Effects of Hot Arid Environments on the Production Performance, Carcass Traits, and Fatty Acids Composition of Breast Meat in Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Heat Stress Challenge
2.3. Measurements and Samplings
2.4. Meat Quality
2.5. Chemical Composition and Fatty Acids Profile of Breast Meat
2.6. Statistical Analysis
3. Results
3.1. The Ambient Temperatures, Air Relative Humidity, and a Temperature–Humidity Index
3.2. Rectal Temperature and Respiratory Rate
3.3. Growth Performance
3.4. Giblet Yields
3.5. Carcass Characteristics and Weights of Carcass Components
3.6. Meat Quality
3.7. Chemical Composition of Breast Meat
3.8. Fatty Acids Profile of Breast Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. How to Feed the World in 2050? Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj7rLqcl4X_AhWLHewKHYtfDk8QFnoECAsQAQ&url=https%3A%2F%2Fwww.fao.org%2Ffileadmin%2Ftemplates%2Fwsfs%2Fdocs%2Fexpert_paper%2FHow_to_Feed_the_World_in_2050.pdf&usg=AOvVaw17DOJ5T4i6ZJjlAZirhkdU (accessed on 31 March 2023).
- United Nations. Department of Economic and Social Affairs. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 31 March 2023).
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yuan, Y.; Sun, C.; Balasubramanian, B.; Zhao, Z.; An, L. Effects of dietary betaine on growth performance, digestive function, carcass traits, and meat quality in indigenous yellow-feathered broilers under long-term heat stress. Animals 2019, 9, 506. [Google Scholar] [CrossRef] [PubMed]
- Wasti, S.; Sah, N.; Mishra, B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.S.; Deng, W.; Liu, H.W. Effects of chlorogenic acid-enriched extract from Eucommia Ulmoides leaf on performance, meat quality, oxidative stability, and fatty acid profile of meat in heat-stressed broilers. Poult. Sci. 2019, 98, 3040–3049. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.R.; Warner, R.D.; Dunshea, F.R. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants 2019, 8, 336. [Google Scholar] [CrossRef]
- Zhang, M.; Dunshea, F.R.; Warner, R.D.; DiGiacomo, K.; Osei-Amponsah, R.; Chauhan, S.S. Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol. 2020, 64, 1613–1628. [Google Scholar] [CrossRef]
- Qu, H.; Ajuwon, K.M. Metabolomics of heat stress response in pig adipose tissue reveals alteration of phospholipid and fatty acid composition during heat stress. J. Anim. Sci. 2018, 96, 3184–3195. [Google Scholar] [CrossRef]
- He, Y.; Zhou, M.; Xia, C.; Xia, Q.; He, J.; Cao, J.; Pan, D.; Sun, Y. Volatile flavor changes responding to heat stress-induced lipid oxidation in duck meat. Anim. Sci. J. 2020, 91, e13461. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jia, G.Q.; Zuo, J.J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D.Y. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef]
- He, X.; Lu, Z.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Chronic heat stress damages small intestinal epithelium cells associated with the adenosine 5′-monophosphate-activated protein kinase pathway in broilers. J. Agric. Food Chem. 2018, 66, 7301–7309. [Google Scholar] [CrossRef]
