Prediction of Pseudomonas spp. Population in Food Products and Culture Media Using Machine Learning-Based Regression Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Pre-Processing
2.3. Modelling
2.4. Assessment of the Quality of Fit
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pérez-Rodríguez, F.; Valero, A. Predictive Microbiology in Foods, 1st ed.; Springer: New York, NY, USA, 2013; ISBN 9781461455202. [Google Scholar] [CrossRef]
- Possas, A.; Valero, A.; Pérez-Rodríguez, F. New software solutions for microbiological food safety assessment and management. Curr. Opin. Food Sci. 2022, 44, 100814. [Google Scholar] [CrossRef]
- Whiting, R.C. Microbial modeling in foods. Crit. Rev. Food Sci. Nutr. 1995, 35, 467–494. [Google Scholar] [CrossRef]
- Tarlak, F.; Pérez-Rodríguez, F. Development and validation of a one-step modelling approach for the determination of chicken meat shelf-life based on the growth kinetics of Pseudomonas spp. Food Sci. Technol. Int. 2022, 28, 672–678. [Google Scholar] [CrossRef]
- Bolívar, A.; Garrote Achou, C.; Tarlak, F.; Cantalejo, M.J.; Costa, J.C.C.P.; Pérez-Rodríguez, F. Modeling the Growth of Six Listeria monocytogenes Strains in Smoked Salmon Pâté. Foods 2023, 12, 1123. [Google Scholar] [CrossRef] [PubMed]
- Martino, K.G.; Marks, B.P. Comparing uncertainty resulting from two-step and global regression procedures applied to microbial growth models. J. Food Prot. 2007, 70, 2811–2818. [Google Scholar] [CrossRef]
- Possas, A.; Pérez-Rodríguez, F.; Tarlak, F.; García-Gimeno, R.M. Quantifying and modelling the inactivation of Listeria monocytogenes by electrolyzed water on food contact surfaces. J. Food Eng. 2021, 290, 110287. [Google Scholar] [CrossRef]
- Riordon, J.; Sovilj, D.; Sanner, S.; Sinton, D.; Young, E.W. Deep learning with microfluidics for biotechnology. Trends Biotechnol. 2019, 37, 310–324. [Google Scholar] [CrossRef]
- Golden, C.E.; Rothrock, M.J., Jr.; Mishra, A. Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms. Food Res. Int. 2019, 122, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Hiura, S.; Koseki, S.; Koyama, K. Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database. Sci. Rep. 2021, 11, 10613. [Google Scholar] [CrossRef] [PubMed]
- Tarlak, F.; Yücel, Ö. Application of a machine learning-based regression method to describe Listeria monocytogenes behaviour in milk. J. Food Nutr. Res. 2022, 61, 380–388. [Google Scholar]
- Yücel, Ö.; Tarlak, F. An intelligent based prediction of microbial behaviour in beef. Food Control 2023, 148, 109665. [Google Scholar] [CrossRef]
- Raposo, A.; Pérez, E.; de Faria, C.T.; Ferrús, M.A.; Carrascosa, C. Food spoilage by Pseudomonas spp.—An overview. Foodborne Pathog. Antibiot. Resist. 2016, 41–71. [Google Scholar] [CrossRef]
- Koyama, K.; Kubo, K.; Hiura, S.; Koseki, S. Is skipping the definition of primary and secondary models possible? Prediction of Escherichia coli O157 growth by machine learning. J. Microbiol. Methods 2022, 192, 106366. [Google Scholar] [CrossRef]
- Deringer, V.L.; Bartók, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csányi, G. Gaussian process regression for materials and molecules. Chem. Rev. 2021, 121, 10073–10141. [Google Scholar] [CrossRef]
- Magnus, I.; Virte, M.; Thienpont, H.; Smeesters, L. Combining optical spectroscopy and machine learning to improve food classification. Food Control 2021, 130, 108342. [Google Scholar] [CrossRef]
- Batchu, R.K.; Seetha, H. A generalized machine learning model for DDoS attacks detection using hybrid feature selection and hyperparameter tuning. Comput. Netw. 2021, 200, 108498. [Google Scholar] [CrossRef]
- Rashid, M.; Kamruzzaman, J.; Imam, T.; Wibowo, S.; Gordon, S. A tree-based stacking ensemble technique with feature selection for network intrusion detection. Appl. Intell. 2022, 52, 9768–9781. [Google Scholar] [CrossRef]
- Gu, W.; Vieira, A.R.; Hoekstra, R.M.; Griffin, P.M.; Cole, D. Use of random forest to estimate population attributable fractions from a case-control study of Salmonella enterica serotype Enteritidis infections. Epidemiol. Infect. 2015, 143, 2786–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Yu, W.; Wang, Y.; Lv, Q.; Li, C. Research on data correction method of micro air quality detector based on combination of partial least squares and random forest regression. IEEE Access 2021, 9, 99143–99154. [Google Scholar] [CrossRef]
- Pham, T.D.; Le, N.N.; Ha, N.T.; Nguyen, L.V.; Xia, J.; Yokoya, N.; Takeuchi, W. Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with fused sentinel-2 and ALOS-2 PALSAR-2 data in can Gio biosphere reserve, Vietnam. Remote Sens. 2020, 12, 777. [Google Scholar] [CrossRef] [Green Version]
