Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants
Abstract
:1. Introduction
2. Enzymatic Biocatalysts Applied for the Degradation of Pharmaceutical Pollutants
2.1. Free Enzymes in the Biodegradation of PCPs
2.2. Immobilized Enzymes in the Biodegradation of PCPs
3. Bacterial and Fungal Biocatalysts for the Biodegradation of PCPs
4. Immobilized Bacterial and Fungal Cells as Biocatalysts for Biodegradation of PCPs
5. Microalgae as Efficient Biocatalysts for the Biodegradation of Pharmaceutical Pollutants
6. Microbial Consortia for Biodegradation of PCPs
7. Hybrid Physical–Chemical–Biocatalytic Treatments of the PCPs
8. Comparative Analysis of Various Approaches to Biodegradation PCPs Based on Use of Enzymes and Microorganisms
- -
- the range of concentrations of PCPs, the degradation of which is possible under the action of microbial cells, is wider than the equivalent indicator established for enzymes;
- -
- the destruction rates of substances under the action of enzymes are two orders of magnitude higher than under the action of microbial cells;
- -
- immobilized cells and enzymes in general have higher removal rates of different PCPs, as well as a wider range of these pollutants that can be biodegraded;
- -
- enzymes, unlike microbial cells, can be successfully used for the biodegradation of hormones;
- -
- among all PCPs, the maximum removal rates are characteristic of antimicrobial substances not only for enzymes, but also for microorganisms, which indicates the resistance of microbial biocatalysts to these pollutants;
- -
- analgesics, anti-inflammatory agents and cardiovascular agents decompose more efficiently under the action of immobilized biocatalysts;
- -
- it is more expedient to use microbial cells for biodegradation of drugs for CNS;
- -
- only immobilized biocatalysts are used for the biodegradation of hypolipidemic agents, while enzymes are able to show activity in a wider range of concentrations of these substances;
- -
- there are still few studies on the decomposition of lipid-lowering agents and active components of sunscreen.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guedes-Alonso, R.; Montesdeoca-Esponda, S.; Pacheco-Juárez, J.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. A survey of the presence of pharmaceutical residues in wastewaters. Evaluation of their removal using conventional and natural treatment procedures. Molecules 2020, 25, 1639. [Google Scholar] [CrossRef] [Green Version]
- Shmuel, S.; Pate, V.; Pepin, M.J.; Bailey, J.; Hanson, L.; Stürmer, T.; Naumann, R.; Golightly, Y.; Gnjidic, D.; Lund, J. Quantifying cumulative anticholinergic and sedative drug load among US medicare beneficiaries. Pharmacoepidemiol. Drug Saf. 2020, 30, 144–156. [Google Scholar] [CrossRef]
- Anjanapriya, S.; Mohideen, M.; Radha, A.; Sasirekha, N.; Sawicka, B.; Tamizhazhagan, V. Pharmaceutical pollution crisis in the world: A menace to ecosystem. Ecosyst. Entomol. Appl. Sci. Lett. 2021, 8, 77–89. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Della Giustina, S.V.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef] [PubMed]
- Bouzas-Monroy, A.; Wilkinson, J.L.; Melling, M.; Boxall, A.B.A. Assessment of the potential ecotoxicological effects of pharmaceuticals in the world’s rivers. Environ. Toxicol. Chem. 2022, 41, 2008–2020. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Yuan, X.; Li, P.; Yu, Y.; Yang, W.; Zhao, S. Reduction of ultrafiltration membrane fouling by the pretreatment removal of emerging pollutants: A review. Membranes 2023, 13, 77. [Google Scholar] [CrossRef]
- Pylypchuk, I.V.; Daniel, G.; Kessler, V.G.; Seisenbaeva, G.A. Removal of diclofenac, paracetamol, and carbamazepine from model aqueous solutions by magnetic sol–gel encapsulated horseradish peroxidase and lignin peroxidase composites. Nanomaterials 2020, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Apostolescu, N.; Tataru Farmus, R.E.; Harja, M.; Vizitiu, M.A.; Cernatescu, C.; Cobzaru, C.; Apostolescu, G.A. Photocatalytic removal of antibiotics from wastewater using the CeO2/ZnO heterojunction. Materials 2023, 16, 850. [Google Scholar] [CrossRef]
- Massima Mouele, E.S.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V.; Fatoba, O.O.; et al. Removal of pharmaceutical residues from water and wastewater using dielectric barrier discharge methods—A review. Int. J. Environ. Res. Public Health 2021, 18, 1683. [Google Scholar] [CrossRef] [PubMed]
- Ba, S.; Haroune, L.; Soumano, L.; Bellenger, J.P.; Jones, J.P.; Cabana, H. A hybrid bioreactor based on insolubilized tyrosinase and laccase catalysis and microfiltration membrane remove pharmaceuticals from wastewater. Chemosphere 2018, 201, 749–755. [Google Scholar] [CrossRef]
- Tiwari, B.; Sellamuthu, B.; Ouarda, Y.; Drogui, P.; Tyagi, R.D.; Buelna, G. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 2017, 224, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; You, J.; Yin, S.; Yang, H.; He, S.; Feng, L.; Li, J.; Zhao, Q.; Wei, L. Extracellular polymeric substances-antibiotics interaction in activated sludge: A review. Environ. Sci. Ecotechnol. 2022, 13, 100212. [Google Scholar] [CrossRef] [PubMed]
- Ivshina, I.; Bazhutin, G.; Tyumina, E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: Through the past into the future. Front. Microbiol. 2022, 13, 967127. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-W.; Liu, C.; Chang, B.-V. Biodegradation of amoxicillin, tetracyclines and sulfonamides in wastewater sludge. Water 2020, 12, 2147. [Google Scholar] [CrossRef]
- Kang, B.R.; Kim, S.Y.; Kang, M.; Lee, T.K. Removal of pharmaceuticals and personal care products using native fungal enzymes extracted during the ligninolytic process. Environ. Res. 2021, 195, 110878. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhandari, G.; Bhatt, K.; Simsek, H. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy. Chemosphere 2022, 306, 135576. [Google Scholar] [CrossRef] [PubMed]
- Ariste, A.F.; Haroune, L.; Saibi, S.; Cabana, H. Enzyme polymer engineered structure strategy to enhance cross-linked enzyme aggregate stability: A step forward in laccase exploitation for cannabidiol removal from wastewater. Environ. Sci. Pollut. Res. 2021, 28, 44051–44063. [Google Scholar] [CrossRef] [PubMed]
- Spina, F.; Gea, M.; Bicchi, C.; Cordero, C.; Schilirò, T.; Varese, G.C. Ecofriendly laccases treatment to challenge micropollutants issue in municipal wastewaters. Environ. Pollut. 2020, 257, 113579. [Google Scholar] [CrossRef]
- Kelbert, M.; Pereira, C.S.; Daronch, N.A.; Cesca, K.; Michels, C.; de Oliveira, D.; Soares, H.M. Laccase as an efficacious approach to remove anticancer drugs: A study of doxorubicin degradation, kinetic parameters, and toxicity assessment. J. Hazard. Mater. 2021, 409, 124520. [Google Scholar] [CrossRef] [PubMed]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-pour, A.; Verma, M.; Surampalli, R.Y. Biotransformation of carbamazepine by laccase-mediator system: Kinetics, by-products and toxicity assessment. Process Biochem. 2018, 67, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Cheng, X.; Yu, J.; Chen, L.; Wei, J.; Chen, W.; Wang, J.; Li, S.; Liu, Q.; Si, Y. Isolation of Trametes hirsuta La-7 with high laccase-productivity and its application in metabolism of 17β-estradiol. Environ. Pollut. 2020, 263, 114381. [Google Scholar] [CrossRef] [PubMed]
