An Overview of the Putative Structural and Functional Properties of the GHBh1 Receptor through a Bioinformatics Approach
Abstract
:1. Introduction
2. Structural Properties of the GHBh1 Receptor
3. GHB Receptor and Riboflavin Transporter
4. Functional Properties of GHBh1 Binding Proteins
5. Clinical Implications and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maitre, M.; Klein, C.; Mensah-Nyagan, A.G. Mechanisms for the Specific Properties of γ-Hydroxybutyrate in Brain. Med. Res. Rev. 2016, 36, 363–388. [Google Scholar] [CrossRef] [PubMed]
- Mamelak, M. Gammahydroxybutyrate: An endogenous regulator of energy metabolism. Neurosci. Biobehav. Rev. 1989, 13, 187–198. [Google Scholar] [PubMed]
- Kemmel, V.; Miehe, M.; Roussel, G.; Taleb, O.; Nail-Boucherie, K.; Marchand, C.; Stutz, C.; Andriamampandry, C.; Aunis, D.; Maitre, M. Immunohistochemical localization of a GHB receptor-like protein isolated from rat brain. J. Comp. Neurol. 2006, 498, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.K.; Snead, O.C. Presynaptic gamma-hydroxybutyric acid (GHB) and gamma-aminobutyric acidB (GABAB) receptor-mediated release of GABA and glutamate (GLU) in rat thalamic ventrobasal nucleus (VB): A possible mechanism for the generation of absence-like seizures induced by GHB. J. Pharmacol. Exp. Ther. 1995, 273, 1534–1543. [Google Scholar]
- Ferraro, L.; Tanganelli, S.; O’Connor, W.T.; Francesconi, W.; Loche, A.; Gessa, G.L.; Antonelli, T. γ-Hydroxybutyrate modulation of glutamate levels in the hippocampus: An in vivo and in vitro study. J. Neurochem. 2001, 78, 929–939. [Google Scholar] [CrossRef]
- Castelli, M.P.; Ferraro, L.; Mocci, I.; Carta, F.; Carai, M.A.; Antonelli, T.; Tanganelli, S.; Cignarella, G.; Gessa, G.L. Selective γ-hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic effect of γ-hydroxybutyric acid. J. Neurochem. 2003, 87, 722–732. [Google Scholar] [CrossRef]
- Carter, L.P.; Koek, W.; France, C.P. Behavioral analyses of GHB: Receptor mechanisms. Pharmacol. Ther. 2009, 121, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, B.A.; Kamal, R.; van Noorden, M.S.; de Haan, H.; Loonen, A.J.; De Jong, C.A. Detoxification with titration and tapering in gamma-hydroxybutyrate (GHB) dependent patients: The Dutch GHB monitor project. Drug Alcohol Depend. 2017, 170, 164–173. [Google Scholar] [CrossRef]
- Dijkstra, B.; Beurmanjer, H.; Goudriaan, A.; Schellekens, A.; Joosten, E. Unity in diversity: A systematic review on the GHB using population. Int. J. Drug Policy 2021, 94, 103230. [Google Scholar] [CrossRef]
- Beurmanjer, H.; Asperslag, E.M.; Oliemeulen, L.; Goudriaan, A.E.; De Jong, C.A.; Schellekens, A.S.; Dijkstra, B.A. A qualitative approach in understanding illness perception and treatment needs in patients with gamma hydroxybutyrate use disorder. Eur. Addict. Res. 2019, 25, 248–255. [Google Scholar] [CrossRef]
- Maitre, M.; Hechler, V.; Vayer, P.; Gobaille, S.; Cash, C.D.; Schmitt, M.; Bourguignon, J.-J. A specific gamma-hydroxybutyrate receptor ligand possesses both antagonistic and anticonvulsant properties. J. Pharmacol. Exp. Ther. 1990, 255, 657–663. [Google Scholar]
- Tian, Y.; Shehata, M.A.; Gauger, S.J.; Veronesi, C.; Hamborg, L.; Thiesen, L.; Bruus-Jensen, J.; Royssen, J.S.; Leurs, U.; Larsen, A.S.G.; et al. Exploring the NCS-382 Scaffold for CaMKIIα Modulation: Synthesis, Pharmacology, and Biophysical Characterization of Ph-HTBA as a Novel High-Affinity Brain-Penetrant Stabilizer of the CaMKIIα Hub Domain. J. Med. Chem. 2022, 65, 15066–15084. [Google Scholar] [CrossRef]