- Yaka, H.; Insel, M.A.; Yucel, O.; Sadikoglu, H. A comparison of machine learning algorithms for estimation of higher heating values of biomass and fossil fuels from ultimate analysis. Fuel 2022, 320, 123971. [Google Scholar] [CrossRef]
- Johne, A.; Filter, M.; Gayda, J.; Buschulte, A.; Bandick, N.; Nöckler, K.; Mayer-Scholl, A. Survival of Trichinella spiralis in cured meat products. Vet. Parasitol. 2020, 287, 109260. [Google Scholar] [CrossRef]
- Yadav, S.; Shukla, S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 78–83. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Stamatiou, A.; Skandamis, P.; Nychas, G.J. Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions. Appl. Environ. Microbiol. 2006, 72, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Mao, Y.; Li, K.; Dong, P.; Liang, R.; Luo, X. Models of Pseudomonas growth kinetics and shelf life in chilled Longissimus dorsi muscles of beef. Asian-Australas. J. Anim. Sci. 2011, 24, 713–722. [Google Scholar] [CrossRef]
- Bruckner, S. Predictive Shelf Life Model for the Improvement of Quality Management in Meat Chains. Ph.D. Thesis, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 2010. [Google Scholar]
- Gospavic, R.; Kreyenschmidt, J.; Bruckner, S.; Popov, V.; Haque, N. Mathematical modelling for predicting the growth of Pseudomonas spp. in poultry under variable temperature conditions. Int. J. Food Microbiol. 2008, 127, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Cauchie, E.; Delhalle, L.; Baré, G.; Tahiri, A.; Taminiau, B.; Korsak, N.; Daube, G. Modeling the growth and interaction between Brochothrix thermosphacta, Pseudomonas spp., and Leuconostoc gelidum in minced pork samples. Front. Microbiol. 2020, 11, 639. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Niu, H.; Zhao, G.; Tian, L.; Huang, X.; Zhang, J.; Zhang, Q. Analysis of mathematical models of Pseudomonas spp. growth in pallet-package pork stored at different temperatures. Meat Sci. 2013, 93, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.D.D.A.; Piccoli, R.H.; Peres, A.D.P. Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values. Braz. J. Microbiol. 2017, 48, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Dalgaard, P.; Koutsoumanis, K. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. J. Microbiol. Methods 2001, 43, 183–196. [Google Scholar] [CrossRef]
Food Products | Temperature (°C) | NaCl Concentration (%) | Water Activity | pH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | σ | Min. | Max. | σ | Min. | Max. | σ | Min. | Max. | σ | |
Beef | 2.00 | 11.00 | 3.32 | - | - | - | 0.99 | 0.99 | 0.00 | 5.82 | 5.90 | 0.04 |
Culture medium | 0.00 | 25.00 | 7.07 | 0.00 | 5.00 | 1.93 | 0.95 | 1.00 | 0.01 | 4.01 | 7.40 | 0.70 |
Pork | 0.10 | 10.40 | 3.16 | - | - | - | 0.98 | 0.99 | 0.00 | 5.30 | 6.00 | 0.22 |
Poultry | 1.00 | 7.00 | 2.95 | - | - | - | 0.99 | 0.99 | 0.00 | 6.00 | 6.20 | 0.10 |
Regression Methods | R2 | RMSE | Bf | Af |
---|---|---|---|---|
Support vector regression | 0.866 | 0.899 | 1.017 | 1.101 |
Gaussian process regression | 0.910 | 0.738 | 1.020 | 1.095 |
Decision tree regression | 0.910 | 0.737 | 1.012 | 1.096 |
Random forest regression | 0.913 | 0.724 | 1.012 | 1.086 |
Hiura et al. [10] | This Study | |||||
---|---|---|---|---|---|---|
Beef | Culture Medium | Pork | Beef | Culture Medium | Pork | |
data points | 2887 | 77 | 1497 | 282 | 4315 | 595 |
R2 | 0.75 | 0.74 | 0.80 | 0.973 | 0.938 | 0.861 |
RMSE | 1.02 | 1.15 | 0.96 | 0.326 | 0.600 | 0.968 |
Bf | 0.98 | 0.99 | 0.91 | 1.006 | 1.019 | 1.052 |
Af | 1.47 | 1.37 | 1.46 | 1.086 | 1.185 | 1.408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarlak, F.; Yücel, Ö. Prediction of Pseudomonas spp. Population in Food Products and Culture Media Using Machine Learning-Based Regression Methods. Life 2023, 13, 1430. https://doi.org/10.3390/life13071430
Tarlak F, Yücel Ö. Prediction of Pseudomonas spp. Population in Food Products and Culture Media Using Machine Learning-Based Regression Methods. Life. 2023; 13(7):1430. https://doi.org/10.3390/life13071430
Chicago/Turabian StyleTarlak, Fatih, and Özgün Yücel. 2023. "Prediction of Pseudomonas spp. Population in Food Products and Culture Media Using Machine Learning-Based Regression Methods" Life 13, no. 7: 1430. https://doi.org/10.3390/life13071430
APA StyleTarlak, F., & Yücel, Ö. (2023). Prediction of Pseudomonas spp. Population in Food Products and Culture Media Using Machine Learning-Based Regression Methods. Life, 13(7), 1430. https://doi.org/10.3390/life13071430