- Navada, K.K.; Kulal, A. Enzymatic degradation of chloramphenicol by laccase from Trametes hirsuta and comparison among mediators. Int. Biodeterior. Biodegrad. 2019, 138, 63–69. [Google Scholar] [CrossRef]
- Alharbi, S.K.; Nghiem, L.D.; Van De Merwe, J.P.; Leusch, F.D.; Asif, M.B.; Hai, F.I.; Price, W.E. Degradation of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole by laccase from Trametes versicolor: Transformation products and toxicity of treated effluent. Biocatal. Biotransfor. 2019, 37, 399–408. [Google Scholar] [CrossRef]
- Zhuo, R.; Yu, H.; Yuan, P.; Fan, J.; Chen, L.; Li, Y.; Ma, F.; Zhang, X. Heterologous expression and characterization of three laccases obtained from Pleurotus ostreatus HAUCC 162 for removal of environmental pollutants. J. Hazard. Mater. 2018, 344, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Li, S.; Yu, J.; Gong, R.; Si, Y.; Liu, X.; Chu, G. Cu2+-assisted laccase from Trametes versicolor enhanced self-polyreaction of triclosan. Chemosphere 2019, 225, 745–754. [Google Scholar] [CrossRef]
- Mashhadi, N.; Taylor, K.E.; Jimenez, N.; Varghese, S.T.; Levi, Y.; Lonergan, C.; Lebeau, E.; Lame, M.; Lard, E.; Biswas, N. Removal of selected pharmaceuticals and personal care products from wastewater using soybean peroxidase. Environ. Manag. 2019, 63, 408–415. [Google Scholar] [CrossRef]
- Maryskova, M.; Linhartova, L.; Novotny, V.; Rysova, M.; Cajthaml, T.; Sevcu, A. Laccase and horseradish peroxidase for green treatment of phenolic micropollutants in real drinking water and wastewater. Environ. Sci. Pollut. Res. 2021, 28, 31566–31574. [Google Scholar] [CrossRef]
- Dong, S.; Jing, X.; Cao, Y.; Xia, E.; Gao, S.; Mao, L. Non-covalent assembled laccase-graphene composite: Property, stability and performance in beta-blocker removal. Environ. Pollut. 2019, 252, 907–916. [Google Scholar] [CrossRef]
- Maryskova, M.; Vrsanska, M.; Sevcu, A.; Novotny, V.; Blahutova, A.; Voberkova, S. Laminated PAA nanofibers as a practical support for crude laccase: A new perspective for biocatalytic treatment of micropollutants in wastewaters. Environ. Technol. Innov. 2022, 26, 102316. [Google Scholar] [CrossRef]
- George, J.; Rajendran, D.S.; Venkataraman, S.; Rathankumar, A.K.; Saikia, K.; Muthusamy, S.; Singh, I.; Sinha, S.; Ramkumar, S.; Cabana, H.; et al. Insolubilization of Tramates versicolor laccase as cross-linked enzyme aggregates for the remediation of trace organic contaminants from municipal wastewater. Environ. Res. 2022, 209, 112882. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Bueno, S.F.; García-Morales, R.; Coronel, R.; Aguilar-Hernandez, I.; Becerril-Bravo, J.E.; Barrios-Perez, J.A.; Mahlknecht, J.; Cano-Quiroz, A.; Ornelas-Soto, N. Biocatalysis assisted by electrochemical processes for the removal of bisphenol A and triclosan in wastewater. Environ. Technol. Innov. 2022, 28, 102921. [Google Scholar] [CrossRef]
- Simón-Herrero, C.; Naghdi, M.; Taheran, M.; Brar, S.K.; Romero, A.; Valverde, J.L.; Ramirez, A.A.; Sánchez-Silva, L. Immobilized laccase on polyimide aerogels for removal of carbamazepine. J. Hazard. Mater. 2019, 376, 83–90. [Google Scholar] [CrossRef]
- Primožič, M.; Kravanja, G.; Knez, Ž.; Crnjac, A.; Leitgeb, M. Immobilized laccase in the form of (magnetic) cross-linked enzyme aggregates for sustainable diclofenac (bio)degradation. J. Clean. Prod. 2020, 275, 124121. [Google Scholar] [CrossRef]
- Zdarta, J.; Jankowska, K.; Wyszowska, M.; Kijeńska-Gawrońska, E.; Zgoła-Grześkowiak, A.; Pinelo, M.; Meyer, A.S.; Moszynski, D.; Jesionowski, T. Robust biodegradation of naproxen and diclofenac by laccase immobilized using electrospun nanofibers with enhanced stability and reusability. Mater. Sci. Eng. C 2019, 103, 109789. [Google Scholar] [CrossRef] [PubMed]
- García-Morales, R.; García-García, A.; Orona-Navar, C.; Osma, J.F.; Nigam, K.D.P.; Ornelas-Soto, N. Biotransformation of emerging pollutants in groundwater by laccase from P. sanguineus CS43 immobilized onto titania nanoparticles. J. Environ. Chem. Eng. 2018, 6, 710–717. [Google Scholar] [CrossRef]
- Wen, X.; Zeng, Z.; Du, C.; Huang, D.; Zeng, G.; Xiao, R.; Lai, C.; Xu, P.; Zhang, C.; Wan, J.; et al. Immobilized laccase on bentonite-derived mesoporous materials for removal of tetracycline. Chemosphere 2019, 222, 865–871. [Google Scholar] [CrossRef]
- Jahangiri, E.; Thomas, I.; Schulze, A.; Seiwert, B.; Cabana, H.; Schlosser, D. Characterisation of electron beam irradiation-immobilised laccase for application in wastewater treatment. Sci. Total Environ. 2018, 624, 309–322. [Google Scholar] [CrossRef] [PubMed]
- García-Delgado, C.; Eymar, E.; Camacho-Arévalo, R.; Petruccioli, M.; Crognale, S.; D’Annibale, A. Degradation of tetracyclines and sulfonamides by stevensite-and biochar-immobilized laccase systems and impact on residual antibiotic activity. J. Chem. Technol. Biotechnol. 2018, 93, 3394–3409. [Google Scholar] [CrossRef]
- Lonappan, L.; Liu, Y.; Rouissi, T.; Pourcel, F.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Covalent immobilization of laccase on citric acid functionalized micro-biochars derived from different feedstock and removal of diclofenac. Chem. Eng. J. 2018, 351, 985–994. [Google Scholar] [CrossRef]
- Masjoudi, M.; Golgoli, M.; Nejad, Z.G.; Sadeghzadeh, S.; Borghei, S.M. Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes. Chemosphere 2021, 263, 128043. [Google Scholar] [CrossRef] [PubMed]
- Maryšková, M.; Schaabová, M.; Tomankova, H.; Novotný, V.; Rysová, M. Wastewater treatment by novel polyamide/polyethylenimine nanofibers with immobilized laccase. Water 2020, 12, 588. [Google Scholar] [CrossRef] [Green Version]
- Huber, D.; Bleymaier, K.; Pellis, A.; Vielnascher, R.; Daxbacher, A.; Greimel, K.J.; Guebitz, G.M. Laccase catalyzed elimination of morphine from aqueous systems. New Biotechnol. 2018, 42, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Gao, T.; Salama, E.S.; El-Dalatony, M.M.; Peng, L.; Gong, Y.; Liu, P.; Li, X. Using Aspergillus niger whole-cell biocatalyst mycelial aerobic granular sludge to treat pharmaceutical wastewater containing β-lactam antibiotics. Chem. Eng. J. 2021, 412, 128665. [Google Scholar] [CrossRef]
- Gao, X.J.; Fan, X.J.; Chen, X.P.; Ge, Z.Q. Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation of β-lactam antibiotics in wastewater. Int. J. Environ. Sci. Technol. 2018, 15, 2203–2212. [Google Scholar] [CrossRef]
- Song, Y.; Ding, Y.; Wang, F.; Chen, Y.; Jiang, Y. Construction of nano-composites by enzyme entrapped in mesoporous dendritic silica particles for efficient biocatalytic degradation of antibiotics in wastewater. Chem. Eng. J. 2019, 375, 121968. [Google Scholar] [CrossRef]
- Vijayaraghavan, P.; Lourthuraj, A.A.; Arasu, M.V.; AbdullahAl-Dhabi, N.; Ravindran, B.; WoongChang, S. Effective removal of pharmaceutical impurities and nutrients using biocatalyst from the municipal wastewater with moving bed packed reactor. Environ. Res. 2021, 200, 111777. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Esmail, G.A.; Arasu, M.V. Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor. Chemosphere 2021, 268, 128726. [Google Scholar] [CrossRef]
- Yang, L.H.; Qiao, B.; Xu, Q.M.; Liu, S.; Yuan, Y.; Cheng, J.S. Biodegradation of sulfonamide antibiotics through the heterologous expression of laccases from bacteria and investigation of their potential degradation pathways. J. Hazard. Mater. 2021, 416, 125815. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hu, Y.; Wang, J. Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. J. Environ. Manag. 2018, 217, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Moreira, I.S.; Bessa, V.S.; Murgolo, S.; Piccirillo, C.; Mascolo, G.; Castro, P.M. Biodegradation of diclofenac by the bacterial strain Labrys portucalensis F11. Ecotoxicol. Environ. Saf. 2018, 152, 104–113. [Google Scholar] [CrossRef]