- Teyssier, J.R.; Preynat, A.; Cozannet, P.; Briens, M.; Mauromoustakos, A.; Greene, E.S.; Owens, C.M.; Dridi, S.; Rochell, S.J. Constant and cyclic chronic heat stress models differentially influence growth performance, carcass traits and meat quality of broilers. Poult. Sci. 2022, 101, 101963. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L.; Zhang, L. Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W. International A: Official Methods of Analysis of the AOAC International; The Association: Arlington, VA, USA, 2000. [Google Scholar]
- Azzam, M.M.; Qaid, M.M.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Albaadani, H.H.; Alhidary, I.A. Rumex nervosus leaves meal improves body weight gain, duodenal morphology, serum thyroid hormones, and cecal microflora of broiler chickens during the starter period. Poult. Sci. 2020, 99, 5572–5581. [Google Scholar] [CrossRef]
- Alhotan, R.A.; Al-Sagan, A.A.; Al-Abdullatif, A.A.; Hussein, E.O.S.; Saadeldin, I.M.; Azzam, M.M.; Swelum, A.A. Interactive effects of dietary amino acid density and environmental temperature on growth performance and expression of selected amino acid transporters, water channels, and stress-related transcripts. Poult. Sci. 2021, 100, 101333. [Google Scholar] [CrossRef]
- Nascimento, S.T.; da Silva, I.J.O.; Mourão, G.B.; de Castro, A.C. Bands of respiratory rate and cloacal temperature for different broiler chicken strains. Rev. Bras. Zootec. 2012, 41, 1318–1324. [Google Scholar] [CrossRef]
- Cho, Y.; Bae, J.; Choi, M.-J. Physicochemical characteristics of meat analogs supplemented with vegetable oils. Foods 2023, 12, 312. [Google Scholar] [CrossRef] [PubMed]
- Al-Abdullatif, A.; Hussein, E.; Suliman, G.; Akasha, M.; Al-Badwi, M.; Ali, H.; Azzam, M. Evaluating rice bran oil as a dietary energy source on production performance, nutritional properties and fatty acid deposition of breast meat in broiler chickens. Foods 2023, 12, 366. [Google Scholar] [CrossRef]
- Zeferino, C.P.; Komiyama, C.M.; Pelícia, V.C.; Fascina, V.B.; Aoyagi, M.M.; Coutinho, L.L.; Sartori, J.R.; Moura, A.S.A.M.T. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. Animal 2016, 10, 163–171. [Google Scholar] [CrossRef]
- Weaver, W.D. Poultry housing. In Commercial Chicken Meat and Egg Production; Springer Science + Business Media, Inc.: New York City, NY, USA, 2002; pp. 101–111. [Google Scholar]
- Samal, L.; Sejian, V.; Bagath, M.; Krishnan, G.; Manimaran, A.; Bhatta, R. Different heat stress indices to quantify stress response in livestock and poultry. In Livestock Meteorology, 1st ed.; Rao, G.S.L.H.V.P., Varma, G.G., Beena, V., Eds.; New India Publishing Agency: New Delhi, India, 2017. [Google Scholar]
- Baziz, H.A.; Geraert, P.A.; Padilha, J.C.F.; Guillaumin, S. Chronic heat exposure enhances fat deposition and modifies muscle and fat partition in broiler carcasses. Poult. Sci. 1996, 75, 505–513. [Google Scholar] [CrossRef]
- Emami, N.K.; Greene, E.S.; Kogut, M.H.; Dridi, S. Heat stress and feed restriction distinctly affect performance, carcass and meat yield, intestinal integrity, and inflammatory (chemo)cytokines in broiler chickens. Front. Physiol. 2021, 12, 707757. [Google Scholar] [CrossRef]
