Review of Feeding Systems Affecting Production, Carcass Attributes, and Meat Quality of Ovine and Caprine Species
Abstract
:1. Introduction
2. Materials and Methods
3. Feeding Systems of Small Ruminants Affect the Growth Rate and Carcass Attributes
Items | Animals | Animals 1/Duration (Day) | Treatments | Zootechnical Performances 2 | References |
---|---|---|---|---|---|
2-month-old male Polish Merino lambs | 18/60 | Concentrate-fed, natural pasture grazing | ↓SLW, CCW, ADG | [4] | |
Sheep | 5.7-month-old male Norduz lambs | 15/84 | Concentrate-fed, natural pasture grazing | ↓SLW, HCW, CCW, DP | [7] |
2-month-old male Romane lambs | 12/74 | Concentrate-fed, alfalfa grassland grazing | =SLW, CCW, ADG | [24] | |
Newborn Churra Tensina light lambs | 19/— | Concentrate-fed, permanent pasture grazing | ↓SLW, HCW, DP | [34] | |
3-month-old Sunit sheep | 10/270 | Stall-feeding, natural pasture grazing | ↓SLW, HCW | [35] | |
4-month-old female Hulunbui lambs | 22/120 | Concentrate-fed, pasture grazing | ↓SLW, HCW, DP | [36] | |
3-month-old Mongolia sheep | 10/270 | Concentrate-fed, natural pasture grazing | ↓SLW, HCW | [38] | |
6-month-old male Barbarine lambs | 6/90 | Stall-feeding, grazing natural pastures improved by lucerne | =HCW, CCW, DP; ↑SLW, ADG | [47] | |
3-month-old male Tan lambs | 10/120 | Concentrate-fed, time-limited grazing natural grassland supplemented with concentrate, grazing natural grassland supplemented with concentrate | =ADG; ↑HCW with time-limited grazing grassland plus supplementary ↑ADG, HCW with supplemental grazing | [31] | |
2-month-old Texel lambs | 6/104 | Concentrate-fed, Brachiaria pasture grazing, grazing Brachiaria pastures supplemented with concentrate | ↓SLW, HCW, CCW, DP with pasture grazing; =SLW, HCW, CCW, DP with supplemental grazing | [39] | |
6-month-old male Kheri lambs | 20/90 | Concentrate-fed, pasture grazing, grazing pastures supplemented with concentrate | ↓ADG, SLW, HCW, DP with pasture grazing; =SLW, HCW, DP; ↑ADG with supplemental grazing | [37] | |
6-month-old male Barbarine lambs | 12/240 | Concentrate-fed, grazing native pastures supplemented concentrates | =SLW, HCW, CCW, ADG; ↓DP | [55] | |
Goats | about 12-month-old Black Bengal goat | 6/219 | Stall-feeding, time-limited grazing natural pasture, natural pasture grazing | =SLW; ↓HCW, DP with time-limited grazing; =SLW; ↓HCW, DP with pasture grazing | [51] |
3 month-old goats | 16/12 | Concentrate-fed, natural pasture grazing | =ADG; ↓HCW, CCW, DP | [52] | |
4 month-old Albas White Cashmere kids | 30/60 | Concentrate-fed, natural pasture grazing | ↓ADG | [56] | |
2.9 month-old male Creole kids | 60/— | Stall-feeding, irrigated pasture grazing | =HCW, DP; ↓SLW, ADG | [53] | |
3 month-old Chongming white goat | 6/300 | Concentrate-fed, grazing pastures supplemented with concentrate | =HCW; ↑SLW | [7] |
4. Feeding Systems of Small Ruminants Affect Organoleptic Quality Attributes of Meat
4.1. Meat Color of Longissimus Muscle
Items | Animals | Animals 1/Duration (Day) | Treatments | Histologic Tissue | Zootechnical Performances 2 | References |
---|---|---|---|---|---|---|
Sheep | 5.7-month-old male Norduz lambs | 15/84 | Concentrate-fed, natural pasture grazing | Longissimus thoracis | ↓L*, b*; =a* | [7] |
4-month-old Hulunbui female lambs | 22/120 | Concentrate-fed, pasture grazing | Longissimus dorsi | ↓L*, a*; =b* | [36] | |
2-month-old male Romane lambs | 12/74 | Concentrate-fed, alfalfa grassland grazing | Longissimus thoracis et lumborum | =L*, a*, b* | [24] | |
6-month-old male Barbarine lambs | 6/90 | Stall-feeding, grazing natural pastures improved by lucerne | Longissimus lumborum | =L*, a*, b* | [47] | |
3-month-old male Tan lambs | 10/120 | Concentrate-fed, natural grassland grazing, time-limited grazing natural grassland supplemented with concentrate, grazing natural grassland supplemented with concentrate | Longissimus thoracis | ↓L*, b*; =a* with pasture grazing; =L*, a*, ↓ b* time-limited grazing grassland plus supplementary; =L*, a*, b* with supplemental grazing | [27] | |
6-month-old male Barbarine lambs | 12/240 | Concentrate-fed, grazing native pastures supplemented concentrates | Longissimus thoracis | =L*, a*, b* | [55] | |
3-month-old male Chios lamb | 17/60 | Concentrate-fed, grazing under olive trees plus supplementation | Longissimus dorsi | =L*, a*, b* | [66] | |
Goats | 2.9-month-old male Creole goats | 60/— | Stall-feeding, irrigated pasture grazing | Longissimus | =L*, b*; ↓a* | [56] |
3-month-old Chongming white goats | 6/300 | Concentrate-fed, grazing pastures supplemented with concentrate | Longissimus dorsi | ↑L*, a*, b* | [53] |
4.2. Meat Tenderness and Juiciness of Longissimus Muscle
Items | Animals | Animals 1/Duration (Day) | Treatments | Histologic Tissue | Zootechnical Performances 2 | References |
---|---|---|---|---|---|---|
Sheep | 5.7-month-old male Norduz lambs | 15/84 | Concentrate-fed, natural pasture grazing | Longissimus thoracis | =WHC | [7] |
37-day-old male Ile de France lambs | 16/— | Concentrate-fed, permanent pasture grazing | Longissimus muscle | ↓Tenderness, Juiciness | [73] | |
3-month-old Mongolian lambs | 12/180 | Concentrate-fed, natural pasture grazing | Longissimus thoracic | ↑WBSF | [72] | |
