Sacubitril/Valsartan vs. Standard Medical Therapy on Exercise Capacity in HFrEF Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Cardiopulmonary Exercise Testing
2.3. Echocardiographic Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, X.; Li, Y.; He, W.; Zhu, H.; Liu, B.; Zhang, A. The Efficacy and Safety of Sacubitril/Valsartan in Heart Failure Patients: A Review. J. Cardiovasc. Pharmacol. Ther. 2022, 27, 10742484211058681. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhao, Z.; Zhang, J.; Zhao, F.; Jin, P. Effects of sacubitril/valsartan on life quality in chronic heart failure: A systematic review and meta-analysis of randomized controlled trials. Front. Cardiovasc. Med. 2022, 9, 922721. [Google Scholar] [CrossRef]
- Malfatto, G.; Ravaro, S.; Caravita, S.; Baratto, C.; Sorropago, A.; Giglio, A.; Tomaselli, M.; Parati, G.; Villani, A. Improvement of functional capacity in sacubitril-valsartan treated patients assessed by cardiopulmonary exercise test. Acta Cardiol. 2020, 75, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.R.; Alves, M.N.N.; Jordao, C.P.; Pinto, C.E.N.; Correa, K.T.S.; de Souza, F.R.; da Fonseca, G.W.P.; Tomaz Filho, J.; Costa, M.; Pereira, R.M.R.; et al. Sacubitril/valsartan versus enalapril on exercise capacity in patients with heart failure with reduced ejection fraction: A randomized, double-blind, active-controlled study. Am. Heart J. 2021, 239, 1–10. [Google Scholar] [CrossRef]
- Halle, M.; Schobel, C.; Winzer, E.B.; Bernhardt, P.; Mueller, S.; Sieder, C.; Lecker, L.S.M. A randomized clinical trial on the short-term effects of 12-week sacubitril/valsartan vs. enalapril on peak oxygen consumption in patients with heart failure with reduced ejection fraction: Results from the ACTIVITY-HF study. Eur. J. Heart Fail. 2021, 23, 2073–2082. [Google Scholar] [CrossRef]
- Malhotra, R.; Bakken, K.; D’Elia, E.; Lewis, G.D. Cardiopulmonary Exercise Testing in Heart Failure. JACC Heart Fail. 2016, 4, 607–616. [Google Scholar] [CrossRef]
- Sarullo, F.M.; Fazio, G.; Brusca, I.; Fasullo, S.; Paterna, S.; Licata, P.; Novo, G.; Novo, S.; Di Pasquale, P. Cardiopulmonary Exercise Testing in Patients with Chronic Heart Failure: Prognostic Comparison from Peak VO2 and VE/VCO2 Slope. Open Cardiovasc. Med. J. 2010, 4, 127–134. [Google Scholar] [CrossRef]
- Sinagra, G.; Iorio, A.; Merlo, M.; Cannata, A.; Stolfo, D.; Zambon, E.; Di Nora, C.; Paolillo, S.; Barbati, G.; Berton, E.; et al. Prognostic value of cardiopulmonary exercise testing in Idiopathic Dilated Cardiomyopathy. Int. J. Cardiol. 2016, 223, 596–603. [Google Scholar] [CrossRef]
- Corra, U.; Giordano, A.; Marcassa, C.; Gambarin, F.I.; Gnemmi, M.; Pistono, M. Prognostic value of 6-min walk test compared to cardiopulmonary exercise test in patients with severe heart failure. J. Cardiovasc. Med. 2022, 23, 379–386. [Google Scholar] [CrossRef]
- Myers, J.; Gullestad, L.; Vagelos, R.; Do, D.; Bellin, D.; Ross, H.; Fowler, M.B. Clinical, hemodynamic, and cardiopulmonary exercise test determinants of survival in patients referred for evaluation of heart failure. Ann. Intern. Med. 1998, 129, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Corra, U.; Agostoni, P.G.; Anker, S.D.; Coats, A.J.S.; Crespo Leiro, M.G.; de Boer, R.A.; Harjola, V.P.; Hill, L.; Lainscak, M.; Lund, L.H.; et al. Role of cardiopulmonary exercise testing in clinical stratification in heart failure. A position paper from the Committee on Exercise Physiology and Training of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Paolillo, S.; Veglia, F.; Salvioni, E.; Corra, U.; Piepoli, M.; Lagioia, R.; Limongelli, G.; Sinagra, G.; Cattadori, G.; Scardovi, A.B.; et al. Heart failure prognosis over time: How the prognostic role of oxygen consumption and ventilatory efficiency during exercise has changed in the last 20 years. Eur. J. Heart Fail. 2019, 21, 208–217. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Mezzani, A.; Agostoni, P.; Cohen-Solal, A.; Corra, U.; Jegier, A.; Kouidi, E.; Mazic, S.; Meurin, P.; Piepoli, M.; Simon, A.; et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: A report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 249–267. [Google Scholar] [CrossRef]
- Arena, R.; Myers, J.; Aslam, S.S.; Varughese, E.B.; Peberdy, M.A. Technical considerations related to the minute ventilation/carbon dioxide output slope in patients with heart failure. Chest 2003, 124, 720–727. [Google Scholar] [CrossRef]
- Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Stringer, W.; Whipp, B.J. Normal Values. Principles of Exercise Testing and Interpretation, 4th ed.; Weinberg, R., Ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 160–182. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. Available online: https://www.R-project.org/ (accessed on 10 January 2022).