- Gao, N.; Liu, C.X.; Xu, Q.M.; Cheng, J.S.; Yuan, Y.J. Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus. Chemosphere 2018, 195, 146–155. [Google Scholar] [CrossRef]
- Kasonga, T.K.; Coetzee, M.A.; Kamika, I.; Momba, M.N.B. Assessing a co-culture fungal granule ability to remove pharmaceuticals in a sequencing batch reactor. Environ. Technol. 2022, 43, 1684–1699. [Google Scholar] [CrossRef]
- Kózka, B.; Nałęcz-Jawecki, G.; Turło, J.; Giebułtowicz, J. Application of Pleurotus ostreatus to efficient removal of selected antidepressants and immunosuppressant. J. Environ. Manag. 2020, 273, 111131. [Google Scholar] [CrossRef]
- Křesinová, Z.; Linhartová, L.; Filipová, A.; Ezechiáš, M.; Mašín, P.; Cajthaml, T. Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. New Biotechnol. 2018, 43, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Mayans, B.; Camacho-Arévalo, R.; García-Delgado, C.; Antón-Herrero, R.; Escolástico, C.; Segura, M.L.; Eymar, E. An assessment of Pleurotus ostreatus to remove sulfonamides, and its role as a biofilter based on its own spent mushroom substrate. Environ. Sci. Pollut. Res. 2021, 28, 7032–7042. [Google Scholar] [CrossRef] [PubMed]
- Jaén-Gil, A.; Castellet-Rovira, F.; Llorca, M.; Villagrasa, M.; Sarrà, M.; Rodríguez-Mozaz, S.; Barceló, D. Fungal treatment of metoprolol and its recalcitrant metabolite metoprolol acid in hospital wastewater: Biotransformation, sorption and ecotoxicological impact. Water Res. 2019, 152, 171–180. [Google Scholar] [CrossRef]
- Llorca, M.; Castellet-Rovira, F.; Farré, M.J.; Jaén-Gil, A.; Martínez-Alonso, M.; Rodríguez-Mozaz, S.; Sarra, M.; Barceló, D. Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water. Environ. Pollut. 2019, 246, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Al-Mohaimeed, A.M.; Abbasi, A.M.; Ali, M.A.; Dhas, D.D. Reduction of multiple antibiotics from the waste water using coated glutathione S-transferase producing biocatalyst. Environ. Res. 2022, 206, 112262. [Google Scholar] [CrossRef]
- Dzionek, A.; Wojcieszyńska, D.; Adamczyk-Habrajska, M.; Guzik, U. Enhanced degradation of naproxen by immobilization of Bacillus thuringiensis B1 (2015b) on loofah sponge. Molecules 2020, 25, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzionek, A.; Wojcieszyńska, D.; Hupert-Kocurek, K.; Adamczyk-Habrajska, M.; Guzik, U. Immobilization of Planococcus sp. S5 strain on the loofah sponge and its application in naproxen removal. Catalysts 2018, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Li, A.; Ji, X.; Yang, C.; He, S. Removal of acenaphthene from water by Triton X-100-facilitated biochar-immobilized Pseudomonas aeruginosa. RSC Adv. 2018, 8, 23426–23432. [Google Scholar] [CrossRef] [Green Version]
- Siddeeg, S.M.; Tahoon, M.A.; Ben Rebah, F. Simultaneous removal of calconcarboxylic acid, NH4+ and PO43− from pharmaceutical effluent using iron oxide-biochar nanocomposite loaded with Pseudomonas putida. Processes 2019, 7, 800. [Google Scholar] [CrossRef] [Green Version]
- Shahriarinour, M.; Divsar, F.; Dahka, F.K.; Chegini, S.N.; Mahani, M.; Moeini, A.; Cerruti, P. Biodegradation of alprazolam in pharmaceutical wastewater using mesoporous nanoparticles-adhered Pseudomonas stutzeri. Molecules 2021, 27, 237. [Google Scholar] [CrossRef]
- Tormo-Budowski, R.; Cambronero-Heinrichs, J.C.; Durán, J.E.; Masís-Mora, M.; Ramirez-Morales, D.; Quirós-Fournier, J.P.; Rodriguez-Rodriguez, C.E. Removal of pharmaceuticals and ecotoxicological changes in wastewater using Trametes versicolor: A comparison of fungal stirred tank and trickle-bed bioreactors. Chem. Eng. J. 2021, 410, 128210. [Google Scholar] [CrossRef]
- Del Álamo, A.C.; Pariente, M.I.; Vasiliadou, I.; Padrino, B.; Puyol, D.; Molina, R.; Martinez, F. Removal of pharmaceutical compounds from urban wastewater by an advanced bio-oxidation process based on fungi Trametes versicolor immobilized in a continuous RBC system. Environ. Sci. Pollut. Res. 2018, 25, 34884–34892. [Google Scholar] [CrossRef]
- Del Álamo, A.C.; Pariente, M.I.; Molina, R.; Martínez, F. Advanced bio-oxidation of fungal mixed cultures immobilized on rotating biological contactors for the removal of pharmaceutical micropollutants in a real hospital wastewater. J. Hazard. Mater. 2022, 425, 128002. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhang, Z.; Liu, H.; Dong, S.; Nghiem, L.D.; Gao, L.; Chaves, A.V.; Zamyadi, A.; Li, X.; Wang, Q. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. J. Hazard. Mater. 2023, 443, 130213. [Google Scholar] [CrossRef]
- Xiong, Q.; Hu, L.-X.; Liu, Y.-S.; Zhao, J.-L.; He, L.-Y.; Ying, G.-G. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environ. Int. 2021, 155, 106594. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.; Ahuja, V.; Gurav, R.; Kumar, V.; Tyagi, V.K.; Pugazhendhi, A.; Kumar, G.; Kumar, D.; Yang, Y.H.; Bhatia, S.K. Progress in microalgal mediated bioremediation systems for the removal of antibiotics and pharmaceuticals from wastewater. Sci. Total Environ. 2022, 825, 153895. [Google Scholar] [CrossRef]
- Goswami, R.K.; Agrawal, K.; Verma, P. An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater. Algal Res. 2022, 64, 102703. [Google Scholar] [CrossRef]
- Santos, M.D.J.O.; de Oliveira Souza, C.; Marcelino, H.R. Blue technology for a sustainable pharmaceutical industry: Microalgae for bioremediation and pharmaceutical production. Algal Res. 2023, 69, 102931. [Google Scholar] [CrossRef]
- Gayosso-Morales, M.A.; Rivas-Castillo, A.M.; Lucas-Gómez, I.; López-Fernández, A.; Calderón, A.V.; Fernández-Martínez, E.; Bernal, J.O.; González-Pérez, B.K. Microalgae, a current option for the bioremediation of pharmaceuticals: A review. Folia Microbiol. 2022. [Google Scholar] [CrossRef]
- Senko, O.; Stepanov, N.; Maslova, O.; Efremenko, E. “Nature-like” cryoimmobilization of phototrophic microorganisms: New opportunities for their long-term storage and sustainable use. Sustainability 2022, 14, 661. [Google Scholar] [CrossRef]
- Senko, O.; Stepanov, N.; Maslova, O.; Efremenko, E. Transformation of enzymatic hydrolysates of Chlorella–fungus mixed biomass into poly(hydroxyalkanoates). Catalysts 2023, 13, 118. [Google Scholar] [CrossRef]
- Encarnação, T.; Palito, C.; Pais, A.A.; Valente, A.J.; Burrows, H.D. Removal of pharmaceuticals from water by free and imobilised microalgae. Molecules 2020, 25, 3639. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, F.; Ruan, W.; Tai, Y.; Cai, H.; Yang, Y. Removal and degradation pathway analysis of 17β-estradiol from raw domestic wastewater using immobilised functional microalgae under repeated loading. Biochem. Eng. J. 2020, 161, 107700. [Google Scholar] [CrossRef]
- Liang, L.; Bai, X.; Hua, Z. Enhancement of the immobilization on microalgae protective effects and carbamazepine removal by Chlorella vulgaris. Environ. Sci. Pollut. Res. 2022, 29, 79567–79578. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-C.; Yang, A.-L.; Gao, W.; Fu, H.-Y.; Wang, Z.-J. Al2O3 Nanoparticles promote the removal of carbamazepine in water by Chlorella vulgaris immobilized in sodium alginate gel beads. J. Chem. 2020, 2020, 8758432. [Google Scholar] [CrossRef]
