The Autonomic Coumel Triangle: A New Way to Define the Fascinating Relationship between Atrial Fibrillation and the Autonomic Nervous System
Abstract
:1. Introduction
2. The Biomolecular Explanation of the Autonomic Nervous System Role in Coumel’s Triangle
2.1. Cardiac Autonomic Neurotransmission: Adrenergic and Cholinergic Molecular Pathways
2.2. Interplay between Autonomic Nervous System and Cardiomyocytes Action Potential
3. Autonomic Nervous System and Atrial Fibrillation: A Heterogeneous Clinical Spectrum
4. From Pharmacological and Interventional Therapy to Future Perspectives
4.1. Drug, Biological, and Gene Therapy
4.2. From Cardiac to Non-Cardiac Neuromodulation Therapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coumel, P. Paroxysmal Atrial Fibrillation: A Disorder of Autonomic Tone? Eur. Heart J. 1994, 15 (Suppl. A), 9–16. [Google Scholar] [CrossRef] [PubMed]
- Janes, R.D.; Christopher Brandys, J.; Hopkins, D.A.; Johnstone, D.E.; Murphy, D.A.; Armour, J.A. Anatomy of human extrinsic cardiac nerves and ganglia. Am. J. Cardiol. 1986, 57, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Armour, J.A.; Murphy, D.A.; Yuan, B.-X.; MacDonald, S.; Hopkins, D.A. Gross, and microscopic anatomy of the human intrinsic cardiac nervous system. Anat. Rec. 1997, 247, 289–298. [Google Scholar] [CrossRef]
- Ardell, J.L. The cardiac neuronal hierarchy and susceptibility to arrhythmias. Heart Rhythm. 2011, 8, 590–591. [Google Scholar] [CrossRef] [PubMed]
- Pauza, D.H.; Skripka, V.; Pauziene, N.; Stropus, R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat. Rec. 2000, 259, 353–382. [Google Scholar] [CrossRef]
- Stavrakis, S.; Nakagawa, H.; Po, S.S.; Scherlag, B.J.; Lazzara, R.; Jackman, W.M. The Role of the Autonomic Ganglia in Atrial Fibrillation. JACC Clin. Electrophysiol. 2015, 1, 1–13. [Google Scholar] [CrossRef]
- Po, S.S.; Scherlag, B.J.; Yamanashi, W.S.; Dewards, J.; Zhou, J.; Wu, R.; Geng, N.; Lazzara, R.; Jackman, W.M. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm. 2006, 3, 201–208. [Google Scholar] [CrossRef]
- Patterson, E.; Lazzara, R.; Szabo, B.; Liu, H.; Tang, D.; Li, Y.H.; Scherlag, B.J.; Po, S.S. Sodium-Calcium Exchange Initiated by the Ca2+Transient. J. Am. Coll. Cardiol. 2006, 47, 1196–1206. [Google Scholar] [CrossRef]
- Armour, J.A. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp. Physiol. 2008, 93, 165–176. [Google Scholar] [CrossRef]
- Tan, A.Y.; Li, H.; Wachsmann-Hogiu, S.; Chen, L.S.; Chen, P.-S.; Fishbein, M.C. Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction. J. Am. Coll. Cardiol. 2006, 48, 132–143. [Google Scholar] [CrossRef]
- Francis, G.S. Modulation of peripheral sympathetic nerve transmission. J. Am. Coll. Cardiol. 1988, 12, 250–254. [Google Scholar] [CrossRef]
- Lymperopoulos, A.; Rengo, G.; Koch, W.J. Adrenergic Nervous System in Heart Failure. Circ. Res. 2013, 113, 739–753. [Google Scholar] [CrossRef]
- Arora, R. Recent Insights into the Role of the Autonomic Nervous System in the Creation of Substrate for Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2012, 5, 850–859. [Google Scholar] [CrossRef]
