Is the Benefit of Treating Iron Deficiency Greater in Acute Heart Failure with Renal Dysfunction?
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Comparison between Groups
3.3. Event and Combined Risk
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizzo, C.; Carbonara, R.; Ruggieri, R.; Passantino, A.; Scrutinio, D. Iron Deficiency: A New Target for Patients With Heart Failure. Front. Cardiovasc. Med. 2021, 8, 709872. [Google Scholar] [CrossRef] [PubMed]
- von Haehling, S.; Gremmler, U.; Krumm, M.; Mibach, F.; Schön, N.; Taggeselle, J.; Dahm, J.B.; Angermann, C.E. Prevalence and clinical impact of iron deficiency and anaemia among outpatients with chronic heart failure: The PrEP registry. Clin. Res. Cardiol. 2017, 106, 36–443. [Google Scholar] [CrossRef]
- Bekfani, T.; Pellicori, P.; Morris, D.; Ebner, N.; Valentova, M.; Sandek, A.; Doehner, W.; Cleland, J.G.; Lainscak, M.; Schulze, P.C.; et al. Iron deficiency in patients with heart failure with preserved ejection fraction and its association with reduced exercise capacity, muscle strength and quality of life. Clin. Res. Cardiol. 2019, 108, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Sindone, A.P.; Haikerwal, D.; Audehm, R.G.; Neville, A.M.; Lim, K.; Parsons, R.W.; Piazza, P.; Liew, D. Clinical characteristics of people with heart failure in Australian general practice: Results from a retrospective cohort study. ESC Heart Fail. 2021, 8, 4497–4505. [Google Scholar] [CrossRef] [PubMed]
- Masini, G.; Graham, F.J.; Pellicori, P.; Cleland, J.G.; Cuthbert, J.J.; Kazmi, S.; Inciardi, R.M.; Clark, A.L. Criteria for Iron Deficiency in Patients With Heart Failure. J. Am. Coll. Cardiol. 2022, 79, 341–351. [Google Scholar] [CrossRef]
- Pezel, T.; Audureau, E.; Mansourati, J.; Baudry, G.; Ben Driss, A.; Durup, F.; Fertin, M.; Godreuil, C.; Jeanneteau, J.; Kloeckner, M.; et al. Diagnosis and Treatment of Iron Deficiency in Heart Failure: OFICSel study by the French Heart Failure Working Group. ESC Heart Fail. 2021, 8, 1509–1521. [Google Scholar] [CrossRef]
- Becher, P.M.; Schrage, B.; Benson, L.; Fudim, M.; Corovic Cabrera, C.; Dahlström, U.; Rosano, G.M.C.; Jankowska, E.A.; Anker, S.D.; Lund, L.H.; et al. Phenotyping heart failure patients for iron deficiency and use of intravenous iron therapy: Data from the Swedish heart failure registry. Eur. J. Heart Fail. 2021, 23, 1844–1854. [Google Scholar] [CrossRef]
- Savarese, G.; von Haehling, S.; Butler, J.; Cleland, J.G.F.; Ponikowski, P.; Anker, S.D. Iron deficiency and cardiovascular disease. Eur. Heart J. 2023, 44, 14–27. [Google Scholar] [CrossRef]
- Núñez, J.; Miñana, G.; Cardells, I.; Palau, P.; Llàcer, P.; Fácila, L.; Almenar, L.; López-Lereu, M.P.; Monmeneu, J.V.; Amiguet, M.; et al. Noninvasive Imaging Estimation of Myocardial Iron Repletion Following Administration of Intravenous Iron: The Myocardial-IRON Trial. J. Am. Heart Assoc. 2020, 9, e014254. [Google Scholar] [CrossRef] [PubMed]
- Santas, E.; Miñana, G.; Cardells, I.; Palau, P.; Llàcer, P.; Fácila, L.; Almenar, L.; López-Lereu, M.P.; Monmeneu, J.V.; Sanchis, J.; et al. Short-term changes in left and right systolic function following ferric carboxymaltose: A substudy of the Myocardial-IRON trial. ESC Heart Fail. 2020, 7, 4222–4230. [Google Scholar] [CrossRef]