- Senko, O.; Maslova, O.; Aslanli, A.; Efremenko, E. Impact of perfluorocarbons with gas transport function on growth of phototrophic microorganisms in a free and immobilized state and in consortia with bacteria. Appl. Sci. 2023, 13, 1868. [Google Scholar] [CrossRef]
- Da Silva Rodrigues, D.A.; da Cunha, C.C.R.F.; do Espirito Santo, D.R.; de Barros, A.L.C.; Pereira, A.R.; de Queiroz Silva, S.; da Fonseca Santiago, A.; de Cássia Franco Afonso, R.J. Removal of cephalexin and erythromycin antibiotics, and their resistance genes, by microalgae-bacteria consortium from wastewater treatment plant secondary effluents. Environ. Sci. Pollut. Res. 2021, 28, 67822–67832. [Google Scholar] [CrossRef]
- Hom-Diaz, A.; Jaén-Gil, A.; Rodríguez-Mozaz, S.; Barceló, D.; Vicent, T.; Blánquez, P. Insights into removal of antibiotics by selected microalgae (Chlamydomonas reinhardtii, Chlorella sorokiniana, Dunaliella tertiolecta and Pseudokirchneriella subcapitata). Algal Res. 2022, 61, 102560. [Google Scholar] [CrossRef]
- Wolfson, S.J.; Porter, A.W.; Campbell, J.K.; Young, L.Y. Naproxen is transformed via acetogenesis and syntrophic acetate oxidation by a methanogenic wastewater consortium. Microb. Ecol. 2018, 76, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Do, T.M.; Choi, D.; Oh, S.; Stuckey, D.C. Anaerobic membrane bioreactor performance with varying feed concentrations of ciprofloxacin. Sci. Total Environ. 2022, 803, 150108. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Duarte, P.; Almeida, C.M.R.; Carvalho, M.F.; Mucha, A.P. Potential of bacterial consortia obtained from different environments for bioremediation of paroxetine and bezafibrate. J. Environ. Chem. Eng. 2020, 8, 103881. [Google Scholar] [CrossRef]
- Shu, W.; Zhang, Y.; Wen, D.; Wu, Q.; Liu, H.; Cui, M.H.; Fu, B.; Zhang, J.; Yao, Y. Anaerobic biodegradation of levofloxacin by enriched microbial consortia: Effect of electron acceptors and carbon source. J. Hazard. Mater. 2021, 414, 125520. [Google Scholar] [CrossRef]
- Larsen, C.; Yu, Z.H.; Flick, R.; Passeport, E. Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Sci. Total Environ. 2019, 695, 133772. [Google Scholar] [CrossRef] [PubMed]
- López-Serna, R.; Posadas, E.; García-Encina, P.A.; Muñoz, R. Removal of contaminants of emerging concern from urban wastewater in novel algal-bacterial photobioreactors. Sci. Total Environ. 2019, 662, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Xie, J.; Wen, Z. Removal of pharmaceutical and personal care products (PPCPs) from waterbody using a revolving algal biofilm (RAB) reactor. J. Hazard. Mater. 2021, 406, 124284. [Google Scholar] [CrossRef]
- Chen, R.; Huang, J.; Li, X.; Yang, C.; Wu, X. Functional characterization of an efficient ibuprofen-mineralizing bacterial consortium. J. Hazard. Mater. 2023, 447, 130751. [Google Scholar] [CrossRef]
- Murshid, S.; Dhakshinamoorthy, G.P. Application of an immobilized microbial consortium for the treatment of pharmaceutical wastewater: Batch-wise and continuous studies. Chin. J. Chem. Eng. 2021, 29, 391–400. [Google Scholar] [CrossRef]
- Shah, S.W.A.; Rehman, M.U.; Tauseef, M.; Islam, E.; Hayat, A.; Iqbal, S.; Arslan, M.; Afzal, M. Ciprofloxacin removal from aqueous media using floating treatment wetlands supported by immobilized bacteria. Sustainability 2022, 14, 14216. [Google Scholar] [CrossRef]
- Garakouei, S.R.; Issazadeh, K.; Zamani, H.; Rakhshaee, R.; Shahriarinour, M. Characterization of oxaliplatin removal by multispecies bacterial populations in moving bed biofilm and suspended-biomass reactors. J. Appl. Microbiol. 2022, 133, 630–645. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.; Arasu, M.V.A. Effective degradation of chlortetracycline using dual bio catalyst. Environ. Res. 2022, 204, 112339. [Google Scholar] [CrossRef] [PubMed]
- Navrozidou, E.; Melidis, P.; Ntougias, S. Biodegradation aspects of ibuprofen and identification of ibuprofen-degrading microbiota in an immobilized cell bioreactor. Environ. Sci. Pollut. Res. 2019, 26, 14238–14249. [Google Scholar] [CrossRef]
- Xie, B.; Tang, X.; Ng, H.Y.; Deng, S.; Shi, X.; Song, W.; Liang, H. Biological sulfamethoxazole degradation along with anaerobically digested centrate treatment by immobilized microalgal-bacterial consortium: Performance, mechanism and shifts in bacterial and microalgal communities. Chem. Eng. J. 2020, 388, 124217. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M.; Zieliński, M. Effect of pharmaceutical sludge pretreatment with Fenton/Fenton-like reagents on toxicity and anaerobic digestion efficiency. Int. J. Environ. Res. Public Health 2023, 20, 271. [Google Scholar] [CrossRef] [PubMed]
- Ince, B.K.; Selcuk, A.; Ince, O. Effect of a chemical synthesis-based pharmaceutical wastewater on performance, acetoclastic methanogenic activity and microbial population in an upflow anaerobic filter. J. Chem. Technol. Biotechnol. 2002, 77, 711–719. [Google Scholar] [CrossRef]
- Ledezma-Villanueva, A.; Robledo-Mahón, T.; Gómez-Silván, C.; Angeles-De Paz, G.; Pozo, C.; Manzanera, M.; Calvo, C.; Aranda, E. High-throughput microbial community analyses to establish a natural fungal and bacterial consortium from sewage sludge enriched with three pharmaceutical compounds. J. Fungi 2022, 8, 668. [Google Scholar] [CrossRef]
- Angeles-de Paz, G.; Ledezma-Villanueva, A.; Robledo-Mahón, T.; Pozo, C.; Calvo, C.; Aranda, E.; Purswani, J. Assembled mixed co-cultures for emerging pollutant removal using native microorganisms from sewage sludge. Chemosphere 2023, 313, 137472. [Google Scholar] [CrossRef]
- Efremenko, E.; Stepanov, N.; Maslova, O.; Senko, O.; Aslanli, A.; Lyagin, I. “Unity and struggle of opposites” as a basis for the functioning of synthetic bacterial immobilized consortium that continuously degrades organophosphorus pesticides. Microorganisms 2022, 10, 1394. [Google Scholar] [CrossRef] [PubMed]
- Senko, O.; Gladchenko, M.; Maslova, O.; Efremenko, E. Long-term storage and use of artificially immobilized anaerobic sludge as a powerful biocatalyst for conversion of various wastes including those containing xenobiotics to biogas. Catalysts 2019, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Maslova, O.; Senko, O.; Stepanov, N.; Gladchenko, M.; Gaydamaka, S.; Akopyan, A.; Eseva, E.; Anisimov, A.; Efremenko, E. Sulfur containing mixed wastes in anaerobic processing by new immobilized synthetic consortia. Bioresour. Technol. 2022, 362, 127794. [Google Scholar] [CrossRef] [PubMed]
- Jhunjhunwala, A.; Pathak, U.; Sarkar, K.K.; Majee, S.; Mandal, D.D.; Mandal, T. Removal of levosulpiride from pharmaceutical wastewater using an advanced integrated treatment strategy comprising physical, chemical, and biological treatment. Environ. Prog. Sustain. Energy 2021, 40, e13482. [Google Scholar] [CrossRef]
- Song, H.; Guo, W.; Liu, M.; Sun, J. Performance of microbial fuel cells on removal of metronidazole. Water Sci. Technol. 2013, 68, 2599–2604. [Google Scholar] [CrossRef]
- Kong, D.; Yun, H.; Cui, D.; Qi, M.; Shao, C.; Cui, D.; Ren, N.; Liang, B.; Wang, A. Response of antimicrobial nitrofurazone-degrading biocathode communities to different cathode potentials. Bioresour. Technol. 2017, 241, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Yu, Q.; Zhai, W.; Wang, F.; Scott, K. High tolerance of and removal of cefazolin sodium in single-chamber microbial fuel cells operation. Bioresour. Technol. 2018, 249, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Hu, X.; Sun, Z. Microbial community distribution and dominant bacterial species analysis in the bio-electrochemical system treating low concentration cefuroxime. Chem. Eng. J. 2016, 303, 137–144. [Google Scholar] [CrossRef]