- Nerbonne, J.M.; Kass, R.S. Molecular Physiology of Cardiac Repolarization. Physiol. Rev. 2005, 85, 1205–1253. [Google Scholar] [CrossRef]
- Heijman, J.; Voigt, N.; Nattel, S.; Dobrev, D. Cellular and Molecular Electrophysiology of Atrial Fibrillation Initiation, Maintenance, and Progression. Circ. Res. 2014, 114, 1483–1499. [Google Scholar] [CrossRef]
- Voigt, N.; Heijman, J.; Wang, Q.; Chiang, D.Y.; Li, N.; Karck, M.; Wehrens, X.H.T.; Nattel, S.; Dobrev, D. Cellular and Molecular Mechanisms of Atrial Arrhythmogenesis in Patients with Paroxysmal Atrial Fibrillation. Circulation 2014, 129, 145–156. [Google Scholar] [CrossRef]
- Sato, R.; Koumi, S. Modulation of the inwardly rectifying K+ channel in isolated human atrial myocytes by? 1-adrenergic stimulation. J. Membr. Biol. 1995, 148, 185–191. [Google Scholar] [CrossRef]
- Andrade, J.; Khairy, P.; Dobrev, D.; Nattel, S. The Clinical Profile and Pathophysiology of Atrial Fibrillation. Circ. Res. 2014, 114, 1453–1468. [Google Scholar] [CrossRef]
- Chen, P.-S.; Chen, L.S.; Fishbein, M.C.; Lin, S.-F.; Nattel, S. Role of the Autonomic Nervous System in Atrial Fibrillation: Pathophysiology and Therapy. Circ. Res. 2014, 114, 1500–1515. [Google Scholar] [CrossRef]
- Qin, M.; Zeng, C.; Liu, X. The cardiac autonomic nervous system: A target for modulation of atrial fibrillation. Clin. Cardiol. 2019, 42, 644–652. [Google Scholar] [CrossRef]
- Lemoine, M.D.; Duverger, J.E.; Naud, P.; Qi, Y.Y.; Comtois, P.; Fabritz, L.; Kirchhof, P.; Nattel, S. Arrhythmogenic left atrial cellular electrophysiology in a murine genetic long QT syndrome model. Cardiovasc. Res. 2011, 92, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Scherlag, B.J.; Lin, J.; Yu, L.; Guo, J.H.; Niu, G.; Jackman, W.M.; Lazzara, R.; Jiang, H.; Po, S.S. Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins: Evidence by ablation of ganglionated plexi. Cardiovasc. Res. 2009, 84, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Jackman, W.M.; Beckman, K.J.; Lazzara, R.; Lockwood, D.; Scherlag, B.J.; Wu, R.; Po, S. Spontaneous Pulmonary Vein Firing in Man: Relationship to Tachycardia-Pause Early Afterdepolarizations and Triggered Arrhythmia in Canine Pulmonary Veins In Vitro. J. Cardiovasc. Electrophysiol. 2007, 18, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Rebecchi, M.; Panattoni, G.; Edoardo, B.; De Ruvo, E.; Sciarra, L.; Politano, A.; Sgueglia, M.; Ricagni, C.; Verbena, S.; Crescenzi, C.; et al. Atrial fibrillation and autonomic nervous system: A translational approach to guide therapeutic goals. J. Arrhythm. 2021, 37, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Lemola, K.; Chartier, D.; Yeh, Y.-H.; Dubuc, M.; Cartier, R.; Armour, A.; Ting, M.; Sakabe, M.; Shiroshita-Takeshita, A.; Comtois, P.; et al. Pulmonary Vein Region Ablation in Experimental Vagal Atrial Fibrillation. Circulation 2008, 117, 470–477. [Google Scholar] [CrossRef]
- Ashihara, T.; Yao, T.; Namba, T.; Kawase, A.; Ikeda, T.; Nakazawa, K.; Ito, M. Differences in sympathetic and vagal effects on paroxysmal atrial fibrillation: A simulation study. Biomed. Pharmacother. 2002, 56 (Suppl. 2), 359s–363s. [Google Scholar] [CrossRef]