- López-Vilella, R.; Lozano-Edo, S.; Martín, P.A.; Jover-Pastor, P.; Ezzitouny, M.; Romero, J.S.; Asensio, M.C.; Martínez-Solé, J.; Cervera, B.G.; Martínez, J.C.S.; et al. Impact of intravenous ferric carboxymaltose on heart failure with preserved and reduced ejection fraction. ESC Heart Fail. 2022, 9, 133–145. [Google Scholar] [CrossRef]
- López-Vilella, R.; Trenado, V.D.; Pastor, P.J.; Sánchez-Lázaro, I.; Dolz, L.M.; Bonet, L.A. Why Iron Deficiency in Acute Heart Failure Should Be Treated: A Real-World Clinical Practice Study. Life 2022, 12, 1828. [Google Scholar] [CrossRef]
- Go, A.S.; Yang, J.; Ackerson, L.M.; Lepper, K.; Shlipak, M.G.; Robbins, S.; Massie, B.M.; Shlipak, M.G. Hemoglobin Level, Chronic Kidney Disease, and the Risks of Death and Hospitalization in Adults With Chronic Heart Failure: The Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study. Circulation 2006, 113, 2713–2723. [Google Scholar] [CrossRef] [PubMed]
- Nanas, J.N.; Matsouka, C.; Karageorgopoulos, D.; Leonti, A.; Tsolakis, E.; Drakos, S.G.; Tsagalou, E.P.; Maroulidis, G.D.; Alexopoulos, G.P.; Kanakakis, J.E.; et al. Etiology of Anemia in Patients With Advanced Heart Failure. J. Am. Coll. Cardiol. 2006, 48, 2485–2489. [Google Scholar] [CrossRef]
- Comín, J.; Almenar, L. Tratamiento de la anemia en el síndrome cardiorrenal. Rev. Esp. Cardiol. Supl. 2012, 12, 21–26. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chion-cel, O.; et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726, Erratum in Eur. Heart J. 2021. [Google Scholar] [CrossRef] [PubMed]
- van der Wal, H.H.; Grote Beverborg, N.; Dickstein, K.; Anker, S.D.; Lang, C.C.; Ng, L.L.; van Veldhuisen, D.J.; Voors, A.A.; van der Meer, P. Iron deficiency in worsening heart failure is associated with reduced estimated protein intake, fluid retention, inflammation, and antiplatelet use. Eur. Heart J. 2019, 40, 3616–3625. [Google Scholar] [CrossRef]
- Martin, R.C.; Lisi, D. Iron Deficiency in Heart Failure: Characteristics and Treatment. Curr. Geriatr. Rep. 2021, 10, 196–205. [Google Scholar] [CrossRef]
- Rocha, B.M.L.; Cunha, G.J.L.; Menezes Falcão, L.F. The Burden of Iron Deficiency in Heart Failure: Therapeutic Approach. J. Am. Coll. Cardiol. 2018, 71, 782–793. [Google Scholar] [CrossRef]
- Ponikowski, P.; Kirwan, B.-A.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Fabien, V.; Filippatos, G.; Göhring, U.M.; Keren, A.; et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: A multicentre, double-blind, randomised, controlled trial. Lancet 2020, 396, 1895–1904, Erratum in Lancet 2021, 398, 1964. [Google Scholar] [CrossRef]
- Ponikowski, P.; Van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.; Nijst, P.; Verbrugge, F.H.; Smeets, K.; Dupont, M.; Mullens, W. Impact of iron deficiency on exercise capacity and outcome in heart failure with reduced, mid-range and preserved ejection fraction. Acta Cardiol. 2018, 73, 115–123. [Google Scholar] [CrossRef] [PubMed]
- López-Vilella, R.; Jover Pastor, P.; Donoso Trenado, V.; Sánchez-Lázaro, I.J.; Martínez Dolz, L.; Almenar Bonet, L. Congestion phenotypes according to diuretic combination in acute heart failure. Hellenic J. Cardiol. 2022, submitted.