4-month-old male Tibetan lambs | 9/120 | Concentrate-fed, desertification grassland grazing | Longissimus lumborum | ↑WBSF, CL, DL | [70] | |
3-month-old male Tan lambs | 10/120 | Concentrate-fed, natural grassland grazing, time-limited grazing natural grassland supplemented with concentrate, grazing natural grassland supplemented with concentrate | Longissimus thoracis | ↑CL with pasture grazing; =CL time-limited grazing grassland plus supplementary; =CL with supplemental grazing | [27] | |
4-month-old Hulunbui female lambs | 22/120 | Concentrate-fed, pasture grazing | Longissimus dorsi | ↑WBSF; ↓WHC; =DL | [36] | |
6-month-old male Barbarine lambs | 6/90 | Stall-feeding, grazing natural pastures improved by lucerne | Longissimus lumborum | ↑Tenderness, Juiciness | [47] | |
3-month-old male Chios lambs | 17/60 | Concentrate-fed, grazing under olive trees plus supplementation | Longissimus dorsi | =CL | [66] | |
2-month-old Texel lambs | 6/104 | Concentrate-fed, grazing Brachiaria pastures supplemented with concentrate | Longissimus lumborum | =Tenderness, Juiciness | [39] | |
Goat | Newborn Tibetan goats | 25/365 | Stall-feeding, natural grass grazing | Longissimus dorsi | ↓WBSF; ↑WS, CMP | [77] |
4-month-old Cashmere goats | 20/104 | Concentrate-fed, grazing natural pastures supplemented concentrates | Longissimus dorsi | =WL, DL, CL | [29] | |
3-month-old Chongming white goats | 6/300 | Concentrate-fed, grazing pastures supplemented with concentrate | Longissimus dorsi | =Tenderness | [53] |
4.3. Meat Flavor of Longissimus Muscle
Items | Animals | Animals 1/Duration (Day) | Treatments | Histologic Section | Zootechnical Performances 2 | References |
---|---|---|---|---|---|---|
Sheep | Male Suffolk × ‘Mule’ hybrid lambs | 20/— | Concentrate-fed, grassland grazing | longissimus thoracis et lumborum | ↑flavour | [78] |
4-month-old male Tibetan sheep | 9/120 | Concentrate-fed, desertification grassland grazing | longissimus lumborum | ↓Benzyl alcohol, alcohols, 1-Heptanol, ↑Decanoic acid, heptanoic acid | [70] | |
4-month-old Hulunbui female lambs | 22/120 | Concentrate-fed, pasture grazing | longissimus dorsi | ↓EOA, MOA, MNA; ↑MP; =MI | [36] | |
3-month-old male Tan lambs | 10/120 | Concentrate-fed, natural grassland grazing, time-limited grazing natural grassland supplemented with concentrate, grazing natural grassland supplemented with concentrate | Longissimus thoracis | ↓Aldehydes; ↑alcohols, ketones with pasture grazing; ↓Aldehydes; ↑alcohols, ketones with time-limited grazing grassland plus supplementary; ↓Aldehydes; ↑alcohols, ketones with supplemental grazing | [27] | |
6-month-old male Barbarine lambs | 6/90 | Stall-feeding, grazing natural pastures improved by lucerne | Longissimus thoracis | ↑flavour | [47] | |
2-month-old Texel lambs | 6/104 | Concentrate-fed, grazing Brachiaria pastures supplemented with concentrate | Longissimus lumborum | =flavour | [39] | |
Goats | Newborn Wulate goats | 6/365 | Stall-feeding, pasture grazing | Longissimus dorsi | ↑Hexanal, nonanal, 1-pentanol, 1-heptanol, 1-octanol, 2,3-octanedione; ↓methyl oleate | [86] |
Newborn Black goats | 3/365 | Stall-feeding, pasture grazing | Longissimus lumborum | ↑Isoleucine, leucine | [87] | |
3-month-old Chongming white goat | 6/300 | Concentrate-fed, grazing pastures supplemented with concentrate | Longissimus dorsi | =flavour | [53] |
5. Feeding Systems of Small Ruminants Affects the Nutritional Quality Attributes of Meat
5.1. Chemical Composition of Longissimus Muscle
Items | Animals | Animals 1/Duration (Day) | Treatments | Histologic Section | Zootechnical Performances 2 | References |
---|---|---|---|---|---|---|
Sheep | 5.7-month-old male Norduz lambs | 15/84 | Concentrate-fed, natural pasture grazing | Longissimus thoracis | =ash; ↑moisture; ↓protein, IMF | [7] |
3-month-old Mongolian lambs | 12/180 | Concentrate-fed, natural pasture grazing | Longissimus thoracic | =protein; ↓IMF, ash | [72] | |
3-month-old Sunit sheep | 10/270 | Stall-feeding, natural pasture grazing | Longissimus dorsi | =moisture, protein, ash; ↓IMF | [35] | |
4 month-old male Tibetan sheep | 9/120 | Concentrate-fed, desertification grassland grazing | Longissimus lumborum | =moisture, ash; ↓IMF, protein | [70] | |
4-month-old Jezersko–Solčava lambs | 8/— | Concentrate-fed, mountain pasture grazing | Longissimus dorsi | ↓IMF | [91] | |
3-month-old male Tan lambs | 10/120 | Concentrate-fed, natural grassland grazing, time-limited grazing natural grassland supplemented with concentrate, grazing natural grassland supplemented with concentrate | Longissimus thoracis | =moisture, ash; ↓IMF; ↑protein with pasture grazing =moisture, IMF, ash; ↑protein with time-limited grazing grassland plus supplementary; =moisture, IMF, ash; ↑protein with supplemental grazing | [27] | |
3-month-old male Tan lambs | 10/120 | Concentrate-fed, natural grassland grazing, time-limited grazing natural grassland supplemented with concentrate, grazing natural grassland supplemented with concentrate | Longissimus dorsi | ↓IMF with pasture grazing =IMF with time-limited grazing grassland plus supplementary; =IMF with supplemental grazing | [31] | |
6-month-old male Barbarine lambs | 12/240 | Concentrate-fed, grazing native pastures supplemented concentrates | Longissimus thoracis | =IMF | [55] | |
