Recent Reports on Bioactive Compounds from Marine Cyanobacteria in Relation to Human Health Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Bioactive Properties Reported from Marine Cyanobacteria
3.1. Anti-Inflammatory Properties
3.2. Anticancer Properties
3.3. Hepatoprotective Properties
3.4. Antidiabetic Properties
3.5. Anti-Aging Capabilities
3.6. Anti-Obesity Potential
3.7. Neuroprotective Activity
3.8. Antioxidant Activity
3.9. Antimicrobial Activity
3.10. Photoprotective Properties
4. Conclusions
Compounds | Cyanobacteria Species | Bioactive Properties | IC50/MIC/EC50/Cell Line/Target Bacteria/% of Inhibition | References |
---|---|---|---|---|
Glycolipids Phospholipids | Spirulina subsalsa | Anti-inflammatory | ND | [7] |
Peptides | Synechococcus sp. | Anti-inflammatory | LPS-stimulated RAW 264.7 macrophage cells | [79] |
Xanthophyll | Leptolyngbya-like sp. LEGE13412 | Anti-inflammatory | ND | [27] |
Unnarmicin D | Trichodesmium thiebautti, | Anti-inflammatory | Murine BV-2 cells | [30] |
Laxaphycins B4 Laxaphycins A2 | Hormothamnion enteromorphoids | Anticancer | IC50;1.7μM IC50;2μM HCT116 cells | [33] |
Caldoramide | Caldora penicillata | Anticancer | HT-29,HCT116 and MCF-7 cell lines. | [35] |
Phycocyanin | Spirulina platensis Phormidium versicolor Spirulina maxima Arthrospira platensis Geitlerinema sp. | Anticancer Hepatoprotective Antidiabetic Neuroprotective Antioxidant | Vero cell lines and Hep-G2 cell lines. 78.75% (DPPH) | [11,13,17,45,62,64,67] |
Carotenoids phycobiliproteins | Cyanobium sp. | Antiaging | ND | [14] |
Mycosporine-2-glycine (M2G) | Aphanothece halophytica | Antiaging | IC50; 0.47 mmol−1 | [15] |
Yoshinone A | Leptolyngbys sp. | Anti-obesity | 3T3-L1 | [16] |
132-hydroxy-pheophytin | Cyanobium sp. LEGE 07175 | Anti-obesity | EC50; 8.9 ± 0.4 μM | [56] |
132-hydroxpheofarnesin | Nodosilinea sp. LEGE 06001 | Anti-obesity | EC50; 15.5 ± 1.3 μM | [56] |
Chlorophyll a | Spirulina maxima | Neuroprotective | PC12 cells | [62] |
β-carotene | Spirulina maxima | Neuroprotective | HT22 cells | [62] |
Tiahuramides B | Lyngbya majuscule | Neuroprotective Antibacterial | IC50; 14 μM (SH-SY5Y cell line) MIC; 9.4, 8.5 μM (A. salmonicida, V. anguillarum) MIC; 12, 29 μM (Escherichia coli, Micrococcus luteus) | [65] |
Tiahuramides C | Neuroprotective Antibacterial | IC50; 6 μM (SH-SY5Y cell line) MIC; 7, 7, 16 μM (A. salmonicida, V. anguillarum, S. baltica) | ||
Tiahuramides A | Antibacterial | MIC; 27, 33 μM (A. salmonicida, V. anguillarum) | ||
Phycoerythrin (PE) | Halomicronema sp. R31DM | Antioxidant | ND | [68] |
Polysaccharides | Oscillatoria simplicissima | Antioxidant Anticancer | 45.97% (DPPH) A-549 cell line | [38] |
Myc-glutaminol Palythine Asterina 330 | Scytonema sp. Lyngbya sp. | Antioxidant Photoprotective | ND | [19] |
1,3,5-triazine, 5-Nitro-3-cyano-2(1H)-pyridone acetic acid 5-methyl-2-phenyl indolizine | Oscillatoria sp. | Antimicrobial | ND | [74] |
scytonemin | Scytonema sp. Lyngbya sp. | Photoprotective | ND | [19] |
Shinorine | Leptolyngbya sp. | Photoprotective | ND | [78] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaysina, L.A.; Saraf, A.; Singh, P. Cyanobacteria in diverse habitats. In Cyanobacteria; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–28. [Google Scholar]