- Singer, A.J.; Skopicki, H.; Thode, H.C.; Peacock, W.F. Hemodynamic profiles of ED patients with acute decompensated heart failure and their association with treatment. Am. J. Emerg. Med. 2014, 32, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, W.H.; Kausz, A.T.; Khan, S.; Abichandani, R.; Ruthazer, R.; Obrador, G.T.; Pereira, B.J. Anemia: An early complication of chronic renal insufficiency. Am. J. Kidney Dis. 2001, 38, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.; Comín-Colet, J.; Miñana, G.; Núñez, E.; Santas, E.; Mollar, A.; Valero, E.; García-Blas, S.; Cardells, I.; Bodí, V.; et al. Iron deficiency and risk of early readmission following a hospitalization for acute heart failure. Eur. J. Heart Fail. 2016, 18, 798–802, Erratum in Eur. J. Heart Fail. 2022, 24, 591. [Google Scholar] [CrossRef]
- López-Vilella, R.; Sánchez-Lázaro, I.; Cervera, B.G.; Trenado, V.D.; Orient, A.S.; Bonet, L.A. Peripheral access ultrafiltration as a treatment for cardiorenal syndrome with inadequate diuretic response. Initial. Exp. Rev. Esp. Cardiol. (Engl. Ed.) 2023, 76, 60–62. [Google Scholar] [CrossRef]
- Owan, T.E.; Hodge, D.O.; Herges, R.M.; Jacobsen, S.J.; Roger, V.L.; Redfield, M.M. Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2006, 355, 251–259. [Google Scholar] [CrossRef]
- Babitt, J.L.; Eisenga, M.F.; Haase, V.H.; Kshirsagar, A.V.; Levin, A.; Locatelli, F.; Małyszko, J.; Swinkels, D.W.; Tarng, D.-C.; Cheung, M.; et al. Controversies in optimal anemia management: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2021, 99, 1280–1295. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Tkaczyszyn, M.; Suchocki, T.; Drozd, M.; von Haehling, S.; Doehner, W.; Filippatos, G.; Anker, S.D.; Poni-kowski, P. Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: A meta-analysis of ran-domized controlled trials. Eur. J. Heart Fail. 2016, 18, 786–795. [Google Scholar] [CrossRef]
- Nemeth, E.; Ganz, T. Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. Int. J. Mol. Sci. 2021, 22, 6493. [Google Scholar] [CrossRef]
- Naito, Y.; Tsujino, T.; Fujimori, Y.; Sawada, H.; Akahori, H.; Hirotani, S.; Ohyanagi, M.; Masuyama, T. Impaired expression of duodenal iron transporters in Dahl salt-sensitive heart failure rats. J. Hypertens. 2011, 29, 741–748. [Google Scholar] [CrossRef]
- Markousis-Mavrogenis, G.; Tromp, J.; Ouwerkerk, W.; Devalaraja, M.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.S.; Van Der Harst, P.; Lang, C.C.; et al. The clinical significance of interleukin-6 in heart failure: Results from the BIOSTAT-CHF study. Eur. J. Heart Fail. 2019, 21, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Loncar, G.; Obradovic, D.; Thiele, H.; von Haehling, S.; Lainscak, M. Iron deficiency in heart failure. ESC Heart Fail. 2021, 8, 2368–2379. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151, Erratum in: N. Engl. J. Med. 2010, 363, 1877. [Google Scholar]
- Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO Clinical Practice Guideline for Anemia in, Chronic Kidney Disease. Chapter 2: Use of iron to treat anemiain CKD. Kidney Int. Suppl. 2012, 2, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Almenar Bonet, L.; Blasco Peiró, M.T.; Laiz Marro, B.; Camafort Babkowski, M.; Buño Soto, A.; Crespo-Leiro, M.G. Perfiles analíticos pre-configurados en insuficiencia cardiaca: Implementación y uso en el Sistema Nacional de Salud Español. Adv. Lab. Med. 2022, 3, 71–78. [Google Scholar] [CrossRef]
- Almenar Bonet, L.; Blasco Peiró, M.T.; Laiz Marro, B.; Camafort Babkowski, M.; Buño Soto, A.; Casado Cerrada, J.; Crespo-Leiro, M.G. Preconfigured analytical profiles (PAPs) for the clinical management of the patient with Heart Failure: A consensus-driven study. Cardio Clinics 2022, accepted. [Google Scholar]
- Sánchez-Lázaro, I.; Soldevila, A.; López-Vilella, R.; Donoso, V.; Devesa, R.; Sánchez, P.; Almenar Bonet, L. Planificación Estratégica de la Unidad Cardiorrenal Avanzada del Hospital Universitari i Politècnic La Fe; Cuquerella Medical Communications: Madrid, Spain, 2023; ISBN pending, in press. [Google Scholar]
NOT Treated | Treated | ||
---|---|---|---|
n = 272 | n = 540 | p | |
Antecedents (n, %) | |||
Age (years) (*) | 75.8 ± 11.4 | 75.9 ± 10.5 | 0.131 |
Male | 108 (39.7) | 280 (51.9) | 0.001 |
Baseline heart disease (n, %) | |||
IHD | 57 (21.0) | 124 (23.0) | 0.576 |
VHD | 84 (30.9) | 162 (30.0) | 0.859 |
AF | 27 (9.9) | 43 (8.0) | 0.419 |
DCM | 30 (11.0) | 64 (11.9) | 0.818 |
HT | 57 (21.0) | 136 (25.2) | 0.212 |
Other | 17 (6.3) | 11 (2.0) | 0.004 |
History (n, %) | |||
CVS | 44 (16.2) | 102 (18.9) | 0.394 |
HT | 237 (87.1) | 458 (84.8) | 0.434 |
Dyslipidaemia | 158 (58.1) | 318 (58.9) | 0.886 |
DM | 157 (57.7) | 331 (61.3) | 0.365 |
Smoking | 35 (12.9) | 51 (9.4) | 0.169 |
Alcoholism | 16 (5.9) | 28 (5.2) | 0.803 |
COPD | 49 (18.0) | 113 (20.9) | 0.375 |
SAHS | 38 (14.0) | 87 (16.1) | 0.487 |
Obesity (BMI > 30 kg/m2) | 66 (24.3) | 114 (21.1) | 0.352 |
Renal failure | 84 (30.9) | 138 (25.6) | 0.128 |
Hypothyroidism | 26 (9.6) | 50 (9.3) | 0.991 |
AF | 103 (37.9) | 178 (33.0) | 0.191 |
Stroke | 30 (11.0) | 62 (11.5) | 0.941 |
PVD | 12 (4.4) | 37 (6.9) | 0.222 |
Clinical characteristics (n, %) | |||
Nº previous admissions (*) | 0.8 ± 0.7 | 0.9 ± 0.7 | 0.052 |
HF de novo | 106 (39.0) | 182 (33.7) | 0.161 |
FS (NYHA) | |||
I | 46 (16.9) | 77 (14.3) | 0.373 |
II | 150 (55.1) | 288 (53.3) | 0.678 |
III | 63 (23.2) | 144 (26.7) | 0.319 |
IV | 13 (4.8) | 30 (5.6) | 0.764 |
Cause decompensation | |||
Arrhythmia | 56 (20.6) | 118 (21.9) | 0.746 |
Infectious | 17 (6.3) | 42 (7.8) | 0.517 |
Ischemic | 23 (8.5) | 30 (5.6) | 0.153 |
Disease progression | 110 (40.4) | 199 (36.9) | 0.359 |
Unknown | 34 (12.5) | 64 (11.9) | 0.878 |
HT | 36 (13.2) | 68 (12.6) | 0.883 |
Hemodynamic pattern | |||
Pulmonary congestion | 188 (69.1) | 363 (67.2) | 0.641 |
Systemic + pulmonary congestion | 39 (14.3) | 54 (10.0) | 0.086 |
Systemic congestion | 45 (16.6) | 84 (15.6) | 0.793 |