- Guazzi, M.; Palermo, P.; Pontone, G.; Susini, F.; Agostoni, P. Synergistic efficacy of enalapril and losartan on exercise performance and oxygen consumption at peak exercise in congestive heart failure. Am. J. Cardiol. 1999, 84, 1038–1043. [Google Scholar] [CrossRef]
- Lewis, G.D.; Shah, R.; Shahzad, K.; Camuso, J.M.; Pappagianopoulos, P.P.; Hung, J.; Tawakol, A.; Gerszten, R.E.; Systrom, D.M.; Bloch, K.D.; et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 2007, 116, 1555–1562. [Google Scholar] [CrossRef]
- Swank, A.M.; Horton, J.; Fleg, J.L.; Fonarow, G.C.; Keteyian, S.; Goldberg, L.; Wolfel, G.; Handberg, E.M.; Bensimhon, D.; Illiou, M.C.; et al. Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: Results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ. Heart Fail. 2012, 5, 579–585. [Google Scholar] [CrossRef]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, R.; Sadeghian, M.; Nazarieh, M.; Niederseer, D.; Schmied, C. Performance of Heart Failure Patients with Severely Reduced Ejection Fraction during Cardiopulmonary Exercise Testing on Treadmill and Cycle Ergometer; Similarities and Differences. Int. J. Environ. Res. Public Health 2021, 18, 12958. [Google Scholar] [CrossRef]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Kotsia, A.; Michalis, L.K.; Naka, K.K. 6-minute walking test: A useful tool in the management of heart failure patients. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1753944719870084. [Google Scholar] [CrossRef]
- Beltran, P.; Palau, P.; Dominguez, E.; Faraudo, M.; Nunez, E.; Guri, O.; Mollar, A.; Sanchis, J.; Bayes-Genis, A.; Nunez, J. Sacubitril/valsartan and short-term changes in the 6-minute walk test: A pilot study. Int. J. Cardiol. 2018, 252, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Romano, G.; Di Franco, A.; Caccamo, G.; Nugara, C.; Ajello, L.; Storniolo, S.; Sarullo, S.; Agnese, V.; Giallauria, F.; et al. Early Effects of Sacubitril/Valsartan on Exercise Tolerance in Patients with Heart Failure with Reduced Ejection Fraction. J. Clin. Med. 2019, 8, 262. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hussain, R.I.; Comin-Colet, J.; Dosantos, R.; Ferber, P.; Jaarsma, T.; Edelmann, F. OUTSTEP-HF: Randomised controlled trial comparing short-term effects of sacubitril/valsartan versus enalapril on daily physical activity in patients with chronic heart failure with reduced ejection fraction. Eur. J. Heart Fail. 2021, 23, 127–135. [Google Scholar] [CrossRef] [PubMed]