- Lo, L.W.; Chiou, C.W.; Lin, Y.J.; Chang, S.L.; Hu, Y.F.; Tsao, H.M.; Chao, T.F.; Li, C.H.; Chang, H.Y.; Chung, F.P.; et al. Differences in the atrial electrophysiological properties between vagal and sympathetic types of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2013, 24, 609–616. [Google Scholar] [CrossRef]
- Ifedili, I.; Ingram, E.; Blount, C.; Kayali, S.; Heckle, M.; Levine, Y.C. Vagal milieu or electrophysiologic substrate? The link between atrial fibrillation and obstructive sleep apnea. Exp. Biol. Med. 2022, 247, 1827–1832. [Google Scholar] [CrossRef]
- Gillinov, A.M.; Rice, T.W. Prandial atrial fibrillation: Off-pump pulmonary vein isolation with hiatal hernia repair. Ann. Thorac. Surg. 2004, 78, 1836–1838. [Google Scholar] [CrossRef]
- Hofmann, R.; Bäck, M. Gastro-Cardiology: A Novel Perspective for the Gastrocardiac Syndrome. Front. Cardiovasc. Med. 2021, 8, 764478. [Google Scholar] [CrossRef]
- Gordon, J.; Saleem, S.M.; Ngaage, D.L.; Thorpe, J.A. Swallow syncope associated with paroxysmal atrial fibrillation. Eur. J. Cardio-Thorac. Surg. 2002, 21, 587–590. [Google Scholar] [CrossRef]
- Tougas, G.; Kamath, M.; Watteel, G.; Fitzpatrick, D.; Fallen, E.L.; Hunt, R.H.; Upton, A.R. Modulation of neurocardiac function by oesophageal stimulation in humans. Clin. Sci. 1997, 92, 167–174. [Google Scholar] [CrossRef]
- Tougas, G.; Spaziani, R.; Hollerbach, S.; Djuric, V.; Pang, C.; Upton, A.R.; Fallen, E.L.; Kamath, M.V. Cardiac autonomic function and oesophageal acid sensitivity in patients with non-cardiac chest pain. Gut 2001, 49, 706–712. [Google Scholar] [CrossRef]
- Jayachandran, J.V.; Sih, H.J.; Winkle, W.; Zipes, D.P.; Hutchins, G.D.; Olgin, J.E. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation 2000, 101, 1185–1191. [Google Scholar] [CrossRef]
- Tan, A.Y.; Zhou, S.; Ogawa, M.; Song, J.; Chu, M.; Li, H.; Fishbein, M.C.; Lin, S.F.; Chen, L.S.; Chen, P.S. Neuralmechanismsofparoxysmalatrialfibrillationandparoxysmalatrial tachycardiainambulatorycanines. Circulation 2008, 118, 916–925. [Google Scholar] [CrossRef]
- Schotten, U.; Verheule, S.; Kirchhof, P.; Goette, A. Pathophysiological mechanisms of atrial fibrillation: A translational appraisal. Physiol. Rev. 2011, 91, 265–325. [Google Scholar] [CrossRef]
- Linz, D.; Ukena, C.; Mahfoud, F.; Neuberger, H.R.; Böhm, M. Atrialautonomicinnervation: Atargetforinterventionalantiarrhythmic therapy? J. Am. Coll. Cardiol. 2014, 63, 215–224. [Google Scholar] [CrossRef]
- Pattanshetty, D.J.; Anna, K.; Gajulapalli, R.D.; Sappati-Biyyani, R.R. Inflammatory bowel “Cardiac” disease: Point prevalence of atrial fibrillation in inflammatory bowel disease population. Saudi J. Gastroenterol. 2015, 21, 325–329. [Google Scholar] [CrossRef]
- Dogan, Y.; Soylu, A.; Eren, G.A.; Poturoglu, S.; Dolapcioglu, C.; Sonmez, K.; Duman, H.; Sevindir, I. Evaluation of QT and P wave dispersion and mean platelet volume among inflammatory bowel disease patients. Int. J. Med. Sci. 2011, 8, 540–546. [Google Scholar] [CrossRef]
- Hussain, S.; Jerry, C.; Luck. Syncope and Atrial Fibrillation: Which Is the Chicken and Which Is the Egg? Atr. Fibrillation 2015, 8, 1175. [Google Scholar]