- Khalifa, S.A.M.; Shedid, E.S.; Saied, E.M.; Jassbi, A.R.; Jamebozorgi, F.H.; Rateb, M.E.; Du, M.; Abdel-Daim, M.M.; Kai, G.Y.; Al-Hammady, M.A.M.; et al. Cyanobacteria-From the Oceans to the Potential Biotechnological and Biomedical Applications. Mar. Drugs 2021, 19, 241. [Google Scholar] [CrossRef] [PubMed]
- Malliga, P.; Bela, R.B.; Shanmugapriya, N. Conversion of textile effluent wastewater into fertilizer using marine cyanobacteria along with different agricultural waste. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Krishnaraj Rathinam, N., Sani, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 87–111. [Google Scholar]
- Haberle, I.; Hrustić, E.; Petrić, I.; Pritišanac, E.; Šilović, T.; Magić, L.; Geček, S.; Budiša, A.; Blažina, M. Adriatic cyanobacteria potential for cogeneration biofuel production with oil refinery wastewater remediation. Algal Res. 2020, 50, 101978. [Google Scholar] [CrossRef]
- Ameen, F.; Al-Homaidan, A.A.; Alsamhary, K.; Al-Enazi, N.M.; AlNadhari, S. Bioremediation of ossein effluents using the filamentous marine cyanobacterium Cylindrospermum stagnale. Environ. Pollut. 2021, 284, 117507. [Google Scholar] [CrossRef]
- Mahata, C.; Das, P.; Khan, S.; Thaher, M.I.A.; Abdul Quadir, M.; Annamalai, S.N.; Al Jabri, H. The Potential of Marine Microalgae for the Production of Food, Feed, and Fuel (3F). Fermentation 2022, 8, 316. [Google Scholar] [CrossRef]
- Shiels, K.; Tsoupras, A.; Lordan, R.; Zabetakis, I.; Murray, P.; Kumar Saha, S. Anti-inflammatory and antithrombotic properties of polar lipid extracts, rich in unsaturated fatty acids, from the Irish marine cyanobacterium Spirulina subsalsa. J. Funct. Foods 2022, 94, 105124. [Google Scholar] [CrossRef]
- Mondal, A.; Bose, S.; Banerjee, S.; Patra, J.K.; Malik, J.; Mandal, S.K.; Kilpatrick, K.L.; Das, G.; Kerry, R.G.; Fimognari, C. Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs. Mar. Drugs 2020, 18, 476. [Google Scholar] [CrossRef]
- Rojas, V.; Rivas, L.; Cárdenas, C.; Guzmán, F. Cyanobacteria and eukaryotic microalgae as emerging sources of antibacterial peptides. Molecules 2020, 25, 5804. [Google Scholar] [CrossRef]
- Iwasaki, A.; Ohtomo, K.; Kurisawa, N.; Shiota, I.; Rahmawati, Y.; Jeelani, G.; Nozaki, T.; Suenaga, K.J. Isolation, structure determination, and total synthesis of hoshinoamide c, an antiparasitic lipopeptide from the marine cyanobacterium Caldora penicillata. J. Nat. Prod. 2020, 84, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Prabakaran, G.; Sampathkumar, P.; Kavisri, M.; Moovendhan, M. Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int. J. Biol. Macromol. 2020, 153, 256–263. [Google Scholar] [CrossRef] [PubMed]
- El-Fakharany, E.M.; Saad, M.H.; Salem, M.S.; Sidkey, N.M. Biochemical characterization and application of a novel lectin from the cyanobacterium Lyngabya confervoides MK012409 as an antiviral and anticancer agent. Int. J. Biol. Macromol. 2020, 161, 417–430. [Google Scholar] [CrossRef]
- Pan-utai, W.; Iamtham, S. Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochem. 2019, 82, 189–198. [Google Scholar] [CrossRef]