Goats | 2.9-month-old male Creole goat | 60/— | Stall-feeding, irrigated pasture grazing | Longissimus | =protein, ash; ↓IMF; ↑moisture | [56] |
Newborn Tibetan goats | 25/365 | Stall-feeding, natural pasture grazing | Longissimus dorsi | =protein; ↓IMF | [77] | |
6.3-month-old male Barbari kids | 6/110 | Concentrate-fed, grazing supplemented with concentrates | Longissimus dorsi | =moisture, protein, IMF, ash | [28] | |
4-month-old Cashmere goats | 20/104 | Concentrate-fed, grazing plus supplementation with concentrate | Longissimus dorsi | =moisture, protein, IMF, ash | [29] |
5.2. Fatty Acid Content in the Longissimus Muscle
Items | Animals | Animals 1/Duration (Day) | Treatments | Histologic Section | Zootechnical Performances 2 | References |
---|---|---|---|---|---|---|
Sheep | 3-month-old Sunit sheep | 10/270 | Stall-feeding, natural pasture grazing | Longissimus dorsi | =SFA, MUFA, PUFA, PUFA/SFA; ↑ n-3 PUFA; ↓ n-6 PUFA, n-6/n-3 =C12:0, C14:0, C16:0, C18:1n-9; ↑ C18:3n-3, C20:5n-3, C22:6n-3, CLAs; ↓ C18:2n-6, C20:4n-6 | [35] |
Newborn Churra Tensina sheep | 24/— | Stall-feeding, natural pasture grazing | Longissimus dorsi | =SFA, MUFA, PUFA, n-6 PUFA, PUFA/SFA, n-6/n-3; ↑ n-3 PUFA =C12:0, C14:0, C16:0, C18:1n-9, C20:5n-3, C22:6n-3; ↑ CLA | [110] | |
4-month-old Tan sheep | 12/60 | Concentrate-fed, pasture grazing | Longissimus thoracis | =MUFA; ↑ PUFA, n-3PUFA, n-6 PUFA; ↓SFA, n-6/n-3 =C12:0, C14:0, C18:3n6; ↑ C18:2n-6, C18:3n-3, C20:4n-6, C20:5n-3, C22:6n-3; ↓ C16:0, C18:1n-9 | [98] | |
0.5-month-old Ile de France lambs | 20/93 | concentrate-fed, natural pasture grazing | Longissimus dorsi | =MUFA; ↑ PUFA, n-6 PUFA, n-3 PUFA, PUFA/SFA; ↓ SFA, n-6/n-3 ↑ C18:2n-6, C18:3n-3, C18:3n-6, C20:4n-6, C20:5n-3, C22:5n-3, C22:6n-3, CLAs; ↓ C12:0, C14:0, C16:0, C18:1n-9 | [113] | |
3-month-old male Tan lambs | 10/120 | Concentrate-fed, natural grassland grazing, time-limited grazing natural grassland supplemented with concentrate, grazing natural grassland supplemented with concentrate | Longissimus dorsi | =SFA; ↑ PUFA, n-3 PUFA, n-6 PUFA; ↓ MUFA, n-6/n-3 =C20:4n6, CLAs; ↑ C18:2n-6, C18:3n-6, C18:3n-3, C20:5n-3; ↓ C12:0, C14:0, C16:0, C18:1n-9 with pasture grazing | [31] | |
=SFA, MUFA; ↑ PUFA, n-3 PUFA, n-6 PUFA; ↓ n-6/n-3 =C18:1n-9, C20:4n-6, CLAs; ↑ C18:3n-6, C18:3n-3, C20:5n-3; ↓ C12:0, C14:0, C16:0 with supplemental grazing | ||||||
=SFA, MUFA, PUFA, n-6 PUFA; ↑ n-3 PUFA; ↓ n-6/n-3 =C12:0, C14:0, C16:0, C18:1n-9, C18:3n-6, C20:4n-6; ↑ C18:3n-3, C20:5n-3 with time-limited grazing grassland plus supplementary | ||||||
6-month-old male Barbarine lambs | 12/240 | Concentrate-fed, grazing native pastures supplemented concentrates | Longissimus thoracis | =SFA, MUFA, PUFA, n-6 PUFA, n-3 PUFA; n-6/n-3; ↑ PUFA/SFA =C14:0, C16:0, C18:1n-9, C18:2n-6, C18:3n-3, C20:4n-6; ↑ C12:0, C20:5n-3, C22:6n-3; ↓ C18:3n-6 | [55] | |
4-month-old male Tan lambs | 13/83 | Concentrate-fed, natural grassland grazing, time-limited grazing natural grassland plus supplementation | Longissimus dorsi | ↑PUFA, PUFA/SFA; ↓SFA, MUFA with pasture grazing | [103] | |
=PUFA; ↑ PUFA/SFA; ↓SFA, MUFA with time-limited grazing grassland plus supplementary | ||||||
5.4-month-old male Romane lambs | 12/101 | Concentrate-fed, grazed alfalfa grazing, grazed alfalfa plus supplementation | Longissimus thoracis | =SFA, MUFA, n-6 PUFA, PUFA/SFA; ↑ PUFA, n-3 PUFA; ↓ n-6/n-3 =C12:0, C14:0, C16:0; C18:1n-9; ↑ C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3, CLAs with pasture grazing | [104] | |
=SFA, PUFA; ↑ n-3 PUFA, PUFA/SFA; ↓ MUFA, n-6 PUFA, n-6/n-3 =C12:0, C14:0, C16:0; ↑ C18:3n3, C20:5n-3, C22:5n-3, C22:6n-3, CLAs; ↓ C18:1n-9 with supplemental grazing | ||||||
Goats | 4-month-old Albas White Cashmere kids | 30/60 | Concentrate-fed, natural pasture grazing | Longissimus thoracis | =SFA, n-6 PUFA; ↑ PUFA, n-3 PUFA, PUFA/SFA; ↓ MUFA, n-6/n-3 =C12:0, C20:4n-6; ↑ C18:2n-6, C18:3n-3, C18:3n-6, C20:5n-3, C22:6n-3; ↓ C14:0, C16:0 | [52] |
Newborn black kids | 3/365 | Stall-feeding, pasture grazing | Longissimus lumborum | =MUFA, PUFA, n-3 PUFA; ↑ n-6 PUFA; ↓ SFA =C18:1n-9; C18:2n-6, C18:3n-3, C18:3n-6, C20:4n-6; ↓ C12:0, C14:0, C16:0, C20:5n-3 | [87] | |
4-month-old Cashmere kids | 20/114 | Concentrate-fed, grazing natural pastures supplemented concentrates | Longissimus thoracis | =SFA, PUFA, n-3 PUFA, n-6 PUFA, PUFA/SFA, n-6/n-3;↓ MUFA =C12:0, C14:0, C16:0, C18:2n-6, C18:3n-6, C20:4n-6, C18:3n-3, C20:5n3, ↓ C18:1n-9 | [29] | |
3-month-old Chongming white kids | 14/— | Concentrate-fed, grazing pastures plus supplemented concentrate | Longissimus dorsi | =SFA, MUFA, PUFA, PUFA/SFA =C14:0, C16:0; ↑ CLA | [111] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunha, L.C.M.; Monteiro, M.L.G.; Lorenzo, J.M.; Munekata, P.E.S.; Muchenje, V.; de Carvalho, F.A.L.; Conte-Junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Luo, Y.L.; Yang, J.; Jin, Z.M.; Liu, X.W.; Wang, B.H.; Jin, Y. Study on the eating quality and fatty acid composition in different anatomical locations of Sunit sheep. Food Ind. 2015, 36, 294–297. [Google Scholar]
- FAOSTAT. Production Statistics of the Food Agriculture Organization of The United States. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 June 2022).