- Song, H.L.; Zhang, S.; Yang, X.L.; Chen, T.Q.; Zhang, Y.Y. Coupled effects of electrical stimulation and antibiotics on microbial community in three-dimensional biofilm-electrode reactors. Water Air Soil Pollut. 2017, 228, 83. [Google Scholar] [CrossRef]
- Guo, W.; Geng, M.; Song, H.; Sun, J. Removal of chloramphenicol and simultaneous electricity generation by using microbial fuel cell technology. Int. J. Electrochem. Sci. 2016, 11, 5128–5139. [Google Scholar] [CrossRef]
- Li, H.; Pan, Y.; Wang, Z.; Chen, S.; Guo, R.; Chen, J. An algal process treatment combined with the Fenton reaction for high concentrations of amoxicillin and cefradine. RSC Adv. 2015, 5, 100775–100782. [Google Scholar] [CrossRef]
- Yang, K.; Lu, J.; Jiang, W.; Jiang, C.; Chen, J.; Wang, Z.; Guo, R. An integrated view of the intimate coupling UV irradiation and algal treatment on antibiotic: Compatibility, efficiency and microbic impact assessment. J. Environ. Chem. Eng. 2017, 5, 4262–4268. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Feng, Y.; Li, B.; Yu, M.; Xu, X.; Cai, L. Bio-Electron-Fenton (BEF) process driven by sediment microbial fuel cells (SMFCs) for antibiotics desorption and degradation. Biosens. Bioelectron. 2019, 136, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cai, Z.; Huang, L.; Pan, Y.; Quan, X.; Puma, G.L. Intensified degradation and mineralization of antibiotic metronidazole in photo-assisted microbial fuel cells with Mo-W catalytic cathodes under anaerobic or aerobic conditions in the presence of Fe(III). Chem. Eng. J. 2019, 376, 119566. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zheng, D.; He, Q.; Yu, J. The feasibility of ofloxacin degradation and electricity generation in photo-assisted microbial fuel cells with LiNbO3/CF photocatalytic cathode. Sep. Purif. Technol. 2020, 250, 117106. [Google Scholar] [CrossRef]
- Changotra, R.; Rajput, H.; Dhir, A. Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment. J. Photochem. Photobiol. A 2019, 376, 175–184. [Google Scholar] [CrossRef]
- Grandclément, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Res. 2017, 111, 297–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Zhang, S.; Guo, R.; Chen, J. Understanding the algal contribution in combined UV-algae treatment to remove antibiotic cefradine. RSC Adv. 2015, 5, 59953–59959. [Google Scholar] [CrossRef]
- Moradian, J.M.; Fang, Z.; Yong, Y.C. Recent advances on biomass-fueled microbial fuel cell. Bioresour. Bioprocess 2021, 8, 14. [Google Scholar] [CrossRef]
- Yan, W.; Xiao, Y.; Yan, W.; Ding, R.; Wang, S.; Zhao, F. The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review. Chem. Eng. J. 2019, 358, 1421–1437. [Google Scholar] [CrossRef]
- Hassan, M.; Zhu, G.; Lu, Y.Z.; Al-Falahi, A.H.; Yuan, L.U.; Huang, S.; Wan, Z. Removal of antibiotics from wastewater and its problematic effects on microbial communities by bioelectrochemical technology: Current knowledge and future perspectives. Environ. Eng. Res. 2021, 26, 190405. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Y.; Chen, C.; Zhou, X.; Liu, Y.; Yang, J.; Geng, Q.; Chen, G.; Ding, Y.; Yang, F. Current progress in natural degradation and enhanced removal techniques of antibiotics in the environment: A review. Int. J. Environ. Res. Public Health 2022, 19, 10919. [Google Scholar] [CrossRef] [PubMed]
- Saba, B.; Christy, A.D.; Yu, Z.; Co, A.C. Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): An overview. Renew. Sustain. Energy Rev. 2017, 73, 75–84. [Google Scholar] [CrossRef]
- Efremenko, E.N.; Lyagin, I.V.; Maslova, O.V.; Senko, O.V.; Stepanov, N.A.; Aslanli, A.G. Catalytic degradation of microplastics. Russ. Chem. Rev. 2023, 92, RCR5069. [Google Scholar] [CrossRef]
- Efremenko, E.; Senko, O.; Maslova, O.; Lyagin, I.; Aslanli, A.; Stepanov, N. Destruction of mycotoxins in poultry waste under anaerobic conditions within methanogenesis catalyzed by artificial microbial consortia. Toxins 2023, 15, 205. [Google Scholar] [CrossRef]
Biocatalyst [Reference] | Pollutant Concentration | Optimal Conditions of Enzymatic Action; Pollutant Degradation Efficiency |
---|---|---|
Free Enzymes | ||
Laccase from Trametes hirsute [18] | Municipal wastewater with cannabidiol (0.318 μM) | 20 °C, 8 h, 135 rpm; addition of 1 mM acetaminophen as mediator; 92.0% degradation of cannabidiol |
Laccases from Trametes pubescens MUT 2400 [19] | Samples of municipal wastewater after primary sedimentation (W1) and at the end of the process (W2) with total concentration of micropollutants equal to 403.2 μg/L and 349.5 μg/L, correspondently; bis-(2-ethylhexyl)phthalate, diethyl phthalate and ketoprofen were the most notable micropollutants in the mixtures | 20 °C, pH 7.7–7.8, 24 h, 100 rpm In W1: 86.3%, 84.9% and 82.4%degradation of bisphenol A, 2-hydroxybiphenyl and 4-t-butylphenol, correspondently; up to 70% degradation of 9 micropollutants and below 50% degradation of other micropollutants; In W2: 63% and 77–81% degradation of ketoprofen and oxybenzone, correspondently |
Laccase from T. versicolor [20] | Phosphate-citrate buffer with doxorubicin (0.25–10 mg/L) | 30 °C, pH 7.0, 24 h, Vmax = 703 µg/h/L 41.4% degradation of doxorubicin (1 mg/L) |
Laccase from T. versicolor [21] | Buffer with carbamazepine (1 mg/L) | 35 °C, pH 6.0, 24 h 95.0% degradation of carbamazepine |
Laccase from T. hirsuta [22] | 17β-estradiol in natural water (5 μmol/L) and pig manure (200 μg/kg) | 25 °C, pH 5.0 94.4% and 91.0% degradation of 17β-estradiol in water (for 2 h) and pig manure (for 7 days), correspondently |
Laccase from T. hirsute [23] | 0.1 M acetate buffer with chloramphenicol (10 mg/L) | 28 °C, pH 5.0, 48 h 100% degradation of chloramphenicol |
Laccase from Bjerkandera adusta [16] | McIlvaine buffer with acetaminophen, bisphenol A, sulfamethoxazole and carbamazepine (20 mg/L) Mixture contained 250 μM of each compound. | 25 °C, pH 6.0, 12 h 100% degradation of acetaminophen and bisphenol A; 20.5% degradation of carbamazepine; 22.0% and 19% degradation of sulfamethoxazole in presence of acetaminophen and other compounds, correspondently |
Laccase from T. versicolor [24] | Milli-Q water with diclofenac, trimethoprim, carbamazepine and sulfamethoxazole; total concentration of PCPs was 1.25 or 5 mg/L in mixture. | 25 °C, pH 6.8–6.9, 48 h, 80 rpm With single PCP: 100%, 95.0%, 82.0% and 56.0% degradation of diclofenac, trimethoprim, carbamazepine and sulfamethoxazole, correspondently With PCPs in mixture: 100%, 39.0%, 34.0% and 49.0% of same PCPs, correspondently |
Cu2+-assisted laccase from T. versicolor [25] | Phosphate buffered saline with triclosan (10 μM) | 25 °C, pH 6.0, 4 h, 3.0 mM Cu2+ 95.0% degradation of triclosan |
Recombinant laccases from Pleurotus ostreatus [26] | Acetate buffer (50 mM) with sulfadiazine, sulfamethazine and sulfamethoxazole (100 mg/L) | 25 °C, pH 4.8, 1 h 98.1%, 97.5%, and 97.8% degradation of sulfadiazine, sulfamethazine and sulfamethoxazole, correspondently |
Soybean peroxidase [27] | Synthetic wastewater with triclosan, sulfamethoxazole, estrone, 17β-estradiol, 17α-ethynylestradiol, nonylphenol and octylphenol (5–50 mg/L) | 0.05–0.5 mM H2O2, pH 6.0–7.0, 3 h 80.0% degradation of sulfamethoxazole and 95.0% degradation of all other PCPs |