- Pagels, F.; Almeida, C.; Vasconcelos, V.; Guedes, A.C. Cosmetic Potential of Pigments Extracts from the Marine Cyanobacterium Cyanobium sp. Mar. Drugs 2022, 20, 481. [Google Scholar] [CrossRef] [PubMed]
- Favas, R.; Morone, J.; Martins, R.; Vasconcelos, V.; Lopes, G. Cyanobacteria and microalgae bioactive compounds in skin-ageing: Potential to restore extracellular matrix filling and overcome hyperpigmentation. J. Enzyme Inhib. Med. Chem. 2021, 36, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Kawazoe, Y.; Itakura, Y.; Inuzuka, T.; Omura, S.; Uemura, D. Structure-activity relationship study of the anti-obesity natural product yoshinone A. Chirality 2021, 33, 226–232. [Google Scholar] [CrossRef]
- Gammoudi, S.; Athmouni, K.; Nasri, A.; Diwani, N.; Grati, I.; Belhaj, D.; Bouaziz-Ketata, H.; Fki, L.; El Feki, A.; Ayadi, H. Optimization, isolation, characterization and hepatoprotective effect of a novel pigment-protein complex (phycocyanin) producing microalga: Phormidium versicolor NCC-466 using response surface methodology. Int. J. Biol. Macromol. 2019, 137, 647–656. [Google Scholar] [CrossRef]
- Teneva, I.; Batsalova, T.; Bardarov, K.; Moten, D.; Dzhambazov, B. A Novel Approach for Fast Screening of a Complex Cyanobacterial Extract for Immunomodulatory Properties and Antibacterial Activity. Appl. Sci. 2022, 12, 2847. [Google Scholar] [CrossRef]
- Vega, J.; Bonomi-Barufi, J.; Gomez-Pinchetti, J.L.; Figueroa, F.L. Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar. Drugs 2020, 18, 659. [Google Scholar] [CrossRef]
- Fagundes, M.B.; Alvarez-Rivera, G.; Mendiola, J.A.; Bueno, M.; Sánchez-Martínez, J.D.; Wagner, R.; Jacob-Lopes, E.; Zepka, L.Q.; Ibañez, E.; Cifuentes, A. Phytosterol-rich compressed fluids extracts from Phormidium autumnale cyanobacteria with neuroprotective potential. Algal Res. 2021, 55, 102264. [Google Scholar] [CrossRef]
- Kultschar, B.; Llewellyn, C. Secondary Metabolites in Cyanobacteria. In Secondary Metabolites—Sources and Applications; Ramasamy, V., Suresh, S.S.R., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 2. [Google Scholar]
- WHO. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 10 December 2022).
- Le, P.U.; Vo, T.S.; Kim, S.K. Marine Cyanobacteria: Applications in Food, Energy, and Pharmaceuticals. Encycl. Mar. Biotechnol. 2020, 4, 2161–2171. [Google Scholar] [CrossRef]
- Farrokh, P.; Sheikhpour, M.; Kasaeian, A.; Asadi, H.; Bavandi, R. Cyanobacteria as an eco-friendly resource for biofuel production: A critical review. Biotechnol. Prog. 2019, 35, e2835. [Google Scholar] [CrossRef]
- Martínez-Francés, E.; Escudero-Oñate, C. Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal Biotechnol. 2018, 6, 104–128. [Google Scholar] [CrossRef] [Green Version]
- Tabarzad, M.; Atabaki, V.; Hosseinabadi, T. Anti-inflammatory Activity of Bioactive Compounds from Microalgae and Cyanobacteria by Focusing on the Mechanisms of Action. Mol. Biol. Rep. 2020, 47, 6193–6205. [Google Scholar] [CrossRef]
- Lopes, G.; Clarinha, D.; Vasconcelos, V. Carotenoids from Cyanobacteria: A Biotechnological Approach for the Topical Treatment of Psoriasis. Microorganisms 2020, 8, 302. [Google Scholar] [CrossRef] [Green Version]