- Gabryszuk, M.; Kuźnicka, E.; Horbańczuk, K.; Oprządek, J. Effects of housing systems and the diet supplements on the slaughter value and concentration of mineral elements in the loin muscle of lambs. Asian Australas. J. Anim. Sci. 2014, 27, 726–732. [Google Scholar] [CrossRef]
- Sosnicki, A.A.; Newman, S. The support of meat value chains by genetic technologies. Meat Sci. 2010, 86, 129–137. [Google Scholar] [CrossRef]
- Wang, J.S.; Xu, Z.Z.; Zhang, H.B.; Wang, Y.Y.; Liu, X.X.; Wang, Q.; Xue, J.L.; Zhao, Y.; Yang, S.M. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling. Meat Sci. 2021, 173, 108374. [Google Scholar] [CrossRef]
- Karaca, S.; Yılmaz, A.; Kor, A.; Bingöl, M.; Cavidoğlu, İ.; Ser, G. The effect of feeding system on slaughter-carcass characteristics, meat quality, and fatty acid composition of lambs. Arch. Anim. Breed. 2016, 59, 121–129. [Google Scholar] [CrossRef]
- Cabiddu, A.; Peratoner, G.; Valenti, B.; Monteils, V.; Martin, B.; Coppa, M. A quantitative review of on-farm feeding practices to enhance the quality of grassland-based ruminant dairy and meat products. Animal 2022, 16, 100375. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. The effect of feeding systems on the characteristics of products from small ruminants. Small Rumin. Res. 2011, 101, 140–149. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D.; Singh, T.K.; Young, O.A.; Warner, R.D. Sheep meat flavor and the effect of different feeding systems: A review. J. Agric. Food Chem. 2013, 61, 3561–3579. [Google Scholar] [CrossRef]
- Becker, T. Consumer perception of fresh meat quality: A framework for analysis. Brit. Food J. 2000, 102, 158–176. [Google Scholar] [CrossRef]
- Velasco, S.; Cañeque, V.; Lauzurica, S.; Pérez, C.; Huidobro, F. Effect of different feeds on meat quality and fatty acid composition of lambs fattened at pasture. Meat Sci. 2004, 66, 457–465. [Google Scholar] [CrossRef]
- Scerra, M.; Caparra, P.; Foti, F.; Galofaro, V.; Sinatra, M.C.; Scerra, V. Influence of ewe feeding systems on fatty acid composition of suckling lambs. Meat Sci. 2007, 76, 390–394. [Google Scholar] [CrossRef]
- Nuernberg, K.; Fischer, A.; Nuernberg, G.; Ender, K.; Dannenberger, D. Meat quality and fatty acid composition of lipids in muscle and fatty tissue of Skudde lambs fed grass versus concentrate. Small Rumin. Res. 2008, 74, 279–283. [Google Scholar] [CrossRef]
- Demirel, G.; Wachira, A.M.; Sinclair, L.A.; Wilkinson, R.G.; Wood, J.D.; Enser, M. Effects of dietary n-3 polyunsaturated fatty acids, breed and dietary vitamin E on the fatty acids of lamb muscle, liver and adipose tissue. Brit. J. Nutr. 2004, 91, 551–565. [Google Scholar] [CrossRef]
- Scollan, N.D.; Choi, N.J.; Kurt, E.; Fisher, A.V.; Enser, M.; Wood, J.D. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Brit. J. Nutr. 2001, 85, 115–124. [Google Scholar] [CrossRef]
- Wood, J.; Enser, M. Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. Brit. J. Nutr. 1997, 78, 49–60. [Google Scholar] [CrossRef]
- Vasta, V.; Pagano, R.I.; Luciano, G.; Scerra, M.; Caparra, P.; Foti, F.; Cilione, C.; Biondi, L.; Priolo, A.; Avondo, M. Effect of morning vs. afternoon grazing on intramuscular fatty acid composition in lamb. Meat Sci. 2012, 90, 93–98. [Google Scholar] [CrossRef]
- Arvizu, R.R.; Dominguez, I.A.; Rubio, M.S.; Borquez, J.L.; Pinos-Rodriguez, J.M.; Gonzalez, M.; Jaramillo, G. Effects of genotype, level of supplementation, and organic chromium on growth performance, carcass, and meat traits grazing lambs. Meat Sci. 2011, 88, 404–408. [Google Scholar] [CrossRef]
- Aguayo-Ulloa, L.A.; Miranda-de la Lama, G.C.; Pascual-Alonso, M.; Fuchs, K.; Olleta, J.L.; Campo, M.M.; Alierta, S.; Villarroel, M.; María, G.A. Effect of feeding regime during fifinishing on lamb welfare, production performance and meat quality. Small Rumin. Res. 2013, 111, 147–156. [Google Scholar] [CrossRef]
- Zervas, G.; Hadjigeorgiou, I.; Zabeli, G.; Koutsotolis, K.; Tsiala, C. Comparison of a grazing-with an indoor-system of lamb fattening in Greece. Liv. Prod. 1999, 61, 245–251. [Google Scholar] [CrossRef]
- Armero, E.; Falagán, A. A comparison of growth, carcass traits, and tissue composition of ‘Segureña’lambs raised either in an extensive production system or an intensive one. Anim. Prod. Sci. 2015, 55, 804–811. [Google Scholar] [CrossRef]
- Crane, A.R.; Redden, R.R.; Swanson, K.C.; Howard, B.M.; Frick, T.J.; Maddock-Carlin, K.R.; Schauer, C.S. Effects of dried distiller’s grains and lasalocid inclusion on feedlot lamb growth, carcass traits, nutrient digestibility, ruminal fluid volatile fatty acid concentrations, and ruminal hydrogen sulfide concentration. J. Anim. Sci. 2017, 95, 3198–3205. [Google Scholar] [PubMed]
- Devincenzi, T.; Prunier, A.; Meteau, K.; Prache, S. How does barley supplementation in lambs grazing alfalfa affect meat sensory quality and authentication? Animal 2019, 13, 427–434. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Richardson, R.I.; Sheard, P.R. Manipulating meat quality and composition. Proc. Nutr. Soc. 1999, 58, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.C.; Wiklund, E. Game and venison—Meat for the modern consumer. Meat Sci. 2006, 74, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, Z.; Chen, Y.; Liu, X.; Liu, K.; Zhang, Y.; Luo, H. Carcass traits, meat quality, and volatile compounds of lamb meat from different restricted grazing time and indoor supplementary feeding systems. Foods 2021, 10, 2822. [Google Scholar] [CrossRef]
- Dutta, T.K.; Das, A.K.; Tripathi, P.; Dular, R.K. Effect of concentrate supplementation on growth, nutrient availability, carcass traits and meat quality in Barbari kids reared under semi-intensive and intensive systems. Anim. Nutr. Feed Technol. 2020, 20, 267–278. [Google Scholar] [CrossRef]