Laccase from T. versicolor and horseradish peroxidase [28] | Tap water and secondary wastewater with mixture of bisphenol A, 17α-ethinylestradiol, diclofenac and triclosan (10 mg/L of each compound) supplemented by 2.5% (v/v) McIlvaine’s buffer | 25 °C, 20 h, 1% H2O2 pH 3.5–4.5 and 6.5–8.0 for peroxidase and laccase, correspondently; In tap water: 44.0, 68.0, 42.0 and 61.0% degradation of bisphenol A, 17α-ethinylestradiol, diclofenac and triclosan, was with laccase, correspondently; 83.0, 75.0, 49.0, and 56.0% degradation of same PCPs was with peroxidase; In wastewater: 81.0, 93.0, 38.0 and 72.0% degradation of same PCPs was with laccase; 63.0, 78.0, 17.0 and 54.0% degradation of same PCPs was with peroxidase |
Biocatalyst [Reference] | Pollutant Concentration | Optimal Conditions of Enzymatic Action; Pollutant Degradation Efficiency |
---|---|---|
Laccase-graphene composite [29] | Phosphate buffer with labetalol (10 μM) | pH 7.0, 20 μM ABTS, 20 min 100% degradation of labetalol |
Laccase from Pycnoporus sanguineus immobilized on TiO2 nanoparticles [30] | Wastewater from treatment plant with triclosan (1000 μg/L) | pH 7.9, 6 h, 93.0% electrooxidation/biocatalytic conversion |
Laccase from Tramates versicolor immobilized as cross-linked enzyme aggregates [31] | Municipal wastewater with acetaminophen mefenamic acid, ketoprofen, fenofibrate, bezafibrate, indomethacin, trimethoprim, ibuprofen and ofloxacin (10–50 μg/L) | 30 °C, pH 7.0, 6 h Degradation: 100.0% acetaminophen, 31.7% ofloxacin 65.1%, mefenamic acid 46.3%, ketoprofen, 90.0% fenofibrate 79.2%bezafibrate, 87.4% indomethacin 20.6% ibuprofen, 97.4% trimethoprim |
Laccase from T. versicolor immobilized on laminated poly(acrylic acid) nanofibers [32] | Wastewater containing mixture of bisphenol A, 17α-ethinylestradiol, triclosan and diclofenac (10 mg/L) | 20–22 °C, pH 7.0, 200 rpm 85.0%, 85.0%, 92.0% and 62.0% degradation of bisphenol A, 17α-ethinylestradiol, triclosan and diclofenac, correspondently |
Laccase from T. versicolor immobilized on polyimide aerogel [33] | Secondary effluent from wastewater treatment plant with carbamazepine (20 ng/mL) | 20 °C, 200 rpm, 24 h 74.0% degradation of carbamazepine |
Laccase immobilized on/into poly(l-lactic acid)-co-poly(ε-caprolactone) (PLCL) electrospun nanofibers [34] | Acetate buffer solution with naproxen and diclofenac (1 mg/L) | 25 °C, pH 3–5, 24 h 90.0–100% degradation of both PCPs |
Native laccase from T. versicolor or immobilized by cross-linking using aminosilane magnetic nanoparticles [35] | Acetate buffer with diclofenac (1–20 μg/L) | 22 °C, pH 5.0, 24 h Degradation of different concentrations of diclofenac under the action of native enzyme: 98.0% of 1 μg/L, 92.0% of 10 μg/L and 44.0% of 20 μg/L; Degradation of different concentrations of diclofenac under the action of immobilized enzyme: 90.0% of 1 μg/L, 53.0% of 10 μg/L and 26.0% of 20 μg/L |
Laccase from P. sanguineus immobilized on TiO2 nanoparticles [36] | Phosphate/citric acid buffer or Groundwater samples with acetaminophen and diclofenac (10 mg/L) | 25 °C, pH 4.0, 2–8 h 68.0% and 33.0% degradation of diclofenac for 8 h in the buffer and groundwater, correspondently; 90.0% and 84.0% degradation of acetaminophen for 2 h and 4 h in buffer and groundwater, correspondently |
Laccase from Phoma sp. immobilized by cross-linking with poly(vinylidene fluoride) membrane [37] | Influent from a municipal wastewater treatment plant with a mixture of acetaminophen, bezafibrate, indometacin, ketoprofen, mefenamic acid and naproxen (10 μM each compound) | pH 7.0, 24 h Degradation: acetaminophen and mefenamic acid—85.0%, indometacin—11%, naproxen 16.0%, ketoprofen—15.0%, bezafibrate—12.0% |
Laccase from T. versicolor immobilized on bentonite [38] | Citrate-phosphate buffer with tetracycline (10 mg/L) | 30 °C, pH 5.0, 3 h 60.0% degradation of tetracycline |
Laccase from T. versicolor immobilized on pinewood, pig manure or almond shell biochar [39] | Wastewater collected from urban community water treatment plant with diclofenac (500 µg/L) | 25 °C, pH 6.4, 6 h 99.0% degradation of diclofenac |
Laccase from Myceliophthora thermophila and Pleurotus eryngii immobilized on stevensite and holm oak biochar [40] | Sodium acetate buffer with oxytetracycline hydrochloride, tetracycline hydrochloride and chlortetracycline hydrochloride, sulfanilamide, sulfadiazine, sulfathiazole, sulfapyridine, sulfamethazine and sulfamethoxazole (0.1 mmol/L) | 40 °C, pH 5.0, 24 h, 0.2 mmol/L ABTS; 84.0–100% and 11.0–64.0% degradation of tetracyxline antibiotics with laccase from M. thermophile and P. eryngii, respectively; 30.0–100% and 40.0–100.0% degradation of sulfonamide antibiotics with laccase from M. thermophile and P. eryngii, correspondently |
Laccase from T. hirsute immobilized on poly(vinylidene fluoride) membrane modified with multi-walled carbon nanotubes [41] | Phosphate buffer with carbamazepine and diclofenac (5 mg/L) | 25 °C, pH 5.0 27% degradation of carbamazepine for 48 h, 95% degradation of diclofenac for 4 h |
Laccase from T. versicolor immobilized on onto the polyamide/polyethylenimine mat [42] | Wastewater with mixture of bisphenol A, 17α-ethinylestradiol, triclosan and diclofenac (10 g/L) | 55 °C, pH 7.0, 3 µL H2O2, 72 h 18.0%, 33.0%, 64.0 and 7.0% degradation of bisphenol A, 17α-ethinylestradiol, triclosan and diclofenac, correspondently |
Laccase from Myceliophthora thermophila immobilized on polypropylene beads [43] | 50 mM Sodium phosphate buffer with morphine (1–60 g/L) | pH 7.0; 3 h; 100% degradation of morphine |
Insolubilized tyrosinase and laccase from T. versicolor [11] | Municipal wastewater with naproxen, mefenamic acid, ibuprofen, ketoprofen, indomethacin, trimethoprim, ciprofloxacin, ofloxacin, caffeine, carbamazepine, bezafibrate, fenofibrate, atenolol (each 10 μg/L) and acetaminophen (35.5 μg/L) | 20 °C, pH 7.5, 5 days; 100.0% degradation of 14 pollutants |
β-Lactamase immobilized on the surface of Aspergillus niger (A. niger-Bla) [44] | Pharmaceutical wastewater with mixture of cefamezin (50 mg/L), amoxicillin and ampicillin (each 100 mg/L) | 25–35 °C, pH 4–7, 20 days; 92.1%, 92.8% and 72.3% degradation of amoxicillin, ampicillin and cefamezin, correspondently |
β-Lactamase immobilized on Fe3O4 magnetic nanoparticles [45] | Synthetic wastewater containing penicillin G (5–50 mg/L) | 27–37 °C, pH 5.0–8.0, 5 min; 100% degradation of penicillin G |
Chloroperoxidase immobilized on mesoporous dendritic silica particles [46] | Wastewater containing levofloxacin and rifaximin (20–100 μg/mL) | 30 min; 88.0% degradation of 20 μg/mL antibiotics; 80.3% and 80.2% degradation of 100 μg/mL levofloxacin and 100 μg/mL rifaximin, correspondently |
Horseradish or lignin peroxidase immobilized into magnetic sol-gel [8] | Acetate buffer with carbamazepine (17.6 µg/mL), paracetamol (100 µg/mL) and diclofenac (50 µg/mL) | 55 °C, pH 3.0, H2O2, 72 h 100%, 100% and 50% degradation of carbamazepine, diclofenac and paracetamol, correspondently |
Biocatalyst [Reference] | Pollutant Concentration | Optimal Parameters and Degradation Efficiency |
---|---|---|
Bacterial Strains | ||
Bacillus subtilis [47] | Municipal wastewater with sulfamethoxazole and sulfadimethoxine (500 mg/L) | 28–32 °C, pH 6.2–7.6 * COD—400–500 mg/L, 10 days; 100% degradation of antibiotics |
Bacillus velezensis [48] | Synthetic wastewater containing tetracycline (100 mg/L) | 35 °C, pH 7.0, 200 rpm, 8 days 99.2% degradation of tetracycline |