- da Costa, E.; Amaro, H.M.; Melo, T.; Guedes, A.C.; Domingues, M.R. Screening for polar lipids, antioxidant, and anti-inflammatory activities of Gloeothece sp. lipid extracts pursuing new phytochemicals from cyanobacteria. J. Appl. Phycol. 2020, 32, 3015–3030. [Google Scholar] [CrossRef]
- Rai, S.K.; Ganeshan, S.; Mariappan, R.; Rajendran, A.P.; Balasubramaniem, A.; Pugazhendhi, A.; Varalakshmi, P. Mesoporous nanoparticles for the delivery of (9S,E)-8-ethyl-9-methylnonadec-6-en-3-one (EME): A study of anti-inflammatory and tumor suppressing potential in RAW 264.7, He La and HepG2 cell lines. Process Biochem. 2021, 111, 1–11. [Google Scholar] [CrossRef]
- Kirk, R.D.; Picard, K.; Christian, J.A.; Johnson, S.L.; DeBoef, B.; Bertin, M.J. Unnarmicin D, an Anti-inflammatory Cyanobacterial Metabolite with delta and mu Opioid Binding Activity Discovered via a Pipeline Approach Designed to Target Neurotherapeutics. ACS Chem. Neurosci. 2020, 11, 4478–4488. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, L.; Zhao, Z. Malyngamide F possesses anti-inflammatory and antinociceptive activity in rat models of inflammation. Pain Res. Manag. 2021, 2021, 4919391. [Google Scholar] [CrossRef]
- Saad, M.H.; El-Fakharany, E.M.; Salem, M.S.; Sidkey, N.M. The use of cyanobacterial metabolites as natural medical and biotechnological tools: Review article. J. Biomol. Struct. Dyn. 2022, 40, 2828–2850. [Google Scholar] [CrossRef]
- Cai, W.; Matthew, S.; Chen, Q.Y.; Paul, V.J.; Luesch, H. Discovery of new A- and B-type laxaphycins with synergistic anticancer activity. Bioorg. Med. Chem. 2018, 26, 2310–2319. [Google Scholar] [CrossRef]
- Shishido, T.K.; Popin, R.V.; Jokela, J.; Wahlsten, M.; Fiore, M.F.; Fewer, D.P.; Herfindal, L.; Sivonen, K. Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins 2019, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Wunder, A.; Rothemund, M.; Schobert, R. Synthesis and anticancer activity of the proposed structure of caldoramide, an N-peptidyltetramate from the cyanobacterium Caldora penicillata. Tetrahedron 2018, 74, 5138–5142. [Google Scholar] [CrossRef]
- Fayyad, R.J.; Ali, A.N.M.; Dwaish, A.S.; Al-Abboodi, A.K.A. Anticancer activity of Spirulina platensis methanolic extracts against L20B and MCF7 human cancer cell lines. Plant Arch. 2019, 19, 1419–1426. [Google Scholar]
- Safavi, M.; Nowruzi, B.; Estalaki, S.; Shokri, M. Biological Activity of Methanol Extract from Nostoc sp. N42 and Fischerella sp. S29 Isolated from Aquatic and Terrestrial Ecosystems. Int. J. Algae 2019, 21, 373–391. [Google Scholar] [CrossRef]
- Elkomy, R.G.; Ismail, M.M. Crude sulfated polysaccharides extracted from marine cyanobacterium Oscillatoria simplicissima with evaluation antioxidant and cytotoxic activities. Iran. J. Microbiol. 2021, 13, 553–559. [Google Scholar] [CrossRef]
- Fathoni, I.; Petitbois, J.G.; Alarif, W.M.; Abdel-Lateff, A.; Al-Lihaibi, S.S.; Yoshimura, E.; Nogata, Y.; Vairappan, C.S.; Sholikhah, E.N.; Okino, T. Bioactivities of lyngbyabellins from cyanobacteria of Moorea and Okeania genera. Molecules 2020, 25, 3986. [Google Scholar] [CrossRef]
- Ahmad, I.Z.; Parvez, S.; Tabassum, H. Cyanobacterial peptides with respect to anticancer activity: Structural and functional perspective. Stud. Nat. Prod. Chem. 2020, 67, 345–388. [Google Scholar]