- Tan, M.P.; Parry, S.W. Vasovagal syncope in the older patient. J. Am. Coll. Cardiol. 2008, 51, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Coumel, P.; Attuel, P.; Lavallée, J.; Flammang, D.; Leclercq, J.F.; Slama, R. The atrial arrhythmia syndrome of vagal origin. Arch. Mal. Coeur. Vaiss. 1978, 71, 645–656. [Google Scholar] [PubMed]
- Le Heuzey, J.-Y.; Boutjdir, M.; Gagey, S.; Lavergne, T.; Guise, T. Cellular aspects of atrial vulnerability. In The Atrium in Health and Disease; Atteul, P., Coumel, P., Jansen, M.J., Eds.; Futura Publishing Company, Inc.: Mount Kisco, NY, USA, 1989; pp. 81–94. [Google Scholar]
- Goudis, C.A.; Ketikoglou, D.G. Obstructive sleep and atrial fibrillation: Pathophysiological mechanisms and therapeutic implications. Int. J. Cardiol. 2017, 230, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, I.H.; Roberts-Thomson, K.C.; Kistler, P.M.; Edwards, G.A.; Spence, S.; Sanders, P.; Kalman, J.M. Atrial electrophysiology is altered by acute hypercapnia but not hypoxemia: Implications for promotion of atrial fibrillation in pulmonary disease and sleep apnea. Heart Rhythm 2010, 7, 1263–1270. [Google Scholar] [CrossRef]
- Linz, D.; Linz, B.; Hohl, M.; Böhm, M. Atrial arrhythmogenesis in obstructive sleep apnea: Therapeutic implications. Sleep Med. Rev. 2016, 26, 87–94. [Google Scholar] [CrossRef]
- Naughton, M.T.; Kee, K. Sleep apnoea in heart failure: To treat or not to treat? Respirology 2017, 22, 217–229. [Google Scholar] [CrossRef]
- Lu, Z.; Nie, L.; He, B.; Yu, L.; Salim, M.; Huang, B.; Cui, B.; He, W.; Wu, W.; Jiang, H. Increase in vulnerability of atrial fibrillation in an acute intermittent hypoxia model: Importance of autonomic imbalance. Auton. Neurosci. 2013, 177, 148–153. [Google Scholar] [CrossRef]
- Xiaokereti, J.; Guo, Y.K.; Dong, Z.Y.; Ma, M.; Yan-Mei Lu, Y.M.; Li, Y.D.; Zhou, X.H.; Zhang, L.; Tang, B.P. Enhanced atrial internal-external neural remodeling facilitates atrial fibrillation in the chronic obstructive sleep apnea model. PLoS ONE 2021, 16, e0247308. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Y.; Xiaokereti, J.; Cao, G.; Li, H.; Sun, H.; Li, K.; Zhou, X.; Baopeng, T.B. Ganglionated Plexi Ablation Suppresses Chronic Obstructive Sleep Apnea-Related Atrial Fibrillation by Inhibiting Cardiac Autonomic Hyperactivation. Front. Physiol. 2021, 12, 640295. [Google Scholar] [CrossRef]
- Guo, Y.; Xiaokereti, J.; Meng, Q.; Cao, G.; Sun, H.; Zhou, X.; Zhang, L.; Tang, B. Low-Level Vagus Nerve Stimulation Reverses Obstructive Sleep Apnea-Related Atrial Fibrillation by Ameliorating Sympathetic Hyperactivity and Atrial Myocyte Injury. Front. Physiol. 2021, 11, 620655. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Perez-Quilis, C.; Lippi, G.; Cervellin, G.; Leischik, R.; Löllgen, H.; Serrano-Ostáriz, E.; Lucia, A. Atrial fibrillation in highly trained endurance athletes: Description of a syndrome. Int. J. Cardiol. 2017, 226, 11–20. [Google Scholar] [CrossRef]