Recombinant E. coli 6#P [49] | LB medium with sulfadiazine, sulfamethazine and sulfamethoxazole (1.0 mg/L) | 37 °C, 60 h 92.0%, 89.0%, and 88.0% degradation of sulfadiazine, sulfamethazine and sulfamethoxazole, correspondently |
Acinetobacter sp. [50] | Mineral salt medium with sulfamethoxazole, sulfadiazine and sulfamethazine (30 mg/L) | 25 °C, pH 7.0, 150 rpm, 10 h 98.8%, 17.5% and 20.5% degradation of sulfamethoxazol, sulfadiazine and sulfamethazine, correspondently |
Labrys portucalensis [51] | Minimal salts medium with diclofenac (34 µM) | 25 °C, 130 rpm, sodium acetate (5.9 mM), 25 days 100.0% degradation of diclofenac |
Fungal strains | ||
Pycnoporus sanguineus, Phanerochaete chrysosporium [52] | Medium based on sodium acetate buffer with ciprofloxacin, norfloxacin and sulfamethoxazole (10 mg/L) | 30 °C, pH 5.0, 160 rpm Results of action of P. sanguineus cells for 2 days: 98.5%, 96.4% and 100% degradation of ciprofloxacin, norfloxacin and sulfamethoxazole; Results of action of P. chrysosporium cells for 8 days: 64.5%, 73.2% and 63.3% degradation of same PCPs; Efficiency of co-culture action: 100% degradation of all PCPs for 4 days |
A. niger, Mucor circinelloides, Trichoderma longibrachiatum, T. polyzona, Rhizopus microsporus [53] | Synthetic wastewater with carbamazepine, diclofenac and ibuprofen (1 mg/L) | 20 °C, pH 3.5–6.0, 120 rpm, 24 h; 91.9%, 99.3%, and 97.7 degradation of carbamazepine, diclofenac and ibuprofen, correspondently |
Pleurotus ostreatus [54] | Dextrose Broth with antidepressants: paroxetine, sertraline, fluoxetine and citalopram. Serotonin-noradrenaline reuptake inhibitors: clomipramine, venlafaxine and mianserin (0.1–2.5 μg/mL) | 26 °C, pH 6.5, 96 h; Degradation efficiency of sertraline—92.8%; paroxetine—93.7%; clomipramine—98.4%; mianserin—94.0; fluoxetine—85.1; citalopram—50.0%; venlafaxine—22%. |
P. ostreatus [55] | Wastewater collected from wastewater treatment plant with bisphenol A, estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, triclosan and 4-n-nonylphenol (total—455 ng/L) | 28 °C, pH 7.2–8.3, 24 h; 76.0% degradation of all investigated PCPs |
P. ostreatus [56] | Urban wastewater with sulfamethoxazole (423 ng/L), sulfapyridine (72.5 ng/L), sulfamerazine (13.5 ng/L) and sulfamonomethoxine (21.9 ng/L) | 25 °C, 24 h; 100%, 100%, 93% and 95% degradation of sulfamerazine, sulfamonomethoxine, sulfamethoxazole and sulfapyridine, correspondently |
Ganoderma lucidum [57] | Hospital wastewater with metoprolol and metoprolol acid (2 μg/L) | 25 °C, pH 4.5, aeration 0.8 L/min, 7 days; 33.0% and 64.0% degradation of metoprolol and metoprolol acid, correspondently |
T. versicolor and G. lucidum [58] | Synthetic medium (on base of dimethylsuccinate buffer) with O-desmethylvenlafaxine and venlafaxine (5 mg/L) | 25 °C, pH 4.5; 100.0% degradation of O-desmethylvenlafaxine for 3 days; 70.0% degradation of venlafaxine for 15 days |
Biocatalyst [Reference] | Pollutant Concentration | Optimal Parameters and Degradation Efficiency |
---|---|---|
Immobilized bacteria | ||
Lactobacillus fermentum LA6 immobilized into Ca-alginate gel with glutathione transferase activity [59] | Wastewater with oxytetracycline (200 mg/L) | 30 °C, pH 7.5, 150 rpm, 0.03% H2O2, 0.04% SDS, 24 h; 89.1% degradation of oxytetracycline |
Bacillus thuringiensis immobilized on loofah sponge [60] | Synthetic wastewater with naproxen (1 mg/L) | 21–23 °C, pH 7.6, 15 days 90% degradation of naproxen |
Planococcus sp. immobilized on loofah sponge [61] | Mineral salts medium with naproxen (15 mg/L) | 25 °C, 130 rpm, 53 days; 100% degradation of naproxen |
Pseudomonas aeruginosa immobilized on rice straw biochar [62] | Mineral salts medium with acenaphthene (3.5 mg/L) | 37 °C, pH 7.0, 10 mg/L Triton X-100, 24 h; 78% degradation of acenaphthene |
P. putida immobilized on Fe3O4/biochar composite [63] | Industrial pharmaceutical wastewater with calconcarboxylic acid (2.5 g/L) | 20–22 °C, pH 7.0, 50 h; 84.0% removal efficiency |
P. stutzeri immobilized on mesoporous silica nanoparticles [64] | Salt medium with alprazolam (100 mg/L) | 22 °C, pH 7.4, 120 rpm, 20 days; 96% degradation of alprazolam |
Immobilized fungi | ||
Trihoderma versicolor immobilized on rice husks [65] | Synthetic wastewater with azithromycin, sulfamethoxazole, trimethoprim, ciprofloxacin, florfenicol, lincomycin, ceftiofur hydrochloride, lorazepam, ketoprofen, acetaminophen, atenolol, albendazole, sertraline, sildenafil citrate, diphenhydramine, mefenamic acid and fluoxetine (1 mg/L) or real hospital wastewater | 25 °C, pH 4.5, 336 h, 200 rpm, 3 L/min aeration; 60.0–100.0% degradation of PCPs occurred in synthetic wastewater, and 77.0%, 97.4%, 79.0%, 58.0%, 60.0% and 22.0% degradation of acetaminophen, gemfibrozil, caffeine, diphenhydramine, ibuprofen and carbamazepine occurred in non-sterile hospital wastewater, correspondently. |
T. versicolor immobilized on rotating biological contactor (stainless steel disks for cells attachment) [66] | Urban wastewater with antipyrine, clofibric acid, atenolol, caffeine, carbamazepine, diclofenac, gemfibrozil, hydrochlorothiazide, ibuprofen, ranitidine, sulfamethoxazole and sulpiride (50 μg/L) | 69,0%, 58.0, 88.0, 88.0, 61.0, 56.0, 66.0, 42.0, 95.0, 70.0, 87.0 and 95.0% degradation of antipyrine, clofibric acid, atenolol, caffeine, carbamazepine, diclofenac, gemfibrozil, hydrochlorothiazide, ibuprofen, ranitidine, sulfamethoxazole and sulpiride, correspondingly |
T. versicolor immobilized on rotating biological contactors (propylene discs were covered by wooden pine sheets) [67] | Hospital wastewater with: antibiotics (amoxicillin, azithromycin, metronidazole, sulfamethoxazole, psychiatric drugs (carbamazepine, sulpiride and caffeine, β-blockers (atenolol, and metoprolol, nonsteroidal), anti-inflammatory drugs (diclofenac, and ibuprofen, IBP), analgesic (4-acetamidoantipyrine), cytotoxic (cyclophosphamide), contrast agent (iohexol), lipid regulator (gemfibrozil), chemical diuretic (hydrochlorothiazide), steroid hormone (progesterone), H2 histamine receptor antagonist (ranitidine) and endocrine disruptor (bisphenol A). The total concentration of PCPs was 16.32–16.51 mg/ L. | 11–22 °C, pH 5.0–7.5, 75 days 99.9%, 87.0,% 97.8% and 98.5% degradation of cyclophosphamide, atenolol, azithromycin and sulpiride, 92.0% and 56.0% degradation of amoxicillin and progesterone, 0–5.0% degradation of 4-acetamidoantipyrine, iohexol and hydrochlorothiaziden, correspondingly. Other compounds were degraded by 40–80% |
Biocatalyst [Reference] | Pollutant Concentration | Conditions and Removal Efficiency |
---|---|---|
Nannochloropsis sp. immobilized into Ca-poly(vinyl alcohol) gel [76] | Medium f/2 with paracetamol ibuprofen and olanzapine (50 μg/mL) | 25 °C, pH 6.0–8.0, 24 h photoperiod—16:8; removal efficiency of paracetamol—12.1%; ibuprofen—12.1%; olanzapine—40.0% |
Desmodesmus sp. immobilized into Ca-alginate gel [77] | Domestic wastewater with 17β-estradiol (1 mg/L) | 22 °C, pH 7.5, 72 h; removal efficiency—99.0% |
Chlorella vulgaris immobilized into Ca-alginate/poly(vinyl alcohol) gel [78] | BG-11 medium with carbamazepine (80 mg/L) | 25 °C, 12 days removal efficiency—87.0% |
C. vulgaris immobilized into Ca-alginate gel with Al2O3 nanoparticles [79] | BG-11 medium with carbamazepine (100 mg/L) | 28 °C, 4 days; removal efficiency—89.6% |