- Dai, S.F.; Gao, F.; Xu, X.L.; Zhang, W.H.; Song, S.X.; Zhou, G.H. Effects of dietary glutamine and gamma-aminobutyric acid on meat colour, ph, composition, and water-holding characteristic in broilers under cyclic heat stress. Br. Poult. Sci. 2012, 53, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; He, X.F.; Ma, B.B.; Zhang, L.; Li, J.L.; Jiang, Y.; Zhou, G.H.; Gao, F. The alleviative effects and related mechanisms of taurine supplementation on growth performance and carcass characteristics in broilers exposed to chronic heat stress. Poult. Sci. 2019, 98, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.O. Parts yield of broilers reared under cycling high temperatures. Poult. Sci. 1993, 72, 1146–1150. [Google Scholar] [CrossRef]
- Zeferino, C.P.; Moura, A.S.A.M.T.; Fernandes, S.; Kanayama, J.S.; Scapinello, C.; Sartori, J.R. Genetic group × ambient temperature interaction effects on physiological responses and growth performance of rabbits. Livest. Sci. 2011, 140, 177–183. [Google Scholar] [CrossRef]
- Zeferino, C.P.; Komiyama, C.M.; Fernandes, S.; Sartori, J.R.; Teixeira, P.S.S.; Moura, A.S.A.M.T. Carcass and meat quality traits of rabbits under heat stress. Animal 2013, 7, 518–523. [Google Scholar] [CrossRef]
- Ono, Y.; Iwamoto, H.; Takahara, H. The relationship between muscle growth and the growth of different fiber types in the chicken. Poult. Sci. 1993, 72, 568–576. [Google Scholar] [CrossRef]
- Rosser, B.W.C.; Waldbillig, D.M.; Wick, M.; Bandman, E. Heterogeneity of myosin heavy-chain expression in fast-twitch fiber types of mature avian pectoralis muscle. Biochem. Cell Biol. 1996, 74, 715–728. [Google Scholar] [CrossRef]
- Temim, S.; Tesseraud, S.; Chagneau, A.-M.; Peresson, R. Chronic heat exposure alters protein turnover of three different skeletal muscles in finishing broiler chickens fed 20 or 25% protein diets. J. Nutr. 2000, 130, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Serum Metabolomics study of nutrient metabolic variations in chronic heat-stressed broilers. Br. J. Nutr. 2018, 119, 771–781. [Google Scholar] [CrossRef]
- Barbosa Filho, J.; Almeida, M.; Shimokomaki, M.; Pinheiro, J.; Silva, C.; Michelan Filho, T.; Bueno, F.; Oba, A. Growth Performance, Carcass Characteristics and Meat Quality of Griller-Type Broilers of Four Genetic Lines. Braz. J. Poult. Sci. 2017, 19, 109–114. [Google Scholar] [CrossRef]
- Tuell, J.R.; Park, J.-Y.; Wang, W.; Cooper, B.; Sobreira, T.; Cheng, H.-W.; Kim, Y.H.B. Effects of photoperiod regime on meat quality, oxidative stability, and metabolites of postmortem broiler fillet (M. Pectoralis Major) Muscles. Foods 2020, 9, 215. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, Y.; Chen, J.; Wang, R.; He, Y.; Su, D. Influence of lighting schedule and nutrient density in broiler chickens: Effect on growth performance, carcass traits and meat quality. Asian Australas. J. Anim. Sci. 2010, 23, 1510–1518. [Google Scholar] [CrossRef]
- Pardo, Z.; Fernández-Fígares, I.; Lachica, M.; Lara, L.; Nieto, R.; Seiquer, I. Impact of heat stress on meat quality and antioxidant markers in iberian pigs. Antioxidants 2021, 10, 1911. [Google Scholar] [CrossRef]
