemotherapy Preconditioning Ameliorates Kidney Ischemia-Reperfusion Injury. Inflammation 2016, 39, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Biedunkiewicz, B.; Tylicki, L.; Rachon, D.; Hak, L.; Nieweglowski, T.; Chamienia, A.; Debska-Slizien, A.; Mysliwska, J.; Rutkowski, B. Natural Killer Cell Activity Unaffected by Ozonated Autohemotherapy in Patients with End-Stage Renal Disease on Maintenance Renal Replacement Therapy. Int. J. Artif. Organs 2004, 27, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-J.; Jiang, L.; Wang, Y.; Kuang, Z.-M. Ozone therapy induced sinus arrest in a hypertensive patient with chronic kidney disease. Medicine 2017, 96, e9265. [Google Scholar] [CrossRef]
- Gu, X.-B.; Yang, X.-J.; Zhu, H.-Y.; Xu, Y.-Q.; Liu, X.-Y. Effect of medical ozone therapy on renal blood flow and renal function of patients with chronic severe hepatitis. Chin. Med. J. 2010, 123, 2510–2513. [Google Scholar]
- Torricelli, F.C.M.; Danilovic, A.; Vicentini, F.; Marchini, G.S.; Srougi, M.; Mazzucchi, E. Extracorporeal shock wave lithotripsy in the treatment of renal and ureteral stones. Rev. Assoc. Med. Bras. 2015, 61, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Uğuz, S.; Demirer, Z.; Uysal, B.; Alp, B.F.; Malkoc, E.; Guragac, A.; Turker, T.; Ateş, F.; Karademir, K.; Ozcan, A.; et al. Medical ozone therapy reduces shock wave therapy-induced renal injury. Ren. Fail. 2016, 38, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Madej, P.; Plewka, A.; Madej, J.A.; Nowak, M.; Plewka, D.; Franik, G.; Golka, D. Ozonotherapy in an Induced Septic Shock. I. Effect of Ozonotherapy on Rat Organs in Evaluation of Free Radical Reactions and Selected Enzymatic Systems. Inflammation 2007, 30, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Madej, P.; Plewka, A.; Madej, J.A.; Plewka, D.; Mroczka, W.; Wilk, K.; Dobrosz, Z. Ozone Therapy in Induced Endotoxemic Shock. II. The Effect of Ozone Therapy Upon Selected Histochemical Reactions in Organs of Rats in Endotoxemic Shock. Inflammation 2007, 30, 69–86. [Google Scholar] [CrossRef]
Damage Model | Induced Procedure | O3 Administration | Effects in O3 Treated Rats | Ref. |
---|---|---|---|---|
O3 oxidative preconditioning Therapy | ||||
Kidney transplantation | Right Nephrectomy and left transplant | 15 (1 daily) preconditioning rectal insufflations 1 mg/kg at [50 µg/mL] to the donor rat | ↑ SOD, GSH Px ↓ SCr, BUN, MDA ↓ Morphologic damage ↓ IL-6, IL-18, COX2 ↓ NF-κB, HMGB1 | [45] |
Kidney transplantation | Right nephrectomy and left transplant | 15 (1 daily) preconditioning rectal insufflations 1 mg/kg at [50 µg/mL] to the donor rat | ↑ SOD, GSH, CAT ↑ Nrf2, HO-1 ↓ SCr, BUN, MDA ↓ Morphologic damage | [46] |
Right nephrectomy and left pedicle clamping | 45 min ischemia 24 h reperfusion | Preconditioning therapy 15 previous rectal insufflations, 1 mg/kg at [50 µg/mL] | ↓ BUN, SCr ↓ Medullar Hemorrhage ↓ TNF-α, IL-1β, IL-6, ICAM-1, ↓ MCP-1, TLR4, NF-kB | [26] |
Right nephrectomy and left pedicle clamping | 60 min ischemia 60 min reperfusion | Preconditioning therapy OA, 1 mL of blood added with 5 mL of O₃ [50 µg/mL] before and after IR | ↑ iNOS ↑ β NADPH diaphorase ↓ BUN, SCr ↓ Medullar damage | [27] |
Right nephrectomy and left pedicle clamping | 45 min ischemia 24, 48, 72 h reperfusion | Preconditioning therapy 15 previous rectal insufflations, 1 mg/kg at [50 µg/mL] | ↑ GSH, GSH-Px, SOD ↑ NO, iNOS, eNOS ↓ BUN, SCr ↓ Morphologic damage ↓ MDA ↓ ET-1 | [28] |