- Yu, Y. Effects and Mechanism of Three Feeding Modes on Fattening and Slaughter Performance, Meat Quality and Fat Deposition in Body Tissues of Cashemere Goats. Master’s Thesis, Neimenggu Agricultural University, Hohhot, China, 2020. [Google Scholar]
- Xue, D.; Chen, H.; Zhao, X.; Xu, S.; Hu, L.; Xu, T.; Jiang, L.; Zhan, W. Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai-Tibetan Plateau. Syst. Appl. Microbiol. 2017, 40, 227–236. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Luo, H.; Liu, X.; Liu, K. Influence of restricted grazing time systems on productive performance and fatty acid composition of longissimus dorsi in growing lambs. Asian Austral. J. Anim. Sci. 2015, 28, 1105–1115. [Google Scholar] [CrossRef]
- Clinquart, A.; Ellies-Oury, M.P.; Hocquette, J.F.; Guillier, L.; Santé-Lhoutellier, V.; Prache, S. Review: On-farm and processing factors affecting bovine carcass and meat quality. Animal 2022, 16, 100426. [Google Scholar] [CrossRef]
- Armstrong, E.; Ciappesoni, G.; Iriarte, W.; Da Silva, C.; Macedo, F.; Navajas, E.A.; Brito, G.; San Julian, R.; Gimeno, D.; Postiglioni, A. Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep. Meat Sci. 2018, 145, 202–208. [Google Scholar] [CrossRef]
- Joy, M.; Ripoll, G.; Delfa, R. Effects of feeding system on carcass and non-carcass composition of Churra Tensina light lambs. Small Rumin. Res. 2008, 78, 123–133. [Google Scholar] [CrossRef]
- Wang, B.; Yang, L.; Luo, Y.; Su, R.; Su, L.; Zhao, L.; Jin, Y. Effects of feeding regimens on meat quality, fatty acid composition and metabolism as related to gene expression in Chinese Sunit sheep. Small Rumin. Res. 2018, 169, 127–133. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Jin, Y.; Zhao, K.; Duan, Z. Comparison and analysis on sheep meat quality and flavor under pasture-based fattening contrast to intensive pasture-based feeding system. Anim. Bio. Sci. 2022, 35, 1069–1079. [Google Scholar] [CrossRef]
- Karim, S.A.; Porwal, K.; Kumar, S.; Singh, V.K. Carcass traits of Kheri lambs maintained on different system of feeding management. Meat Sci. 2007, 76, 395–401. [Google Scholar] [CrossRef]
- Hou, Y.; Su, L.; Su, R.; Luo, Y.; Wang, B.; Yao, D.; Zhao, L.; Jin, Y. Effect of feeding regimen on meat quality, MyHC isoforms, AMPK, and PGC-1alpha genes expression in the biceps femoris muscle of Mongolia sheep. Food Sci. Nutr. 2020, 8, 2262–2270. [Google Scholar] [CrossRef]
- da Silva, P.C.G.; Ítavo, C.C.B.F.; Ítavo, L.C.V.; Gomes, M.N.B.; Feijó, G.L.D.; Ferelli, K.L.S.M.; Heimbach, N.S.; da Silva, J.A.; de Melo, G.K.A.; Pereira, M.W.F. Carcass traits and meat quality of Texel lambs raised in Brachiaria pasture and feedlot systems. Anim. Sci. J. 2020, 91, e13394. [Google Scholar] [CrossRef] [PubMed]
- Mavrogenis, A.P.; Papachristoforou, C. Genetic and phenotypic relationship between milk production and body weight in Chios sheep and Damascous goats. Livest. Prod. Sci. 2000, 67, 81–87. [Google Scholar] [CrossRef]
- Atti, N.; Mahouachi, M. Effects of feeding system and nitrogen source on lamb growth, meat characteristics and fatty acid composition. Meat Sci. 2009, 81, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.E.; Belesky, D.P.; Cassida, K.A.; Zerby, H.N. Carcass merit and meat quality in Suffolk lambs, Katahdin lambs, and meat-goat kids finished on a grass-legume pasture with and without supplementation. Meat Sci. 2014, 98, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Alshamiry, F.A.; Abdulrahman, S.; Alharthi, A.S.; Hani, H.; Al-Baadani, H.H.; Riyadh, S.; Aljumaah, R.S.; Alhidary, I.A. Growth rates, carcass traits, meat yield, and fatty acid composition in growing lambs under different feeding regimes. Life 2023, 13, 409. [Google Scholar] [CrossRef]
- Howes, N.L.; Bekhit, A.E.A.; Burritt, D.J.; Campbell, A.W. Opportunities and implications of pasture-based lamb fattening to enhance the long-chain fatty acid composition in meat. Compr. Rev. Food Sci. Food Saf. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Fluharty, F.L.; McClure, K.E.; Solomon, M.B.; Clevenger, D.D.; Lowe, G.D. Energy source and ionophore supplementation effects on lamb growth, carcass characteristics, visceral organ mass, diet digestibility, and nitrogen metabolism. J. Anim. Sci. 1999, 77, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Borton, R.J.; Loerch, S.C.; McClure, K.E.; Wulf, D.M. Comparison of characteristics of lambs fed concentrate or grazed on ryegrass to traditional or heavy slaughter weights. I. Production, carcass, and organoleptic characteristics. J. Anim. Sci. 2005, 83, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, H.; Majdoub-Mathlouthi, L.; Picard, B.; Listrat, A.; Durand, D.; Znaïdi, I.A.; Kraiem, K. Carcass traits, contractile muscle properties and meat quality of grazing and feedlot Barbarine lamb receiving or not olive cake. Small Rumin. Res. 2016, 145, 85–93. [Google Scholar] [CrossRef]
- Fraser, M.D.; Speijers, M.H.M.; Theobald, V.J.; Fychan, R.; Jones, R. Production performance and meat quality of grazing lambs fifinished on red clover, lucerne or perennial ryegrass swards. Grass Forage Sci. 2004, 59, 345–356. [Google Scholar] [CrossRef]
- Speijers, M.; Fraser, M.; Theobald, V.; Haresign, W. The effects of grazing forage legumes on the performance of fifinishing lambs. J. Agric. Sci. 2004, 142, 483–493. [Google Scholar] [CrossRef]
- Merry, R.; Lee, M.; Davies, D.; Dewhurst, R.; Moorby, J.; Scollan, N.; Theodorou, M. Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion, 1: In vitro and in vivo studies of nitrogen utilization. J. Anim. Sci. 2006, 84, 3049–3060. [Google Scholar] [CrossRef]