- Nergardh, A.K.; Rosenqvist, M.; Nordlander, R.; Frick, M. Maintenance of sinus rhythm with metoprolol CR initiated before cardioversion and repeated cardioversion of atrial fibrillation: A randomized double-blind placebo-controlled study. Eur. Heart J. 2007, 28, 1351–1357. [Google Scholar] [CrossRef]
- Wang, Z.; Pagé, P.; Nattel, S. Mechanism of flecainide’s antiarrhythmic action in experimental atrial fibrillation. Circ. Res. 1992, 71, 271–287. [Google Scholar] [CrossRef]
- Rensma, P.L.; Allessie, M.A.; Lammers, W.J.; Bonke, F.I.; Schalij, M.J. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ. Res. 1988, 62, 395–410. [Google Scholar] [CrossRef]
- Kryshtal, D.O.; Blackwell, D.J.; Egly, C.L.; Smith, A.N.; Batiste, S.M.; Johnston, J.N.; Laver, D.R.; Knollmann, B.C. RYR2 Channel Inhibition Is the Principal Mechanism of Flecainide Action in CPVT. Circ. Res. 2021, 128, 321–331. [Google Scholar] [CrossRef]
- Fuster, V.; Rydén, L.E.; Cannom, D.S.; Crijns, H.J.; Curtis, A.B.; Ellenbogen, K.A.; Halperin, J.L.; Le, H.J.Y.; Kay, G.N.; Lowe, J.E.; et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines; European Society of Cardiology Committee for Practice Guidelines; European Heart Rhythm Association; Heart Rhythm Society. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): Developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 2006, 114, e257–e354. [Google Scholar] [CrossRef]
- Kondoh, K.; Hashimoto, H.; Nishiyama, H.; Umemura, K.; Ozaki, T.; Uematsu, T.; Nakashima, M.J. Effects of MS-551, a new class III antiarrhythmic drug, on programmed stimulation-induced ventricular arrhythmias, electrophysiology, and hemodynamics in a canine myocardial infarction model. Cardiovasc. Pharmacol. 1994, 23, 674–680. [Google Scholar] [CrossRef]
- Yeşil, M.; Bayata, S.; Postaci, N.; Yücel, O.; Aslan, O. Cardioversion with sotalol in selected patients with vagally and adrenergically mediated paroxysmal atrial fibrillation. Angiology 1999, 50, 729–733. [Google Scholar] [CrossRef]
- Machida, T.; Hashimoto, N.; Kuwahara, I.; Ogino, Y.; Matsuura, J.; Yamamoto, W.; Itano, Y.; Zamma, A.; Matsumoto, R.; Junji, K.J.; et al. Effects of a highly selective acetylcholine-activated K+ channel blocker on experimental atrial fibrillation. Circ. Arrhythmia Electrophysiol. 2011, 4, 94–102. [Google Scholar] [CrossRef]
- Hashimoto, N.; Yamashita, T.; Tsuruzoe, N. Tertiapin, a selective IKACh blocker, terminates atrial fibrillation with selective atrial effective refractory period prolongation. Pharmacol. Res. 2006, 54, 136–141. [Google Scholar] [CrossRef]
- Patterson, E.; Po, S.S.; Scherlag, B.J.; Lazzara, R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005, 2, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Donahue, J.K.; Heldman, A.W.; Fraser, H.; McDonald, A.D.; Miller, J.M.; Rade, J.J.; Eschenhagen, T.; Marbán, E. Focal modification of electrical conduction in the heart by viral gene transfer. Nat. Med. 2000, 6, 1395–1398. [Google Scholar] [CrossRef] [PubMed]
- Lo, L.W.; Chang, H.Y.; Scherlag, B.J.; Lin, Y.J.; Chou, Y.H.; Lin, W.L.; Chen, S.A.; Po, S.S. Temporary suppression of cardiac ganglionated plexi leads to long-term suppression of atrial fibrillation: Evidence of early autonomic intervention to break the vicious cycle of “AF begets AF”. J. Am. Heart Assoc. 2016, 5, e003309. [Google Scholar] [CrossRef] [PubMed]