Right nephrectomy and left pedicle clamping | 45 min ischemia 8-week reperfusion | Preconditioning therapy rectal pathway, 1 mg/kg at [50 µg/dL] | ↑ SMAD-7 ↓ α- SMA, TGF-β BUN, SCr not significant | [33] |
Right nephrectomy and left pedicle clamping | 45 min ischemia and reperfusion | Preconditioning 15 (1 daily) doses by rectal insufflation, 1 mg/kg at [50 µg/mL] | ↓ SCr, BUN, MDA ↓ Morphologic damage ↓ICAM-1, IL-1β, TNF-α, Caspase 3 | [40] |
Bilateral pedicle clamping | 30 min ischemia and 3 h reperfusion | Preconditioning 15 (1 daily) 2.5–2.6 mL at [50 mg/mL] at a dose of 0.5 mg/kg by rectal insufflation | ↑ RPF, GFR (inulin) ↑ SOD ↓ Morphologic damage | [41] |
O3 oxidative postconditioning therapy | ||||
Bilateral Renal Artery Occlusion | 60 min ischemia 6 h reperfusion | Postconditioning therapy single 0.7 µg/kg i.p. immediately after reperfusion | ↑ SOD, GSH-Px, ↓ SCr, BUN ↓ AST, Neopterin ↓ MDA, PCC, NOx ↓ Morphologic damage | [31] |
Left nephrectomy and right pedicle clamping | 45 min ischemia 24 h reperfusion | Postconditioning therapy 1 and 2 mg/kg; 15 (1 daily) doses after IRI at [50 μg/mL] by rectal insufflation | ↑ SOD ↓ SCr, BUN, MDA ↓ Morphologic damage ↓ BAX, PARP, CREB, c-Fos | [30] |
Right Nephrectomy and Left pedicle clamping | 45 min ischemia 10 days reperfusion | Postconditioning therapy 10 daily rectal insufflations after IRI, a 2.5 mL volume at 0.5 mg/kg/min [50 μg/mL] | ↑ SOD ↓ SCr, BUN ↓ MDA, MPO ↓ Morphologic damage ↓ α-SMA, TGF-β, p-SMAD-2 | [29] |
Renal vascular bundles clamping | 60 min ischemia 10 days reperfusion | Postconditioning therapy Daily 10 days after IRI At 0.5 mg/kg/min via rectal insufflation | ↓ Proteinuria ↑ RPF, Glomerular Filtration Rate ↓ Morphologic Damage | [32] |
Bilateral Renal Artery Occlusion | 60 min ischemia and 10-day reperfusion | 10 (1 daily) 2.5–2.6 mL at [50 mg/mL], representing a dose of 0.5 mg/kg weight rectal insufflations | ↑ CAT, SOD ↓ SCr, Fructosamine ↓ Phospholipase A2 | [42] |
Right nephrectomy and left pedicle clamping | 45 min ischemia and 24 h reperfusion | Ischemic Preconditioning vs. O3 Preconditioning, 15 rectal insufflations at [50 μg/mL]) | ↑ NO ↑ GSH, GSP-Px, SOD ↓ BUN, SCr, MDA | [43] |
Right nephrectomy and left pedicle clamping | 45 min ischemia and 24 h reperfusion | Comparison Ischemic Post conditioning vs. O3 post conditioning, 2 mg/kg | ↓ IL 1, IL 18, Caspase 1 ↓ SCr, BUN, MDA ↓ Morphologic Damage | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgadillo-Valero, L.F.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. The Protective Role of Ozone Therapy in Kidney Disease: A Review. Life 2023, 13, 752. https://doi.org/10.3390/life13030752
Delgadillo-Valero LF, Hernández-Cruz EY, Pedraza-Chaverri J. The Protective Role of Ozone Therapy in Kidney Disease: A Review. Life. 2023; 13(3):752. https://doi.org/10.3390/life13030752
Chicago/Turabian StyleDelgadillo-Valero, Luis Fernando, Estefani Yaquelin Hernández-Cruz, and José Pedraza-Chaverri. 2023. "The Protective Role of Ozone Therapy in Kidney Disease: A Review" Life 13, no. 3: 752. https://doi.org/10.3390/life13030752
APA StyleDelgadillo-Valero, L. F., Hernández-Cruz, E. Y., & Pedraza-Chaverri, J. (2023). The Protective Role of Ozone Therapy in Kidney Disease: A Review. Life, 13(3), 752. https://doi.org/10.3390/life13030752