- Suenaga, K.; Iwasaki, A. Bioactive Substances from Marine Cyanobacteria. In Marine Natural Products; Springer: Singapore, 2020; pp. 277–295. [Google Scholar]
- Chen, Z.; Chen, N.; Fu, P.; Wang, W.; Bian, S.; Zhang, H.; Shen, S.; Han, B. Structure Elucidation of Two Intriguing Neo-Debromoaplysiatoxin Derivatives from Marine Cyanobacterium Lyngbya sp. Showing Strong Inhibition of Kv1.5 Potassium Channel and Differential Cytotoxicity. Molecules 2023, 28, 2786. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, P.M. Highlights of biosynthetic enzymes and natural products from symbiotic cyanobacteria. Nat. Prod. Rep. 2023. advance article. [Google Scholar] [CrossRef]
- Beckwitt, C.H.; Clark, A.M.; Wheeler, S.; Taylor, D.L.; Stolz, D.B.; Griffith, L.; Wells, A. Liver ‘organ on a chip’. Exp. Cell. Res. 2018, 363, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.; Abd-Elaziz, S.; Salama, A.; Eita, A.A.; Sitohy, M. Health protective actions of phycocyanin obtained from an Egyptian isolate of Spirulina platensis on albino rats. Eurasian J. Biosci. 2019, 13, 105–112. [Google Scholar]
- Mohamed, N.A.; Hashem, M.A.M.; Alzahrani, A.M.; Abdel-Moneim, A.M.; Abdou, H.M. Hepatoprotective effect of Spirulina platensis against carbon tetrachloride-induced liver injury in male rats. J. Pharm. Pharmacol. 2021, 73, 1562–1570. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Herath, K. Bioactive secondary metabolites in sea cucumbers and their potential to use in the functional food industry. Fish. Aquat. Sci. 2023, 26, 69–86. [Google Scholar] [CrossRef]
- Grewal, J. Gamma-aminobutyric acid (GABA): A versatile bioactive compound. Eur. J. Mol. Clin. Med. 2020, 7, 2020. [Google Scholar]
- Shiels, K.; Murray, P.; Saha, S.K. Marine cyanobacteria as potential alternative source for GABA production. Bioresour. Technol. Rep. 2019, 8, 100342. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Tsai, Y.Y.; Chang, L.S.; Chen, Y.J. Evaluation of Gallic Acid-Coated Gold Nanoparticles as an Anti-Aging Ingredient. Pharmaceuticals 2021, 14, 1071. [Google Scholar] [CrossRef]
- Morone, J.; Lopes, G.; Preto, M.; Vasconcelos, V.; Martins, R. Exploitation of Filamentous and Picoplanktonic Cyanobacteria for Cosmetic Applications: Potential to Improve Skin Structure and Preserve Dermal Matrix Components. Mar. Drugs 2020, 18, 486. [Google Scholar] [CrossRef]
- Nowruzi, B.; Sarvari, G.; Blanco, S. The cosmetic application of cyanobacterial secondary metabolites. Algal Res. 2020, 49, 101959. [Google Scholar] [CrossRef]
- Muller, T.D.; Bluher, M.; Tschop, M.H.; DiMarchi, R.D. Anti-obesity drug discovery: Advances and challenges. Nat. Rev. Drug Discov. 2022, 21, 201–223. [Google Scholar] [CrossRef] [PubMed]
- Bellver, M.; Costa, S.L.D.; Sanchez, B.A.; Vasconcelos, V.; Urbatzka, R. Inhibition of Intestinal Lipid Absorption by Cyanobacterial Strains in Zebrafish Larvae. Mar. Drugs 2021, 19, 161. [Google Scholar] [CrossRef]
- Tsuzuki, Y.; Tsukatani, Y.; Yamakawa, H.; Itoh, S.; Fujita, Y.; Yamamoto, H. Effects of Light and Oxygen on Chlorophyll d Biosynthesis in a Marine Cyanobacterium Acaryochloris marina. Plants 2022, 11, 915. [Google Scholar] [CrossRef]