- von Haehling, S.; Arzt, M.; Doehner, W.; Edelmann, F.; Evertz, R.; Ebner, N.; Herrmann-Lingen, C.; Garfias Macedo, T.; Koziolek, M.; Noutsias, M.; et al. Improving exercise capacity and quality of life using non-invasive heart failure treatments: Evidence from clinical trials. Eur. J. Heart Fail. 2021, 23, 92–113. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Duarte, K.; Graves, T.L.; Zile, M.R.; Abraham, W.T.; Weaver, F.A.; Lindenfeld, J.; Zannad, F. Natriuretic Peptides, 6-Min Walk Test, and Quality-of-Life Questionnaires as Clinically Meaningful Endpoints in HF Trials. J. Am. Coll. Cardiol. 2016, 68, 2690–2707. [Google Scholar] [CrossRef]
Variables | Sacubitril/Valsartan (n = 12) | Control Group (n = 13) | p Value |
---|---|---|---|
Demographic and clinical data | |||
Age (years) | 66.1 ± 7.9 | 60.8 ± 7.4 | 0.1 |
Female Gender N (%) | 2 (16.7) | 2 (15.4) | 0.9 |
BMI (Kg/m2) | 28.4 ± 4.3 | 27.4 ± 3.0 | 0.5 |
SBP (mmHg) | 110 (110–130) | 115 (110–125) | 0.8 |
HR (beats/min) | 70 (60–74) | 60.5 (57.2–68.5) | 0.2 |
NYHA Class | |||
2 | 8 (66.7) | 9 (69.2) | 0.6 |
3 | 4 (33.3) | 3 (23.1) | |
4 | 0 | 1 (7.7) | |
Laboratory data | |||
Haemoglobin (g/dL) | 14.7 (11.8–15.5) | 14.3 (10.6–14.8) | 0.3 |
Fasting glucose (mg/dL) | 110 (92–121) | 103 (93.5–111.5) | 1 |
Creatinine (mg/dL) | 1 (0.9–1.19) | 1.06 (0.94–1.21) | 0.7 |
Potassium (mEq/L) | 4.36 ± 0.8 | 4.4 ± 0.74 | 0.8 |
eGFR (mL/min) | 70.1 ± 20.6 | 72.5 ± 32.0 | 0.8 |
LDL (mg/dL) | 86.4 ± 32.0 | 87.5 ± 33.4 | 0.9 |
Tryglicerides (mg/dL) | 156.5 ± 74.3 | 104.7 ± 36.7 | 0.1 |
Comorbidities | |||
Coronary artery disease N (%) | 8 (66.7) | 5 (38.5) | 0.2 |
Primitive dilated cardiomyopathy N (%) | 3 (25) | 6 (46.2) | 0.4 |
Hypertension N (%) | 10 (83.3) | 9 (69.2) | 0.6 |
Dyslipidemia N (%) | 12 (100) | 11 (84.6) | 0.5 |
Atrial fibrillation N (%) | 5 (41.7) | 2 (15.4) | 0.2 |
Diabetes N (%) | 5 (41.7) | 2 (15.4) | 0.2 |
Chronic Kidney Disease N (%) | 6 (50) | 8 (61.5) | 0.7 |
Chronic obstructive pulmonary disease N (%) | 0 | 5 (38.5) | 0.04 |
Thyroid disorders N (%) | 4 (33.3) | 2 (15.4) | 0.4 |
Previous implantation of ICD/CRT N (%) | 11 (91.7) | 10 (76.9) | 0.6 |
Medications N (%) | |||
β-blockers (bisoprolol) | 12 (100) | 13 (100) | - |
Furosemide | 11 (91.7) | 12 (92.3) | 0.95 |
Mineralcorticoid receptor antagonist (MRA) | 11 (91.7) | 12 (92.3) | 0.95 |
Medications dose (mg) | |||
Bisoprolol | 2.5 (2.5–3.75) | 2.5 (1.25–4.37) | 0.79 |
Furosemide | 50 (25–68.7) | 50 (25–75) | 0.84 |
MRA | 37.5 (25–50) | 25 (25–50) | 0.63 |
Variables | Sacubitril/Valsartan (n = 12) | Control Group (n = 13) | p Value |
---|---|---|---|
Echocardiographic parameters | |||
LVEF (%) | 30.7 ± 4.0 | 32.3 ± 5.1 | 0.4 |
LVEDVi (mL/m2) | 116.0 ± 36.9 | 129.6 ± 32.4 | 0.4 |
LVESVi (mL/m2) | 80.6 ± 27.9 | 86.0 ± 33.7 | 0.7 |
TAPSE (mm) | 17.5 (16.2–21.2) | 18 (16–21.5) | 0.8 |
sPAP (mmHg) | 32.1 ± 8.7 | 39.2 ± 9.6 | 0.1 |
LAVi (mL/m2) | 44.2 ± 15.4 | 46.8 ± 15.6 | 0.7 |
E/e’ ratio | 16.0 ± 7.5 | 15.2 ± 9.5 | 0.9 |
Cardiopulmonary exercise test data | |||
PeakVO2 (mL/kg/min) | 12.2 ± 4.6 | 13.1 ± 4.2 | 0.6 |