- Alkass, J.E.; Oray, K.A.; Abdulla, K.K. Studies on growth, carcass traits and body composition of goats raised either in intensive or pasture conditions (1-growth performance and carcass traits). J. Bio. Agric. Healthc. 2014, 4, 45–54. [Google Scholar]
- Wang, X.; Wu, T.; Yan, S.; Shi, B.; Zhang, Y.; Guo, X. Influence of pasture or total mixed ration on fatty acid composition and expression of lipogenic genes of longissimus thoracis and subcutaneous adipose tissues in Albas White Cashmere Goats. Ital. J. Anim. Sci. 2019, 18, 111–123. [Google Scholar] [CrossRef]
- Liao, R.R.; Lyu, Y.H.; Ding, H.L.; Lin, Y.X. Effects of different feeding patterns on growth and meat quality traits of Chongming white goat. Acta Agric. Shanghai 2017, 33, 103–106. [Google Scholar]
- Moniruzzaman, M.; Hashem, M.A.; Akhter, S.; Hossain, M.M. Effect of different feeding systems on carcass and non-carcass parameters of black bengal goat. Asian Austral. J. Anim. 2002, 15, 61–65. [Google Scholar] [CrossRef]
- Majdoub-Mathlouthi, L.; Saïd, B.; Kraiem, K. Carcass traits and meat fatty acid composition of Barbarine lambs reared on rangelands or indoors on hay and concentrate. Animal 2015, 9, 2065–2071. [Google Scholar] [CrossRef]
- Alexandre, G.; Liméa, L.; Fanchonne, A.; Coppry, O.; Mandonnet, N.; Boval, M. Effect of forage feeding on goat meat production: Carcass characteristics and composition of creole kids reared either at pasture or indoors in the humid tropics. Asian Austral. J. Anim. Sci. 2009, 22, 1140–1150. [Google Scholar] [CrossRef]
- Kemp, J.D.; Mahyuddin, M.; Ely, D.G.; Fox, J.D.; Moody, W.G. Effect of feeding systems, slaughter weight and sex on organoleptic properties, and fatty acid composition of lamb. J. Anim. Sci. 1981, 51, 321–330. [Google Scholar] [CrossRef]
- Suleman, R.; Wang, Z.Y.; Aadil, R.M.; Hui, T.; Hopkins, D.L.; Zhang, D.Q. Effect of cooking on the nutritive quality, sensory properties and safety of lamb meat: Current challenges and future prospects. Meat Sci. 2020, 167, 108172. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.P.A.A.; Ferrari, R.G.; Monteiro, M.L.G.; Mano, S.B. Effect of different feeding systems on color of longissimus muscle from Bos cattle: A systematic review and meta-analysis. Meat Sci. 2022, 192, 108871. [Google Scholar] [CrossRef]
- Pethick, D.W.; Pleasants, A.B.; Gee, A.M.; Hopkins, D.L.; Ross, I.R. Eating quality of commercial meat cuts from Australian lambs and sheep. Proc. N. Z. Soc. Anim. Prod. 2006, 66, 363367. [Google Scholar]
- Young, O.A.; Berdagué, J.L.; Viallon, C.; Rousset-Akrim, S.; Theriez, M. Fat-borne volatiles and sheepmeat odour. Meat Sci. 1997, 45, 183–200. [Google Scholar] [CrossRef]
- Ekiz, B.; Yilmaz, A.; Ozcan, M.; Kocak, O. Effect of production system on carcass measurements and meat quality of Kivircik lambs. Meat Sci. 2012, 90, 465–471. [Google Scholar] [CrossRef]
- Khliji, S.; van de Ven, R.; Lamb, T.A.; Lanza, M.; Hopkins, D.L. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef]
- Carrasco, S.; Panea, B.; Ripoll, G.; Sanz, A.; Joy, M. Influence of feeding systems on cortisol levels, fat colour and instrumental meat quality in light lambs. Meat Sci. 2009, 83, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Luo, Y.; Wang, B.H.; Hou, Y.R.; Zhao, L.H.; Su, L.; Yao, D.; Qian, Y.; Jin, Y. Effects of physical exercise on meat quality characteristics of Sunit sheep. Small Rumin. Res. 2019, 173, 54. [Google Scholar] [CrossRef]
- Önenç, S.; Özdoğan, M.; Aktümsek, A.; Taşkın, T. Meat quality and fatty acid composition of chios male lambs fed under traditional and Intensive conditions. Emir. J. Food Agr. 2015, 27, 636–642. [Google Scholar] [CrossRef]
- Luciano, G.; Monahan, F.J.; Vasta, V.; Pennisi, P.; Bella, M.; Priolo, A. Lipid and colour stability of meat from lambs fed fresh herbage or concentrate. Meat Sci. 2009, 82, 193–199. [Google Scholar] [CrossRef]
- Mahieu, M.; Arquet, R.; Kandassamy, T.; Mandonnet, N.; Hoste, H. Evaluation of targeted drenching using Famacha method in Creole goat: Reduction of anthelmintic use, and effects on kid production and pasture contamination. Vet. Parasitol. 2007, 146, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, S.; Ripoll, G.; Sanz, A.; Álvarez-Rodríguez, J.; Panea, B.; Revilla, R.; Joy, M. Effect of feeding system on growth and carcass characteristics of Churra Tensina light lambs. Livest. Sci. 2009, 121, 56–63. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Hou, S.; Raza, S.H.A.; Wang, Z.; Yang, B.; Sun, S.; Ding, B.; Gui, L.; Simal-Gandara, J.; et al. Effects of different feeding regimes on muscle metabolism and its association with meat quality of Tibetan sheep. Food Chem. 2022, 374, 131611. [Google Scholar] [CrossRef]
- Li, X.R.; Liu, X.M.; Song, P.K.; Zhao, J.M.; Zhang, J.X.; Zhao, J.X. Skeletal muscle mass, meat quality and antioxidant status in growing lambs supplemented with guanidinoacetic acid. Meat Sci. 2022, 192, 108906. [Google Scholar] [CrossRef]
- Luo, Y.L.; Wang, B.H.; Liu, C.; Su, R.; Hou, Y.R.; Yao, D.; Zhao, L.H.; Su, L.; Jin, Y. Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet. Food Sci Nutr. 2019, 7, 2796–2805. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J.; Prache, S.; Dransfield, E. Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Sci. 2002, 62, 179–185. [Google Scholar] [CrossRef]
- Qi, K.K.; Men, X.M.; Wu, J.; Xu, Z.W. Rearing pattern alters porcine myofiber type, fat deposition, associated microbial communities and functional capacity. BMC Microbiol. 2019, 19, 181. [Google Scholar] [CrossRef]