Low cardiac output | 0 (0.0) | 8 (1.5) | 0.101 |
Echocardiography (n, %) | |||
LVEF (*) | 45.0 ± 9.6 | 46.0 ± 10.2 | 0.176 |
LVEF preserved (≥50%) | 190 (69.9) | 351 (65.0) | 0.192 |
RV function | |||
Normal | 198 (73.0) | 402 (74.4) | 0.674 |
Mild depression | 38 (14.5) | 74 (13.7) | 0.997 |
Moderate depression | 32 (11.8) | 49 (9.1) | 0.279 |
Severe depression | 4 (1.4) | 15 (2.8) | 0.359 |
Renal function (KDIGO 2012) | |||
G 1 (≥90 mL/min/1.73 m2) | 25 (9.2) | 59 (10.9) | 0.444 |
G 2 (60–89 mL/min/1.73 m2) | 102 (37.5) | 164 (30.4) | 0.04 |
G 3a (45–59 mL/min/1.73 m2) | 62 (22.8) | 86 (15.9) | 0.017 |
G 3b (30–44 mL/min/1.73 m2) | 55 (20.2) | 130 (24.1) | 0.217 |
G 4 (15–29 mL/min/1.73 m2) | 18 (6.6) | 84 (15.6) | 0.001 |
G 5 (<15 mL/min/1.73 m2) | 10 (3.7) | 17 (3.1) | 0.692 |
Renal function (study groups) | |||
G 1 y 2 (≥60 mL/min/1.73 m2) | 127 (46.7) | 223 (41.3) | 0.143 |
G 3a/3b (30–59 mL/min/1.73 m2) | 117 (43.0) | 216 (40.0) | 0.14 |
G 4 y 5 (≤29 mL/min/1.73 m2) | 28 (10.3) | 101 (18.7) | 0.002 |
NOT Treated | Treated | ||
---|---|---|---|
n = 272 | n = 540 | p | |
Admission analytics (#) | |||
Urea (mg/dL) | 50.0 (46.0) | 56.0 (55.0) | 0.118 |
Creatinine (mg/dL) (*) | 1.28 ± 0.77 | 1.39 ± 0.78 | 0.054 |
GFR (mL/min/1.73 m2) (*) | 57.9 ± 23.9 | 55.0 ± 25.1 | 0.11 |
Bilirubin (mg/dL) | 1.0 (0.7) | 1.1 (0.7) | 0.052 |
AST (U/L) | 23.0 (16.0) | 21.0 (14.0) | 0.064 |
ALT (U/L) | 22.6 (18.8) | 23.0 (17.3) | 0.243 |
TnT(u) (ng/mL) | 45.9 (28.3) | 44.0 (36.7) | 0.461 |
NT-ProBNP (pg/mL) | 5762 (3870) | 5398 (3207) | 0.151 |
Sodium (mEq/L) | 141.5 (7.2) | 142.0 (7.3) | 0.358 |
Potassium (mEq/L) | 4.1 (1.3) | 4.2 (1.4) | 0.327 |
Haemoglobin (g/dL) | 13.5 (5.1) | 13.2 (4.9) | 0.422 |
Haematocrit (%) | 40.6 (7.8) | 40.7 (11.9) | 0.132 |
Uric acid (mg/dL) | 8.4 (4.7) | 8.2 (4.4) | 0.442 |
Cholesterol-HDL (mg/dL) | 42.1 (23.3) | 43.0 (16.3) | 0.47 |
Cholesterol-LDL (mg/dL) | 79.2 (24.7) | 74.0 (42.6) | 0.06 |
Triglycerides (mg/dL) | 133.5 (84.1) | 138.7 (72.0) | 0.363 |
Ferritin (ng/mL) | 130.1 (95.2) | 126.0 (88.1) | 0.45 |
TSAT (%) | 16.3 (8.0) | 15.5 (7.9) | 0.172 |
HbA1c (%) | 6.3 (0.8) | 6.4 (0.9) | 0.117 |
CA125 (U/mL) | 73.0 (62.9) | 70.9 (65.6) | 0.334 |
Discharge treatment (n, %) | |||
IECAs/ARAII inhibitors | 165 (60.7) | 349 (64.6) | 0.303 |
Beta-blockers | 175 (64.3) | 339 (62.8) | 0.72 |
ARNI | 42 (15.4) | 70 (13.0) | 0.39 |
MRA | 105 (38.6) | 190 (35.2) | 0.38 |
SGLT2i | 91 (33.5) | 185 (34.3) | 0.881 |
Ivabradine | 21 (7.7) | 43 (8.0) | 0.986 |
Digoxin | 70 (25.7) | 131 (24.3) | 0.709 |
Loop diuretics | 256 (94.1) | 506 (93.7) | 0.939 |
Thiazides | 52 (19.1) | 97 (18.0) | 0.76 |
Acetazolamide | 4 (1.5) | 10 (1.9) | 0.914 |
Tolvaptan | 16 (5.9) | 29 (5.4) | 0.89 |
Potassium supplement | 33 (12.1) | 59 (10.9) | 0.693 |
Hypokalemic therapy | 16 (5.9) | 26 (4.8) | 0.631 |
Antiplatelet agents | 73 (26.8) | 151 (28.0) | 0.799 |
Anticoagulants | 162 (59.6) | 346 (64.1) | 0.239 |
OAD (No iSGLT2) | 102 (37.5) | 195 (36.1) | 0.756 |