VE/VCO2 slope | 35.4 ± 7.4 | 34.6 ± 9.1 | 0.8 |
Predicted peak VO2, % | 61.5 ± 25.7 | 59.2 ± 20.7 | 0.8 |
Variables | Baseline | Follow-Up | p Value |
---|---|---|---|
PRIMARY OUTCOME | |||
PeakVO2 (mL/kg/min) | |||
Sac/Val | 12.2 ± 4.6 | 12.7 ± 3.3 | 0.49 |
Control group | 13.1 ± 4.2 | 13.0 ± 4.2 | |
SECONDARY OUTCOMES | |||
VE/VCO2 slope | |||
Sac/Val | 35.4 ± 7.4 | 37.2 ± 13.1 | 0.49 |
Control group | 34.6 ± 9.1 | 34.0 ± 7.3 | |
Predicted VO2 peak (%) | |||
Sac/Val | 61.5 ± 25.7 | 67.0 ± 23.7 | 0.53 |
Control group | 59.2 ± 20.7 | 61.1 ± 23.9 | |
LVEF (%) | |||
Sac/Val | 30.7 ± 4.0 | 36.1 ± 4.8 | 0.06 |
Control group | 32.3 ± 5.1 | 33.1 ± 7.8 | |
LVEDVi (mL/m2) | |||
Sac/Val | 116.0 ± 36.9 | 80.3 ± 19.1 | 0.09 |
Control group | 129.6 ± 32.4 | 125.0 ± 37.2 | |
LVESVi (mL/m2) | |||
Sac/Val | 80.6 ± 27.9 | 51.5 ± 15.8 | 0.08 |
Control group | 86.0 ± 33.7 | 89.2 ± 31.0 | |
E/e’ ratio | |||
Sac/Val | 16.0 ± 7.5 | 13.0 ± 10.0 | 0.07 |
Control group | 15.2 ± 9.5 | 13.9 ± 10.0 | |
LAVi (ml/m2) | |||
Sac/Val | 44.2 ± 15.4 | 42.8 ± 5.3 | 0.7 |
Control group | 46.8 ± 15.6 | 43.8 ± 14.7 | |
TAPSE (mm) | |||
Sac/Val | 17.5 (16.2–21.2) | 20 (19–22) | 0.4 |
Control group | 18 (16.0–21.5) | 20.5 (17.8–22.2) | |
sPAP (mmHg) | |||
Sac/Val | 32.1 ± 8.7 | 33.9 ± 10.4 | 0.17 |
Control group | 39.2 ± 9.6 | 36.7 ± 12.3 | |
SBP (mmHg) | |||
Sac/Val | 110 (110–130) | 100 (925–110) | 0.07 |
Control group | 115 (110–125) | 110 (100–125) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campanile, A.; Visco, V.; De Carlo, S.; Ferruzzi, G.J.; Mancusi, C.; Izzo, C.; Mongiello, F.; Di Pietro, P.; Virtuoso, N.; Ravera, A.; et al. Sacubitril/Valsartan vs. Standard Medical Therapy on Exercise Capacity in HFrEF Patients. Life 2023, 13, 1174. https://doi.org/10.3390/life13051174
Campanile A, Visco V, De Carlo S, Ferruzzi GJ, Mancusi C, Izzo C, Mongiello F, Di Pietro P, Virtuoso N, Ravera A, et al. Sacubitril/Valsartan vs. Standard Medical Therapy on Exercise Capacity in HFrEF Patients. Life. 2023; 13(5):1174. https://doi.org/10.3390/life13051174
Chicago/Turabian StyleCampanile, Alfonso, Valeria Visco, Stefania De Carlo, Germano Junior Ferruzzi, Costantino Mancusi, Carmine Izzo, Felice Mongiello, Paola Di Pietro, Nicola Virtuoso, Amelia Ravera, and et al. 2023. "Sacubitril/Valsartan vs. Standard Medical Therapy on Exercise Capacity in HFrEF Patients" Life 13, no. 5: 1174. https://doi.org/10.3390/life13051174
APA StyleCampanile, A., Visco, V., De Carlo, S., Ferruzzi, G. J., Mancusi, C., Izzo, C., Mongiello, F., Di Pietro, P., Virtuoso, N., Ravera, A., Bonadies, D., Vecchione, C., & Ciccarelli, M. (2023). Sacubitril/Valsartan vs. Standard Medical Therapy on Exercise Capacity in HFrEF Patients. Life, 13(5), 1174. https://doi.org/10.3390/life13051174