- Jama, N.; Muchenje, V.; Chimonyo, M.; Strydom, P.E.; Raats, J.G. Cooking loss components of beef from Nguni, Bonsmara and Angus steers. Afr. J. Agric. Res. 2008, 3, 416–420. [Google Scholar]
- Cross, H.R.; Durland, P.R.; Seidman, S.C. Muscle as food. In Sensory Qualities of Meat, 1st ed.; Bechtel, P.J., Ed.; Food Science and Technology Series; Academic Press: New York, NY, USA, 1986; pp. 279–320. [Google Scholar]
- Suo, L.D.; Ba, G.; Yang, S.F.; Zhang, C.G.; Ci, R.D.J.; De, J.; Zhang, K.; Wang, X.L.; Wu, Y.J. Effects of grazing and house feeding on meat quality, antioxidant indexes and fatty acid content of Tibetan goat. Chin. J. Anim. Sci. 2020, 56, 153–157. [Google Scholar]
- Fisher, A.V.; Enser, M.; Richardson, R.I.; Wood, J.D.; Nute, G.R.; Kurt, E.; Sinclair, L.A.; Wilkinson, R.G. Fatty acid composition and eating quality of lamb types derived from four diverse breed × production systems. Meat Sci. 2000, 55, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.; Watkins, P.; Ball, A.; Krishnamurthy, R.; Piyasiri, U.; Sewell, J.; Ortuño, J.; Stark, J.; Warner, R. Impact of brassica and lucerne finishing feeds and intramuscular fat on lamb eating quality and flavor. A cross-cultural study using chinese and non-chinese australian consumers. J. Agric. Food Chem. 2016, 64, 6856–6868. [Google Scholar] [CrossRef]
- Young, O.A.; Braggins, T.J. Sheepmeat odour and flavour. In Flavor of Meat, Meat Products and Seafoods, 1st ed.; Shahidi, F., Ed.; Blackie Academic and Professional: London, UK, 1998; Volume 2, pp. 101–130. [Google Scholar]
- Prache, S.; Gatellier, P.; Thomas, A.; Picard, B.; Bauchart, D. Comparison of meat carcass quality in organically-reared and conventionally-reared pasture-fed lambs. Animal 2011, 5, 2001–2009. [Google Scholar] [CrossRef]
- Casey, N.H.; Van Niekerk, W.A.; Webb, E.C. Encyclopaedia of food sciences and nutrition. In Goat Meat, 1st ed.; Caballero, B., Trugo, L., Finglass, P., Eds.; Academic Press: London, UK, 2003; pp. 2937–2944. [Google Scholar]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Sañudo, C.; Nute, G.R.; Campo, M.M.; María, G.; Baker, A.; Sierra, I.; Enser, M.E.; Wood, J.D. Assessment of commercial lamb meat quality by British and Spanish taste panels. Meat Sci. 1998, 48, 91–100. [Google Scholar] [CrossRef]
- Sañudo, C.; Alfonso, M.; San Julian, R.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; et al. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Sci. 2007, 75, 610–621. [Google Scholar] [CrossRef]
- Han, L.W. Effect on Meat Quality of Grazing and Confinedness of Wulate Goat. Master’s Thesis, Neimenggu Agricultural University, Hohhot, China, 2019. [Google Scholar]
- Yang, Y.F.; Wang, Y.; Shan, H.Q.; Zheng, Y.L.; Xuan, Z.Y.; Hu, J.L.; Wei, M.S.; Wang, Z.Q.; Liu, Q.Y.; Li, Z.P. Novel insights into the differences in nutrition value, gene regulation and network organization between muscles from pasture-fed and barn-fed goats. Foods 2022, 11, 381. [Google Scholar] [CrossRef] [PubMed]
- Kerth, C.R.; Wall, K.R.; Smith, S.B.; Whitney, T.R.; Glasscock, J.L.; Sawyer, J.T. Substituting ground woody plants for cottonseed hulls in lamb feedlot diets: Carcass characteristics, adipose tissue fatty acid composition, and sensory panel traits. J. Anim. Sci. 2018, 96, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Young, O.A.; Hopkins, D.L.; Pethick, D.W. Critical control points for meat quality in the Australian sheepmeat supply chain. Aust. J. Exp. Agric. 2005, 45, 593–601. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Hegarty, R.S.; Walker, P.J.; Pethick, D.W. Relationship between animal age, intramuscular fat, cooking loss, pH, shear force and eating quality of aged meat from sheep. Aust. J. Exp. Agric. 2006, 46, 879–884. [Google Scholar] [CrossRef]
- Cividini, A.; Levart, A.; Zgur, S.; Kompan, D. Fatty acid composition of lamb meat from the autochthonous Jezersko-Solcava breed reared in different production systems. Meat Sci. 2014, 97, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Lobley, G.E. Nutritional and hormonal control of muscle and peripheral tissue metabolism in farm species. Livest. Prod. Sci. 1998, 56, 91–114. [Google Scholar] [CrossRef]
- Banskalieva, V.; Marinova, P.; Monin, G.; Popova, T.; Ignatova, M. Manipulating of the carcass and meat quality in lamb meat producing for the European Market II. Fatty acid composition of fat depots of lambs grown under two different production systems. Bulg. J. Agric. Sci. 2005, 11, 603–610. [Google Scholar]
- Rajkumar, V.; Agnihotri, M.K.; Das, A.K.; Ramachandran, N.; Singh, D. Effect of age on carcass characteristics and meat quality of Sirohi goat kids reared under semi-intensive and intensive management systems. Indian J. Anim. Sci. 2010, 80, 775–780. [Google Scholar]
- Cañeque, V.; Velasco, S.; Díaz, M.T.; de Huidobro, F.R.; Pérez, C.; Lauzurica, S. Use of whole barley with a protein supplement to fatten lambs under different management systems and its effect on meat and carcass quality. Anim. Res. 2003, 52, 271–285. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Webb, E.C.; O’Neill, H.A. The animal fat paradox and meat quality. Meat Sci. 2008, 80, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, J.; Jia, X.; Zhao, Q.; Ma, Q.; Yu, Y.; Tang, C.; Zhang, J. Characterization of the flavor precursors and flavor fingerprints in grazing lambs by foodomics. Foods 2022, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Enser, M.; Hallett, K.G.; Hewett, B.; Fursey, G.A.; Wood, J.D.; Harrington, G. Fatty acid content and composition of UK beef and lamb muscle in relation to production system and implications for human nutrition. Meat Sci. 1998, 49, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Abuelfatah, K.; Zuki, A.B.Z.; Goh, Y.M.; Sazili, A.Q. Effects of enriching goat meat with n − 3 polyunsaturated fatty acids on meat quality and stability. Small Rumin. Res. 2016, 136, 36–42. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Ense, R.M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef]