Nitrates | 29 (10.7) | 65 (12.0) | 0.644 |
Antiarrhythmic | 57 (21.0) | 104 (19.3) | 0.632 |
Statins | 157 (57.7) | 286 (53.0) | 0.226 |
Calcium antagonists | 82 (30.1) | 151 (28.0) | 0.571 |
Pulmonary vasodilator | 5 (1.8) | 11 (2.0) | 0.94 |
Alopurinol | 65 (23.9) | 124 (23.0) | 0.834 |
Events in Treated Patients. N = 540 (n,%) | Events in Patients NOT Treated. N = 272 (n,%) | Percentage Reduction (ARR) NOT tx-tx (95% CI) | p | RRR/NNT | Adjusted * (OR) (95% CI) | p | |
---|---|---|---|---|---|---|---|
Readmission Event | |||||||
1/2 | 37 (16.6) | 20 (15.7) | 0.9 (2.5/1.5) | 0.837 | 5.7/11.1 | 1.050 (0.578/1.908) | 0.872 |
3a/3b | 41 (19.0) | 32 (27.4) | 8.4 (3.4/13.4) | 0.021 | 30.7/11.9 | 0.602 (0.352/1.031) | 0.065 |
4/5 | 33 (32.7) | 16 (57.1) | 24.4 (8.5/40.3) | 0.018 | 42.7/4.10 | 0.471 (0.189/1.175) | 0.107 |
Exitus Event | |||||||
1/2 | 13 (5.8) | 17 (13.4) | 7.6 (3.0/12.2) | 0.015 | 56.7/13.2 | 0.387 (0.180/0.785) | 0.015 |
3a/3b | 12 (5.6) | 16 (13.7) | 8.1 (3.4/13.4) | 0.011 | 59.1/12.3 | 0.353 (0.159/0.785) | 0.011 |
4/5 | 39 (38.6) | 9 (32.1) | 6.5 (15.6/5.3) | 0.531 | 20.2/15.4 | 1.269 (0.490/3.285) | 0.623 |
Emergency Department Visits Event | |||||||
1/2 | 10 (4.5) | 46 (36.2) | 31.7 (23.6/39.8) | <0.001 | 87.6/3.2 | 0.071 (0.033/0.151) | <0.001 |
3a/3b | 32 (14.5) | 53 (45.3) | 30.5 (22.2/38.8) | <0.001 | 67.3/3.3 | 0.171 (0.103/0.311) | <0.001 |
4/5 | 15 (14.9) | 10 (53.6) | 38.7 (20.7/56.7) | <0.001 | 72.2/2.6 | 0.217 (0.082/0.577) | 0.002 |
Combined Event | |||||||
1/2 | 60 (26.9) | 66 (52.0) | 25.1 (17.6/32.6) | <0.001 | 48.3/4.0 | 0.306 (0.190/0.495) | <0.001 |
3a/3b | 69 (31.9) | 75 (64.1) | 32.2 (23.7/40.7) | <0.001 | 50.2/3.1 | 0.230 (0.140/0.377) | <0.001 |
4/5 | 66 (65.3) | 53 (82.1) | 16.8 (3.0/32.8) | 0.089 | 20.5/6.0 | 0.510 (0.168/1.554) | 0.237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Vilella, R.; Guerrero Cervera, B.; Donoso Trenado, V.; Sánchez-Lázaro, I.; Martínez Dolz, L.; Almenar Bonet, L. Is the Benefit of Treating Iron Deficiency Greater in Acute Heart Failure with Renal Dysfunction? Life 2023, 13, 915. https://doi.org/10.3390/life13040915
López-Vilella R, Guerrero Cervera B, Donoso Trenado V, Sánchez-Lázaro I, Martínez Dolz L, Almenar Bonet L. Is the Benefit of Treating Iron Deficiency Greater in Acute Heart Failure with Renal Dysfunction? Life. 2023; 13(4):915. https://doi.org/10.3390/life13040915
Chicago/Turabian StyleLópez-Vilella, Raquel, Borja Guerrero Cervera, Víctor Donoso Trenado, Ignacio Sánchez-Lázaro, Luis Martínez Dolz, and Luis Almenar Bonet. 2023. "Is the Benefit of Treating Iron Deficiency Greater in Acute Heart Failure with Renal Dysfunction?" Life 13, no. 4: 915. https://doi.org/10.3390/life13040915
APA StyleLópez-Vilella, R., Guerrero Cervera, B., Donoso Trenado, V., Sánchez-Lázaro, I., Martínez Dolz, L., & Almenar Bonet, L. (2023). Is the Benefit of Treating Iron Deficiency Greater in Acute Heart Failure with Renal Dysfunction? Life, 13(4), 915. https://doi.org/10.3390/life13040915