- Romanov, A.; Pokushalov, E.; Ponomarev, D.; Bayramova, S.; Shabanov, V.; Losik, D.; Stenin, I.; Elesin, D.; Mikheenko, I.; Strelnikov, A.; et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: Three-year follow-up of a randomized study. Heart Rhythm. 2019, 16, 172–177. [Google Scholar] [CrossRef]
- Hou, Y.; Scherlag, B.J.; Lin, J.; Zhang, Y.; Lu, Z.; Truong, K.; Patterson, E.; Lazzara, R.; Jackman, W.M.; Po, S.S. Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: Effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J. Am. Coll. Cardiol. 2007, 50, 61–68. [Google Scholar] [CrossRef]
- Pokushalov, E.; Romanov, A.; Shugayev, P.; Artyomenko, S.; Shirokova, N.; Turov, A.; Katritsis, D.G. Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm. 2009, 6, 1257–1264. [Google Scholar] [CrossRef]
- Caloò, L.; Rebecchi, M.; Sciarra, L.; De Luca, L.; Fagagnini, A.; Zuccaro, L.M.; Pitrone, P.; Dottori, S.; Porfirio, M.; De Ruvo, E.; et al. Catheter ablation of right atrial ganglionated plexi in patients with vagal paroxysmal atrial fibrillation. Circ. Arrhythmia Electrophysiol. 2012, 5, 22–31. [Google Scholar] [CrossRef]
- Pachon, J.C.; Pachon, E.I.; Pachon, J.C.; Lobo, T.J.; Pachon, M.Z.; Vargas, R.N.; Jatene, A.D. “Cardioneuroablation”—New treatment for neurocardiogenic syncope, functional AV block and sinus dysfunction using catheter RF-ablation. Europace 2005, 7, 1–13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebecchi, M.; Fanisio, F.; Rizzi, F.; Politano, A.; De Ruvo, E.; Crescenzi, C.; Panattoni, G.; Squeglia, M.; Martino, A.; Sasso, S.; et al. The Autonomic Coumel Triangle: A New Way to Define the Fascinating Relationship between Atrial Fibrillation and the Autonomic Nervous System. Life 2023, 13, 1139. https://doi.org/10.3390/life13051139
Rebecchi M, Fanisio F, Rizzi F, Politano A, De Ruvo E, Crescenzi C, Panattoni G, Squeglia M, Martino A, Sasso S, et al. The Autonomic Coumel Triangle: A New Way to Define the Fascinating Relationship between Atrial Fibrillation and the Autonomic Nervous System. Life. 2023; 13(5):1139. https://doi.org/10.3390/life13051139
Chicago/Turabian StyleRebecchi, Marco, Francesca Fanisio, Fabio Rizzi, Alessandro Politano, Ermenegildo De Ruvo, Cinzia Crescenzi, Germana Panattoni, Marianna Squeglia, Annamaria Martino, Stefano Sasso, and et al. 2023. "The Autonomic Coumel Triangle: A New Way to Define the Fascinating Relationship between Atrial Fibrillation and the Autonomic Nervous System" Life 13, no. 5: 1139. https://doi.org/10.3390/life13051139
APA StyleRebecchi, M., Fanisio, F., Rizzi, F., Politano, A., De Ruvo, E., Crescenzi, C., Panattoni, G., Squeglia, M., Martino, A., Sasso, S., Golia, P., Pugliese, G., Del Gigante, S., Giamundo, D., Desimone, P., Grieco, D., De Luca, L., Giordano, I., Barillà, F., ... Iellamo, F. (2023). The Autonomic Coumel Triangle: A New Way to Define the Fascinating Relationship between Atrial Fibrillation and the Autonomic Nervous System. Life, 13(5), 1139. https://doi.org/10.3390/life13051139