- Crunelli, V.; Emri, Z.; Leresche, N. Unravelling the brain targets of γ-hydroxybutyric acid. Curr. Opin. Pharmacol. 2006, 6, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Andriamampandry, C.; Taleb, O.; Kemmel, V.; Humbert, J.P.; Aunis, D.; Maitre, M. Cloning and functional characterization of a gamma-hydroxybutyrate receptor identified in the human brain. FASEB J. 2007, 21, 885–895. [Google Scholar] [CrossRef] [Green Version]
- Leurs, U.; Klein, A.B.; McSpadden, E.D.; Griem-Krey, N.; Solbak, S.M.; Houlton, J.; Villumsen, I.S.; Vogensen, S.B.; Hamborg, L.; Gauger, S.J.; et al. GHB analogs confer neuroprotection through specific interaction with the CaMKIIα hub domain. Proc. Natl. Acad. Sci. USA 2021, 118, e2108079118. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Kadowaki, S.; Haga, T.; Takaesu, H.; Mitaku, S. Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett. 2002, 520, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Ericsson, T.A.; Takeuchi, Y.; Templin, C.; Quinn, G.; Farhadian, S.F.; Wood, J.C.; Oldmixon, B.A.; Suling, K.M.; Ishii, J.K.; Kitagawa, Y.; et al. Identification of receptors for pig endogenous retrovirus. Proc. Natl. Acad. Sci. USA 2003, 100, 6759–6764. [Google Scholar] [CrossRef] [Green Version]
- Andriamampandry, C.; Taleb, O.; Viry, S.; Muller, C.; Humbert, J.P.; Gobaille, S.; Aunis, D.; Maitre, M. Cloning and characterization of a rat brain receptor that binds the endogenous neuromodulator γ-hydroxybutyrate. FASEB J. 2003, 17, 1691–1693. [Google Scholar] [CrossRef] [Green Version]
- Bay, T.; Eghorn, L.F.; Klein, A.B.; Wellendorph, P. GHB receptor targets in the CNS: Focus on high-affinity binding sites. Biochem. Pharmacol. 2014, 87, 220–228. [Google Scholar] [CrossRef]
- Odagaki, Y.; Yamauchi, T. γ-Hydroxybutyric acid, unlike γ-aminobutyric acid, does not stimulate Gi/Go proteins in rat brain membranes. Basic Clin. Pharmacol. Toxicol. 2004, 94, 89–98. [Google Scholar] [CrossRef]
- Castelli, M.P.; Pibiri, F.; Carboni, G.; Piras, A.P. A Review of Pharmacology of NCS-382, a Putative Antagonist of γ-Hydroxybutyric Acid (GHB) Receptor. CNS Drug Rev. 2004, 10, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Yonezawa, A.; Yoshimatsu, H.; Masuda, S.; Katsura, T.; Inui, K.-I. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J. Nutr. 2010, 140, 1220–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, V.S.; Kapadia, R.; Ghosal, A.; Said, H.M. Identification of residues/sequences in the human riboflavin transporter-2 that is important for function and cell biology. Nutr. Metab. 2015, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [CrossRef]
- Omasits, U.; Ahrens, C.H.; Müller, S.; Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014, 30, 884–886. [Google Scholar] [CrossRef] [Green Version]
- Wright, P.E.; Dyson, H.J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 2015, 16, 18–29. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Käll, L.; Krogh, A.; Sonnhammer, E.L. Advantages of combined transmembrane topology and signal peptide prediction—The Phobius web server. Nucleic Acids Res. 2007, 35 (Suppl. 2), W429–W432. [Google Scholar] [CrossRef] [Green Version]
- Bernhofer, M.; Dallago, C.; Karl, T.; Satagopam, V.; Heinzinger, M.; Littmann, M.; Olenyi, T.; Qiu, J.; Schütze, K.; Yachdav, G.; et al. PredictProtein-Predicting Protein Structure and Function for 29 Years. Nucleic Acids Res. 2021, 49, W535–W540. [Google Scholar] [CrossRef]