- Freitas, S.; Silva, N.G.; Sousa, M.L.; Ribeiro, T.; Rosa, F.; Leao, P.N.; Vasconcelos, V.; Reis, M.A.; Urbatzka, R. Chlorophyll Derivatives from Marine Cyanobacteria with Lipid-Reducing Activities. Mar. Drugs 2019, 17, 229. [Google Scholar] [CrossRef] [Green Version]
- Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Mondal, S.; Seo, H.; Dae Lee, K.; Oh, J. Marine natural pigments as potential sources for therapeutic applications. Crit. Rev. Biotechnol. 2018, 38, 745–761. [Google Scholar] [CrossRef]
- Stone, N.L.; Murphy, A.J.; England, T.J.; O’Sullivan, S.E. A systematic review of minor phytocannabinoids with promising neuroprotective potential. Br. J. Pharmacol. 2020, 177, 4330–4352. [Google Scholar] [CrossRef]
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef]
- Balasa, A.F.; Chircov, C.; Grumezescu, A.M. Marine Biocompounds for Neuroprotection-A Review. Mar. Drugs 2020, 18, 290. [Google Scholar] [CrossRef]
- Touliabah, H.E.; Refaay, D.A. Enhancement of Anticancer, Antibacterial, and Acetylcholinesterase Inhibition Activities from Oscillatoria sancta under Starvation Conditions. Water 2023, 15, 664. [Google Scholar] [CrossRef]
- Koh, E.J.; Kim, K.J.; Choi, J.; Kang, D.H.; Lee, B.Y. Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Abeta(1-42)) induced neurotoxicity in PC12 cells. Neurosci. Lett. 2018, 673, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R. What causes neurodegenerative disease? Folia Neuropathol. 2020, 58, 93–112. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Ryu, G.H.; Choi, W.Y.; Yang, W.S.; Lee, H.W.; Ma, C.J. Protective Effect of Water Extracted Spirulina maxima on Glutamate-induced Neuronal Cell Death in Mouse Hippocampal HT22 Cell. Pharmacogn. Mag. 2018, 14, 242–247. [Google Scholar] [CrossRef]
- Levert, A.; Alvarino, R.; Bornancin, L.; Abou Mansour, E.; Burja, A.M.; Geneviere, A.M.; Bonnard, I.; Alonso, E.; Botana, L.; Banaigs, B. Structures and Activities of Tiahuramides A-C, Cyclic Depsipeptides from a Tahitian Collection of the Marine Cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2018, 81, 1301–1310. [Google Scholar] [CrossRef]
- Garcia-Sanchez, A.; Miranda-Diaz, A.G.; Cardona-Munoz, E.G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef]
- Renugadevi, K.; Valli Nachiyar, C.; Sowmiya, P.; Sunkar, S. Antioxidant activity of phycocyanin pigment extracted from marine filamentous cyanobacteria Geitlerinema sp TRV57. Biocatal. Agric. Biotechnol. 2018, 16, 237–242. [Google Scholar] [CrossRef]
- Patel, S.N.; Sonani, R.R.; Jakharia, K.; Bhastana, B.; Patel, H.M.; Chaubey, M.G.; Singh, N.K.; Madamwar, D. Antioxidant activity and associated structural attributes of Halomicronema phycoerythrin. Int. J. Biol. Macromol. 2018, 111, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, D.; Mavrogonatou, E.; Zervou, S.K.; Giannogonas, P.; Gkelis, S. Bioprospecting Sponge-Associated Marine Cyanobacteria to Produce Bioactive Compounds. Toxins 2020, 12, 73. [Google Scholar] [CrossRef]
- Browne, N.; Otero, P.; Murray, P.; Saha, S.K. Rapid Screening for Mycosporine-like Amino Acids (MAAs) of Irish Marine Cyanobacteria and Their Antioxidant Potential. Sustainability 2023, 15, 3792. [Google Scholar] [CrossRef]