- Woelfel, R.L.; Owens, C.M.; Hirschler, E.M.; Martinez-Dawson, R.; Sams, A.R. The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poult. Sci. 2002, 81, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Adu-Asiamah, P.; Zhang, Y.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Yang, H.; Zhang, W.L.; Zhang, L. Evaluation of physiological and molecular responses to acute heat stress in two chicken breeds. Animal 2021, 15, 100106. [Google Scholar] [CrossRef]
- Enser, M. Nutritional effects on meatflavour and stability. In Poultry Meat Science; Poultry Science Symposium Series; Richardson, R.I., Mead, G.C., Eds.; CABI Publishing: Wallingford, UK, 1999; Volume 25, pp. 197–215. [Google Scholar]
- Takahashi, H.; Rikimaru, K.; Kiyohara, R.; Yamaguchi, S. Effect of arachidonic acid-enriched oil diet supplementation on the taste of broiler meat. Asian Australas. J. Anim. Sci. 2012, 25, 845–851. [Google Scholar] [CrossRef]
- Kiyohara, R.; Yamaguchi, S.; Rikimaru, K.; Takahashi, H. Supplemental arachidonic acid-enriched oil improves the taste of thigh meat of hinai-jidori chickens. Poult. Sci. 2011, 90, 1817–1822. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, C.; Hao, Y.; Gu, X.; Wang, H. Chronic Heat Stress Induces Acute Phase Responses and Serum Metabolome Changes in Finishing Pigs. Animals 2019, 9, 395. [Google Scholar] [CrossRef]
Feedstuff Ingredients | Starter Diets, d 1–24 | Finisher Diets, d 25–35 |
---|---|---|
Yellow corn | 574 | 600 |
Soybean meal, 48% | 344 | 310 |
Plant oil | 40.00 | 50.00 |
Di-Ca-P | 17.00 | 16.30 |
Limestone | 10.00 | 9.10 |
NaCl | 5.00 | 4.70 |
L-Lysine | 1.27 | 1.10 |
Dl-Methionine | 2.70 | 2.50 |
L-Threonine | 0.03 | 0.30 |
Choline chloride | 1.00 | 1.00 |
Premix 1 | 5.00 | 5.00 |
Total | 1000 | 1000 |
Analyzed crude protein | 21.75 | 19.11 |
Analyzed ether extract | 6.99 | 7.87 |
Calculated calcium | 0.91 | 0.85 |
Calculated non-phytate P | 0.44 | 0.42 |
Calculated ME, Kcal/Kg | 3090 | 3190 |
Digestible lysine | 1.14 | 1.04 |
Digestible methionine + cysteine | 0.85 | 0.80 |
Digestible threonine | 0.73 | 0.70 |
Environments | d 24 | d 25–35 2 | |||
---|---|---|---|---|---|
BW, g | BW d 35, g | BWG, g | FI, g/bird | FCR | |
Thermoneutral | 1051 ± 24.74 | 2184 ± 32.24 a | 1133 ± 22.05 a | 1653 ± 22.98 a | 1.46 ± 0.01 |
Heat stress | 1073 ± 26.94 | 2090 ± 20.69 b | 1017 ± 21.74 b | 1537 ± 23.93 b | 1.52 ± 0.02 * |
p-value | 0.54 | 0.01 | <0.001 | 0.001 | 0.055 |
Environments | Giblets Yields, g/100 g | ||
---|---|---|---|
Heart | Liver | Gizzard | |
Thermoneutral | 0.39 ± 0.008 a | 1.73 ± 0.03 a | 1.15 ± 0.01 |
Heat stress | 0.35 ± 0.007 b | 1.60 ± 0.03 b | 1.20 ± 0.02 |
p-value | <0.001 | 0.01 | 0.09 |
Environments | Hot Carcass, g | Cold Carcass, g | Carcass Components (Whole Part) 1 | |||
---|---|---|---|---|---|---|
Breast | Legs (Thigh and Drumstick) | Wings | Hot Fat Pad | |||
g | ||||||
Thermoneutral | 1841 ± 26.17 | 1791 ± 25.52 | 647 ± 12.97 a | 554 ± 8.0 | 146 ± 2.44 | 32.28 ± 1.41 |
Heat stress | 1786 ± 27.63 | 1731 ± 26.74 | 599 ± 11.76 b | 533 ± 8.90 | 146 ± 2.88 | 31.44 ± 1.43 |
p-Value | 0.15 | 0.10 | 0.007 | 0.08 | 0.96 | 0.67 |
yield, g/100 g | ||||||
Thermoneutral | 64.63 ± 0.21 b | 62.89 ± 0.21 b | 22.70 ± 0.28 * | 19.46 ± 0.16 | 5.15 ± 0.07 b | 1.13 ± 0.04 |