- Buchan, D.W.; Jones, D.T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 2019, 47, W402–W407. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.T.; Cozzetto, D. DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics 2015, 31, 857–863. [Google Scholar] [PubMed] [Green Version]
- Jones, D.T. Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 2007, 23, 538–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krogh, A.; Larsson, B.; Von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, K. TMbase-A database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 1993, 374, 166. [Google Scholar]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Bowie, J.U. Shifting hydrogen bonds may produce flexible transmembrane helices. Proc. Natl. Acad. Sci. USA 2012, 109, 8121–8126. [Google Scholar] [CrossRef] [Green Version]
- Högel, P.; Götz, A.; Kuhne, F.; Ebert, M.; Stelzer, W.; Rand, K.D.; Scharnagl, C.; Langosch, D. Glycine perturbs local and global conformational flexibility of a transmembrane helix. Biochemistry 2018, 57, 1326–1337. [Google Scholar] [CrossRef]
- Console, L.; Tolomeo, M.; Cosco, J.; Massey, K.; Barile, M.; Indiveri, C. Impact of natural mutations on the riboflavin transporter 2 and their relevance to human riboflavin transporter deficiency 2. IUBMB Life 2022, 74, 618–628. [Google Scholar] [CrossRef]
- Powers, H.J. Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 2003, 77, 1352–1360. [Google Scholar] [CrossRef] [Green Version]
- Udhayabanu, T.; Manole, A.; Rajeshwari, M.; Varalakshmi, P.; Houlden, H.; Ashokkumar, B. Riboflavin responsive mitochondrial dysfunction in neurodegenerative diseases. J. Clin. Med. 2017, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Babanejad, M.; Adeli, O.A.; Nikzat, N.; Beheshtian, M.; Azarafra, H.; Sadeghnia, F.; Mohseni, M.; Najmabadi, H.; Kahrizi, K. SLC52A2 mutations cause SCABD2 phenotype: A second report. Int. J. Pediatr. Otorhinolaryngol. 2018, 104, 195–199. [Google Scholar] [CrossRef]
- Yonezawa, A.; Inui, K.I. Novel riboflavin transporter family RFVT/SLC52: Identification, nomenclature, functional characterization and genetic diseases of RFVT/SLC52. Mol. Asp. Med. 2013, 34, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Yonezawa, A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol. Ther. 2022, 233, 108023. [Google Scholar] [CrossRef] [PubMed]
- Console, L.; Tolomeo, M.; Colella, M.; Barile, M.; Indiveri, C. Reconstitution in proteoliposomes of the recombinant human riboflavin transporter 2 (SLC52A2) overexpressed in E. coli. Int. J. Mol. Sci. 2019, 20, 4416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diallinas, G. Transceptors as a functional link of transporters and receptors. Microb. Cell 2017, 4, 69. [Google Scholar] [CrossRef] [Green Version]
- Donaton, M.C.V.; Holsbeeks, I.; Lagatie, O.; Van Zeebroeck, G.; Crauwels, M.; Winderickx, J.; Thevelein, J.M. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 2003, 50, 911–929. [Google Scholar] [CrossRef]
- Minezaki, Y.; Homma, K.; Nishikawa, K. Intrinsically disordered regions of human plasma membrane proteins preferentially occur in the cytoplasmic segment. J. Mol. Biol. 2007, 368, 902–913. [Google Scholar] [CrossRef]
- Xue, B.; Li, L.; Meroueh, S.O.; Uversky, V.N.; Dunker, A.K. Analysis of structured and intrinsically disordered regions of transmembrane proteins. Mol. BioSyst. 2009, 5, 1688–1702. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, C.J.; Dunker, A.K. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 2014, 83, 553–584. [Google Scholar] [CrossRef]