- Dash, S.; Pradhan, S.; Sahoo, B.; Parida, S.; Rath, B. In vitro study of antioxidant, antimicrobial, and anticancer activities of two selected cyanobacteria found across Odisha coast, India. Syst. Microbiol. Biomanuf. 2023. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, P.; Quan, C.; Zhao, Z.; Gao, W.; Li, J.; Zu, X.; Fu, D.; Feng, S.; Bai, X.; et al. Cyanobacteria-derived peptide antibiotics discovered since 2000. Peptides 2018, 107, 17–24. [Google Scholar] [CrossRef]
- Elkomy, R.G. Screening for some marine cyanobacteria isolated from Red Sea Coast, Egypt producing antimicrobial activity. EurAsian J. Biosci. 2020, 14, 11–19. [Google Scholar]
- Bhuyar, P.; Rahim, M.H.A.; Maniam, G.P.; Ramaraj, R.; Govindan, N. Exploration of bioactive compounds and antibacterial activity of marine blue-green microalgae (Oscillatoria sp.) isolated from coastal region of west Malaysia. SN Appl. Sci. 2020, 2, 1906. [Google Scholar] [CrossRef]
- Grubisic, M.; Santek, B.; Zoric, Z.; Cosic, Z.; Vrana, I.; Gasparovic, B.; Coz-Rakovac, R.; Ivancic Santek, M. Bioprospecting of Microalgae Isolated from the Adriatic Sea: Characterization of Biomass, Pigment, Lipid and Fatty Acid Composition, and Antioxidant and Antimicrobial Activity. Molecules 2022, 27, 1248. [Google Scholar] [CrossRef]
- Rašić, Z.; Lacić, S.; Skočibušić, M. Evaluation of Antimicrobial Potential of the Marine Cyanobacterium, Rivularia mesenterica. J. Adv. Microbiol. 2019, 16, 1–11. [Google Scholar] [CrossRef]
- Karthika, N.; Muruganandam, A. Bioactive compounds and antimicrobial activity of cyanobacteria from south east coast of India. Int. J. Curr. Res. Life Sci. 2019, 8, 3027–3030. [Google Scholar]
- Joshi, D.; Mohandass, C.; Dhale, M. Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp. Appl. Biochem. Biotechnol. 2018, 184, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Suttisuwan, R.; Phunpruch, S.; Saisavoey, T.; Sangtanoo, P.; Thongchul, N.; Karnchanatat, A. Isolation and characterization of anti-inflammatory peptides derived from trypsin hydrolysis of microalgae protein (Synechococcus sp. VDW). Food Biotechnol. 2019, 33, 303–324. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, R.M.T.D.; Herath, K.H.I.N.M.; Sanjeewa, K.K.A.; Jayawardena, T.U. Recent Reports on Bioactive Compounds from Marine Cyanobacteria in Relation to Human Health Applications. Life 2023, 13, 1411. https://doi.org/10.3390/life13061411
Perera RMTD, Herath KHINM, Sanjeewa KKA, Jayawardena TU. Recent Reports on Bioactive Compounds from Marine Cyanobacteria in Relation to Human Health Applications. Life. 2023; 13(6):1411. https://doi.org/10.3390/life13061411
Chicago/Turabian StylePerera, R. M. T. D., K. H. I. N. M. Herath, K. K. Asanka Sanjeewa, and Thilina U. Jayawardena. 2023. "Recent Reports on Bioactive Compounds from Marine Cyanobacteria in Relation to Human Health Applications" Life 13, no. 6: 1411. https://doi.org/10.3390/life13061411
APA StylePerera, R. M. T. D., Herath, K. H. I. N. M., Sanjeewa, K. K. A., & Jayawardena, T. U. (2023). Recent Reports on Bioactive Compounds from Marine Cyanobacteria in Relation to Human Health Applications. Life, 13(6), 1411. https://doi.org/10.3390/life13061411