- Webb, E.C.; Hassen, A.; Olaniyi, M.O.; Pophiwa, P. Effect of dietary inclusion of azadirachta indica and moringa oleifera leaf extracts on the carcass quality and fatty acid composition of lambs fed high forage total mixed rations. Animals 2022, 12, 2039. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, X.G.; Li, Z.; Luo, H.L.; Zhang, H.; Guo, Y.P.; Zhang, C.; Ma, Q. Changes of metabolites and gene expression under different feeding systems associated with lipid metabolism in lamb meat. Foods 2021, 10, 2612. [Google Scholar] [CrossRef]
- Gruffat, D.; Durand, D.; Rivaroli, D.; do Prado, I.N.; Prache, S. Comparison of muscle fatty acid composition and lipid stability in lambs stall-fed or pasture-fed alfalfa with or without sainfoin pellet supplementation. Animal 2020, 14, 1093–1101. [Google Scholar] [CrossRef]
- Bressan, M.C.; Rossato, L.V.; Rodrigues, E.C.; Alves, S.P.; Bessa, R.J.B.; Ramos, E.M.; Gama, L.T. Genotype x environment interactions for fatty acid profiles in Bos indicus and Bos taurus finished on either pasture or grain. J. Anim. Sci. 2011, 89, 221–232. [Google Scholar] [CrossRef]
- Kasapidou, E.; Wood, J.D.; Richardson, R.I.; Sinclair, L.A.; Enser, M. Effect of vitamin E supplementation and diet on fatty acid composition and on meat colour and lipid oxidation of lamb leg steaks displayed in modified atmosphere packs. Meat Sci. 2012, 90, 908–916. [Google Scholar] [CrossRef]
- Chillard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Jenkins, T.C.; Wallace, R.J.; Moate, P.J.; Mosley, E.E. Board invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Whitney, T.R.; Smith, S.B. Substituting redberry juniper for oat hay in lamb feedlot diets: Carcass characteristics, adipose tissue fatty acid composition, and sensory panel traits. Meat Sci. 2015, 104, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dervishi, E.; Joy, M.; Alvarez-Rodriguez, J.; Serrano, M.; Calvo, J.H. The forage type (grazing versus hay pasture) fed to ewes and the lamb sex affect fatty acid profile and lipogenic gene expression in the longissimus muscle of suckling lambs. J. Anim. Sci. 2012, 90, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Popova, T. Fatty acid composition of Longissimus dorsi and Semimembranosus muscles during storage in lambs reared indoors and on pasture. Emir. J. Food Agric. 2014, 26, 302–308. [Google Scholar] [CrossRef]
- Wachira, A.M.; Sinclair, L.A.; Wilkinson, R.G.; Enser, M.; Wood, J.D.; Fisher, A.V. Effects of dietary fat source and breed on the carcass composition, n-3 polyunsaturated fatty acid and conjugated linoleic acid content of sheep meat and adipose tissue. Brit. J. Nutr. 2002, 88, 697–709. [Google Scholar] [CrossRef]
- Margetín, M.O.; Margetinova, J.; Kubinec, R. Fatty acids in intramuscular fat of Ile de France lambs in two different production systems. Arch. Anim. Breed. 2018, 61, 395–403. [Google Scholar] [CrossRef]
- Belury, M.A. Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annu. Rev. Nutr. 2002, 22, 505–531. [Google Scholar] [CrossRef]
- Valsta, L.M.; Tapanainen, H.; Männistö, S. Meat fats in nutrition. Meat Sci. 2005, 70, 525–530. [Google Scholar] [CrossRef]
- Faria, P.B.; Bressan, M.C.; Vieira, J.O.; Vicente-Neto, J.; Ferrão, S.P.B.; Rosa, F.C.; Monteiro, M.; Cardoso, M.G.; Gama, L.T. Meat quality and lipid profiles in crossbred lambs finished on clover-rich pastures. Meat Sci. 2012, 90, 733–738. [Google Scholar] [CrossRef]
- Enser, M.; Hallett, K.; Hewitt, B.; Fursey, G.A.J.; Wood, J.D. Fatty acids content and composition of English beef, lamb and pork at retail. J. Meat Sci. 1996, 42, 443–456. [Google Scholar] [CrossRef]
- Chikunya, S.; Demirel, G.; Enser, M.; Wood, J.D.; Wilkinson, R.G.; Sinclair, L.A. Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep. Brit. J. Nutr. 2004, 91, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.A. Nutritional manipulation of the fatty acid composition of sheep meat: A review. J. Agric. Sci. Camb. 2007, 145, 419–434. [Google Scholar] [CrossRef]
- Price, P.B.; Parsons, J.G. Lipids of seven cereal grains. J. Am. Oil Chem. Soc. 1975, 52, 490–493. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, T.; Zhao, M.; Zhang, X.; Cheng, Y.; Sun, Y.; Wang, P.; Ren, C.; Cheng, X.; Zhang, Z.; Huang, Y. Review of Feeding Systems Affecting Production, Carcass Attributes, and Meat Quality of Ovine and Caprine Species. Life 2023, 13, 1215. https://doi.org/10.3390/life13051215
Ke T, Zhao M, Zhang X, Cheng Y, Sun Y, Wang P, Ren C, Cheng X, Zhang Z, Huang Y. Review of Feeding Systems Affecting Production, Carcass Attributes, and Meat Quality of Ovine and Caprine Species. Life. 2023; 13(5):1215. https://doi.org/10.3390/life13051215
Chicago/Turabian StyleKe, Tiantian, Mengyu Zhao, Xiaoan Zhang, Yao Cheng, Yiming Sun, Penghui Wang, Chunhuan Ren, Xiao Cheng, Zijun Zhang, and Yafeng Huang. 2023. "Review of Feeding Systems Affecting Production, Carcass Attributes, and Meat Quality of Ovine and Caprine Species" Life 13, no. 5: 1215. https://doi.org/10.3390/life13051215
APA StyleKe, T., Zhao, M., Zhang, X., Cheng, Y., Sun, Y., Wang, P., Ren, C., Cheng, X., Zhang, Z., & Huang, Y. (2023). Review of Feeding Systems Affecting Production, Carcass Attributes, and Meat Quality of Ovine and Caprine Species. Life, 13(5), 1215. https://doi.org/10.3390/life13051215