- Kjaergaard, M.; Kragelund, B.B. Functions of intrinsic disorder in transmembrane proteins. Cell. Mol. Life Sci. 2017, 74, 3205–3224. [Google Scholar] [PubMed]
- Hultquist, D.E.; Xu, F.; Quandt, K.S.; Shlafer, M.; Mack, C.P.; Till, G.O.; Seekamp, A.; Betz, A.L.; Ennis, S.R. Evidence that NADPH-dependent methemoglobin reductase and administered riboflavin protect tissues from oxidative injury. Am. J. Hematol. 1993, 42, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Betz, A.L.; Ren, X.; Ennis, S.; Hultquist, D. Riboflavin reduces edema in focal cerebral ischemia. In Brain Edema IX, Proceedings of the Ninth International Symposium, Tokyo, Japan, 16–19 May 1993; Springer: Berlin/Heidelberg, Germany, 1994; pp. 314–317. [Google Scholar]
- Mack, C.P.; Hultquist, D.E.; Shlafer, M. Myocardial flavin reductase and riboflavin: A potential role in decreasing reoxygenation injury. Biochem. Biophys. Res. Commun. 1995, 212, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.M.; Rowe, A.E.; Ryle, P.R.; Majumdar, S.K.; Jones, D.; Thomson, A.D.; Shaw, G.K. Efficacy of vitamin supplementation in chronic alcoholics undergoing detoxification. Alcohol Alcoholism. 1983, 18, 157–166. [Google Scholar]
- Wu, H.; Guo, P.; Li, X.; Jin, Z.; Yang, X.; Wang, Y. Hydroxybutyrate promotes the recovery from cerebral infarction by activating Amp-activated protein kinase signaling. Exp. Ther. Med. 2018, 16, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.J.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F. The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021, 30, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Huttlin, E.L.; Bruckner, R.J.; Paulo, J.A.; Cannon, J.R.; Ting, L.; Baltier, K.; Colby, G.; Gebreab, F.; Gygi, M.P.; Parzen, H.; et al. Architecture of the human interactome defines protein communities and disease networks. Nature 2017, 545, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Huttlin, E.L.; Bruckner, R.J.; Navarrete-Perea, J.; Cannon, J.R.; Baltier, K.; Gebreab, F.; Gygi, M.P.; Thornock, A.; Zarraga, G.; Tam, S.; et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 2021, 184, 3022–3040. [Google Scholar] [CrossRef]
- Rolland, T.; Taşan, M.; Charloteaux, B.; Pevzner, S.J.; Zhong, Q.; Sahni, N.; Yi, S.; Lemmens, I.; Fontanillo, C.; Mosca, R.; et al. A proteome-scale map of the human interactome network. Cell 2014, 159, 1212–1226. [Google Scholar] [CrossRef] [Green Version]
- Luck, K.; Kim, D.-K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux, B.; et al. A reference map of the human binary protein interactome. Nature 2020, 580, 402–408. [Google Scholar] [CrossRef]
- Choudhury, N.R.; Heikel, G.; Trubitsyna, M.; Kubik, P.; Nowak, J.S.; Webb, S.; Granneman, S.; Spanos, C.; Rappsilber, J.; Castello, A.; et al. RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination. BMC Biol. 2017, 15, 105. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.; Grönbladh, A.; Hallberg, M. Gamma-hydroxybutyrate (GHB) induces cognitive deficits and affects GABAB receptors and IGF-1 receptors in male rats. Behav. Brain Res. 2014, 269, 164–174. [Google Scholar] [CrossRef]
- Van Nieuwenhuijzen, P.S.; Long, L.E.; Hunt, G.E.; Arnold, J.C.; McGregor, I.S. Residual social, memory and oxytocin-related changes in rats following repeated exposure to γ-hydroxybutyrate (GHB), 3, 4-methylenedioxymethamphetamine (MDMA) or their combination. Psychopharmacology 2010, 212, 663–674. [Google Scholar] [CrossRef]