Heat stress | 65.58 ± 0.26 a | 63.57 ± 0.25 a | 21.99 ± 0.23 | 19.59 ± 0.19 | 5.40 ± 0.10 a | 1.17 ± 0.05 |
p-Value | 0.006 | 0.045 | 0.057 | 0.629 | 0.050 | 0.637 |
Environments | Carcass Weight Loss during Chilling, % | Physical Parameters of Pectoralis Major | |
---|---|---|---|
CL 1 | pH24h | ||
Thermoneutral | 2.69 ± 0.059 b | 21.04 ± 0.87 | 6.10 ± 0.011 |
Heat stress | 3.07 ± 0.051 a | 22.87 ± 0.68 | 6.09 ± 0.11 |
p-Value | <0.001 | 0.10 | 0.426 |
Environments | Proximate Composition, % | |||
---|---|---|---|---|
Moisture | Ash | Protein | Fat | |
Thermoneutral | 73.99 ± 0.08 | 1.19 ± 0.02 * | 23.84 ± 0.08 | 0.878 ± 0.07 |
Heat stress | 73.86 ± 0.08 | 1.11 ± 0.02 | 23.92 ± 0.06 | 0.937 ± 0.05 |
p-value | 0.26 | 0.055 | 0.22 | 0.52 |
Fatty Acids Composition, g/100 g of FAME | TN | HS | p-Value |
---|---|---|---|
C12 | 0.42 ± 0.03 | 0.41 ± 0.05 | 0.87 |
C14 | 0.52 ± 0.02 | 0.52 ± 0.01 | 0.93 |
C16 | 23.28 ± 0.29 | 23.58 ± 0.28 | 0.47 |
C17 | 0.22 ± 0.03 | 0.24 ± 0.02 | 0.51 |
C18 | 7.67 ± 0.25 | 7.19 ± 0.12 | 0.10 |
C20 | 0.15 ± 0.006 | 0.15 ± 0.003 | 0.29 |
C24 | 0.21 ± 0.01 | 0.19 ± 0.01 | 0.46 |
∑SFA | 32.46 ± 0.31 | 32.27 ± 0.38 | 0.70 |
C16:1 (n-7) | 3.02 ± 0.10 | 3.23 ± 0.09 | 0.14 |
C18:1 (n-7) | 1.9 ± 0.04 | 1.81 ± 0.03 | 0.11 |
C18:1 (n-9) | 34.81 ± 0.56 | 35.95 ± 0.29 | 0.08 |
C20:1 (n-9) | 0.33 ± 0.008 | 0.33 ± 0.010 | 0.96 |
∑MUFA | 40.06 ± 0.61 | 41.31 ± 0.31 | 0.08 |
C18:2 (n-6) | 19.54 ± 0.49 | 19.981 ± 0.50 | 0.54 |
C18:3 (n-6) | 0.20 ± 0.008 | 0.21 ± 0.009 | 0.26 |
C20:2 (n-6) | 0.51 ± 0.04 a | 0.42 ± 0.01 b | 0.050 |
C20:3 (n-6) | 0.64 ± 0.04 | 0.55 ± 0.02 | 0.07 |
C20:4 (n-6) | 3.43 ± 0.24 a | 2.66 ± 0.18 b | 0.01 |
C22:4 (n-6) | 0.93 ± 0.07 | 0.78 ± 0.04 | 0.10 |
C22:5 (n-6) | 0.26 ± 0.02 * | 0.20 ± 0.01 | 0.051 |
∑n-6 | 25.54 ± 0.68 | 24.83 ± 0.63 | 0.45 |
ALA, C18:3 (n-3) | 0.679 ± 0.03 | 0.66 ± 0.02 | 0.68 |
DPA, C22:5 (n-3) | 0.286 ± 0.02 | 0.261 ± 0.01 | 0.37 |
DHA, C22:6 (n-3) | 0.218 ± 0.02 | 0.195 ± 0.01 | 0.37 |
∑n-3 | 1.183 ± 0.042 | 1.116 ± 0.042 | 0.27 |
∑PUFA | 26.72 ± 0.69 | 25.94 ± 0.66 | 0.42 |
n6/n3 ratio | 21.89 ± 0.75 | 22.47 ± 0.51 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Abdullatif, A.; Azzam, M.M. Effects of Hot Arid Environments on the Production Performance, Carcass Traits, and Fatty Acids Composition of Breast Meat in Broiler Chickens. Life 2023, 13, 1239. https://doi.org/10.3390/life13061239
Al-Abdullatif A, Azzam MM. Effects of Hot Arid Environments on the Production Performance, Carcass Traits, and Fatty Acids Composition of Breast Meat in Broiler Chickens. Life. 2023; 13(6):1239. https://doi.org/10.3390/life13061239
Chicago/Turabian StyleAl-Abdullatif, Abdulaziz, and Mahmoud Mostafa Azzam. 2023. "Effects of Hot Arid Environments on the Production Performance, Carcass Traits, and Fatty Acids Composition of Breast Meat in Broiler Chickens" Life 13, no. 6: 1239. https://doi.org/10.3390/life13061239
APA StyleAl-Abdullatif, A., & Azzam, M. M. (2023). Effects of Hot Arid Environments on the Production Performance, Carcass Traits, and Fatty Acids Composition of Breast Meat in Broiler Chickens. Life, 13(6), 1239. https://doi.org/10.3390/life13061239