Biocatalyst [Reference] | Pollutant Concentration | Conditions and Degradation Efficiency |
---|---|---|
Consortia in the Form of Suspensions | ||
Adapted consortium from anaerobic sludge [83] | Naproxen (1.2 mM) | 35 °C, 11 days; 100% degradation of naproxen |
Anaerobic sludge [84] | Ciprofloxacin (0.5–4.7 mg/L) | 35 °C, 11–93 days; 20.0–76.4% degradation of ciprofloxacin |
Bacterial consortium (adapted estuarine sediment and activated sludge) [85] | Paroxetine or Bezafibrate (1 mg/L) | 500 mg/L of sodium acetate, dark conditions, 21 °C, pH 7, static or agitation conditions (130 rpm), 2 weeks; 97% degradation of both PCPs |
Adapted consortium from anaerobic sludge [86] | Levofloxacin (10–50 mg/L) | 20 mM glucose, 10 mM sulfate, 35 °C, dark conditions, 10 days; 39.6% degradation of levofloxacin |
Nature microalgae-bacteria consortium containing Chlorella sorokiniana (80% of the total identified eukaryotic rRNA) and Brevundimonas basaltis (25% of the total identified prokaryotic rRNA) [81] | Cephalexin 50 μg/L | 22 °C, 120 rpm, pH 8.0, 7 days 96.54% degradation of cephalexin |
Chlorella vulgaris, Scenedesmus obliquus and algal–bacterial consortium present in the lagoon water [87] | Lagoon water from the effluent of Omemee wastewater Lagoon with mixed ibuprofen (50 μg/L), gemfibrozil (10 μg/L), triclosan (10 μg/L) and carbamazepine (10 μg/L) | 22 °C, 11 days; >60% degradation of ibuprofen and triclodsan; gemfibrozil and carbamazepine were not decomposable |
C. vulgaris, Pseudonabaena acicularis, Scenedesmus acutus, and activated sludge [88] | Model urban wastewater with ibuprofen (8.9 μg/L), naproxen (4.2 μg/L), salicylic acid (62 μg/L), triclosan (0.5 μg/L) and propylparaben (0.4 μg/L) | pH 7.7, 10 days; anaerobic-anoxic-aerobic photobioreactor; 94%, 52%, 98%, 100%, and 100% degradation of ibuprofen, naproxen, salicylic acid, triclosan and propylparaben, respectively |
Green algae, diatom and cyanobacteria assemblages [89] | Mixed ibuprofen (45.7–100.4 μg/L), oxybenzone (6.9–14.1 μg/L), triclosan (2.9–3.4 μg/L), bisphenol A (2.2–3.9 μg/L) and N,N-diethyl-3-methylbenzamide (63.9–135.1 μg/L) | 25 °C, 4 weeks, algal biofilm reactor; 70–100% degradation of each component |
Adapted consortium (main cultures Methylobacter, Pseudomonas, and Dokdonella spp.) [90] | Ibuprofen (50 mg/L) | pH 7.0, 12 h 100% degradation of ibuprofen |
Immobilized consortia | ||
Microbial consortium (Alcaligenes faecalis, Staphylococcus haemolyticus, Staphyloccus aureus and Proteus mirabilis) immobilized on Luffa [91] | Pharmaceutical wastewater of manufacturing industry COD—3530.1 mg/L; total Phenol—1580.2 mg/L; nitrates—5.2 mg/L; chlorides—87.1 mg/L; sulfates—32.3 mg/L; total suspended solids—286.9 mg/L | 30–35 °C, pH 6.5–7.0, Batch fermentation for 36 h: dilution of medium by 4 times, the pollutants presented in wastewater were totally degraded into nontoxic compounds. Continuous treatment in aerobic fixed-film bioreactor for 61 days: organic loading rate—0.6–3.4 kg COD/m3/d. Average reduction of COD-96.8%, phenolic compounds-92.6% and of suspended solid—95.2% |
Phragmites australis and bacterial consortium (Acinetobacter lwoffii, Bacillus pumilus and Mesorihizobium sp.) immobilized on polystyrene sheet [92] | Water contaminated by ciprofloxacin (100 mg/L) | Natural environmental conditions, 20 days 97.0% removal efficiency |
The synthetic consortium (Xenorhabdus spp., Pantoea agglomerans and Bacillus licheniformi) immobilized in biofilm [93] | Oxaliplatin (780 mg/L) | 20–22 °C, 21 days; bed biofilm reactor 94.0% degradation of oxaliplatin |
Immobilized co-culture (Klebsiella pneumoniae CH3 and Bacillus amyloliquefaciens CS1) [94] | Wastewater with chlortetracycline (175 mg/L) | Polymer beads, pH 7.5, 10 days; 99.2% degradation of chlortetracycline |
Activated sludge immobilized on glass porous beads (the predominant strains Sphingomonas and Novosphingobium sp.) [95] | Synthetic wastewater with ibuprofen (400–600 mg/L) | pH 7.0, aeration 550 mL/min, 24 h feeding periods, 160 days; 97.7% of degradation of ibuprofen |
C. vulgaris immobilized Ca-alginate gel with powdered activated carbon and anaerobic bacterium consortium [96] | Anaerobically digested centrate with sulfamethoxazole (500 μg/L) | 7 days; removal efficiency—99.0% |
Antibiotic [Reference] | Physical or/and Chemical Treatment | * BC/Co-Substrate | Removal Efficiency (%) |
---|---|---|---|
Levosulpiride (800 mg/L) [104] | Ozone (5.2 g/h) or activated carbon (2 g/L), 37 °C, pH 7.0, 150 rpm | Alcaligenes faecalis and Exiguobacterium aurantiacum | 61.0% or 76.0% for 72 h in combination with ozone or activated carbon, correspondently |
Metronidazole (10 mg/L) [105] | Two-chambered BES | Anaerobic activated sludge/glucose (1 g/L) | 85% for 24 h |
Nitrofurazone (NFZ) (50 mg/L) [106] | Dual-chamber BES with bio-cathode | NFZ-reducing consortium/ glucose 0.6 g/L | 70% for 1 h |
Cefazolin sodium (100 mg/L) [107] | Single-chamber BES with microbial bio-anode and activated carbon air-cathode | Aerobic activated sludge from the waste treatment plant brewery/NaAc (1.6 g/L), yeast extract (0.05 g/L) | 70% for 31 h |
Cefuroxime (0.5 mg/L) [108] | Two-chamber BES | Activated sludge/ Glucose (1 g/L) | 90% for 12 h |
Sulfamethoxazole or Tetracycline (each 200 mg/L) [109] | Three-dimensional biofilm-electrode BES reactor | Anaerobic sludge from municipal wastewater treatment plant/ glucose (225 mg/L) | 72–94% and 83–96% of sulfamethoxazole and tetracycline for 40 h, correspondently |
Chloramphenicol (30 mg/L) [110] | Two-chamber BES | Anaerobic sludge | 84% for 48 h |
Cefradine (300 mg/L) [111] | AOP: H2O2/Fe(II)-based Fenton reactions | Algae Chlorella pyrenoidosa | 85% for 48 h |
Amoxicillin and cefradine [112] | UV-irradiation at 365 nm | Algae Scenedesmus obliquus | 100% for 24 h |
Sulfamethoxazole or norfloxacin (each 32 mg/L) [113] | Hybrid BES with Fenton reactions (γ-FeOOH GPCA air-cathode) | Anaerobic sludge from the secondary sedimentation basin of wastewater treatment plant | 96–97% for 40 h |
Metronidazole (80 mg/L) [114] | Hybrid two-chamber BES with combining the catalytic photo-Fenton and an electro-Fenton (FeIII) processes on Mo/W coated graphite felt cathodes | Anaerobic sludge/ sodium acetate (1.0 g/L) | 95–97% for 0.5–1 h |
Ofloxacin (36–145 mg/L) [115] | Hybrid BES with LiNbO3/CF photocatalytic cathode | PANi@CNTs/SS bioanode/ Glucose (0.7 g/L) | 70–87% for 7 h |
Wastewater from the bulk pharmaceutical manufacturing [116] | Fenton reactions with FeSO4 × 7H2O and H2O2 | Aerobic activated sludge from pharmaceutical manufacturing | Removing of 53.8% COD for 2 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efremenko, E.; Stepanov, N.; Senko, O.; Maslova, O.; Lyagin, I.; Aslanli, A. Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants. Life 2023, 13, 841. https://doi.org/10.3390/life13030841
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Aslanli A. Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants. Life. 2023; 13(3):841. https://doi.org/10.3390/life13030841
Chicago/Turabian StyleEfremenko, Elena, Nikolay Stepanov, Olga Senko, Olga Maslova, Ilya Lyagin, and Aysel Aslanli. 2023. "Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants" Life 13, no. 3: 841. https://doi.org/10.3390/life13030841
APA StyleEfremenko, E., Stepanov, N., Senko, O., Maslova, O., Lyagin, I., & Aslanli, A. (2023). Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants. Life, 13(3), 841. https://doi.org/10.3390/life13030841