- Pereira, F.R.; McMaster, M.T.; Polderman, N.; De Vries, Y.D.; van den Brink, W.; Van Wingen, G.A. Adverse effects of GHB-induced coma on long-term memory and related brain function. Drug Alcohol Depend. 2018, 190, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Guiraud, J.; Addolorato, G.; Aubin, H.-J.; Batel, P.; de Bejczy, A.; Caputo, F.; Goudriaan, A.E.; Gual, A.; Lesch, O.; Maremmani, I.; et al. Treating alcohol dependence with an abuse and misuse deterrent formulation of sodium oxybate: Results of a randomised, double-blind, placebo-controlled study. Eur. Neuropsychopharmacol. 2021, 52, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Boscolo-Berto, R.; Viel, G.; Montagnese, S.; Raduazzo, D.I.; Ferrara, S.D.; Dauvilliers, Y. Narcolepsy and effectiveness of gamma-hydroxybutyrate (GHB): A systematic review and meta-analysis of randomized controlled trials. Sleep Med. Rev. 2012, 16, 431–443. [Google Scholar] [CrossRef] [PubMed]
Predictor/Database | Transmembrane Helices | N-Terminus Intra- Cellular/Extracellular | Intrinsically Disordered Regions |
---|---|---|---|
Alphafold 2 [27] | 11 | NA | NA |
Phobius [28] | 10 | Extracellular | NA |
Predict Protein [29] | 11 | NA | 1 (intracellular, 237–261, between TM6 and TM7) |
Psipred [30,31] | 11 | Intracellular | 2 (intracellular, 1–11, before TM 1, and 223–270, between TM6 and TM7) |
MEMSAT 3 [32] | 11 | Intracellular | NA |
TMHMM [33] | 11 | Intracellular | NA |
TM-pred [34] | 10 | Intracellular | NA |
Uniprot [24] | 11 | NA | 1 (intracellular, 228–264, between TM6 and TM7) |
Interactor | Description | Function |
---|---|---|
SPPL2B [57,58] | Signal peptide peptidase like 2B | Involved in immune response by cleaving TNFα in dendritic cells |
ATP13A1 [58] | ATPase type 13A1 | Mediates removal/extraction of mislocalized mitochondrial transmembrane proteins from the endoplasmic reticulum membrane |
CDC23 [59] | Cell division cycle 23 | Part of a ubiquitin ligase that controls progression through mitosis |
FAM209A [60] | Family with sequence similarity 209, member A | May play a role in sperm acrosome biogenesis |
GHITM [58] | Growth hormone inducible transmembrane protein | Plays a role in apoptosis through mediating mitochondrial morphology and cytochrome c release |
TRIM25 [61] | Tripartite motif containing 25 | Ubiquitin ligase regulating the innate immune response |
UPK1A [57] | Uroplakin 1A | Mediating signal transduction events involved in regulating cell development, activation, growth and motility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolf, C.J.H.; Venselaar, H.; Spoelder, M.; Beurmanjer, H.; Schellekens, A.F.A.; Homberg, J.R. An Overview of the Putative Structural and Functional Properties of the GHBh1 Receptor through a Bioinformatics Approach. Life 2023, 13, 926. https://doi.org/10.3390/life13040926
Wolf CJH, Venselaar H, Spoelder M, Beurmanjer H, Schellekens AFA, Homberg JR. An Overview of the Putative Structural and Functional Properties of the GHBh1 Receptor through a Bioinformatics Approach. Life. 2023; 13(4):926. https://doi.org/10.3390/life13040926
Chicago/Turabian StyleWolf, Casper J. H., Hanka Venselaar, Marcia Spoelder, Harmen Beurmanjer, Arnt F. A. Schellekens, and Judith R. Homberg. 2023. "An Overview of the Putative Structural and Functional Properties of the GHBh1 Receptor through a Bioinformatics Approach" Life 13, no. 4: 926. https://doi.org/10.3390/life13040926
APA StyleWolf, C. J. H., Venselaar, H., Spoelder, M., Beurmanjer, H., Schellekens, A. F. A., & Homberg, J. R. (2023). An Overview of the Putative Structural and Functional Properties of the GHBh1 Receptor through a Bioinformatics Approach. Life, 13(4), 926. https://doi.org/10.3390/life13040926