Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders
Abstract
:1. Introduction
2. Noninvasive Functional Neuroimaging Methods
2.1. fMRI
2.1.1. Recent Advances in fMRI Technology
2.1.2. Applications of fMRI in Studying Brain Function
2.1.3. Recent Advances in Neuroimaging Techniques and Their Impact on Neuroscience Research
2.1.4. fMRI Data Analysis Methods or Algorithms
2.1.5. Recent Advancements in fMRI Technology Improved the Spatial and Temporal Resolution
2.2. EEG
2.2.1. Recent Advances in EEG Technology
2.2.2. Applications of EEG in Studying Brain Function and Neural Oscillations
2.2.3. Some Recent Developments in EEG Technology have Enhanced Its Utility in Studying Brain Activity and Disease
High-Density EEG and Advanced Electrode Design
Signal Processing and Analysis Techniques: Source Localization
Integration with Other Modalities
Wearable and Mobile EEG
2.3. The Limitations and Challenges Associated with fMRI and EEG Techniques
2.3.1. Spatial Resolution
2.3.2. Temporal Resolution
2.3.3. Signal-to-Noise Ratio (SNR)
2.3.4. Interpretation Challenges
3. Advanced Techniques in Neuroimaging
3.1. DTI
3.1.1. Recent Advances in DTI Technology
3.1.2. Applications of DTI in Studying Brain Connectivity and White Matter Tracts
3.2. Transcranial Electrical Stimulation (TES)
3.2.1. Recent Advances in TES Technology
3.2.2. Applications of TES in Stimulating the Brain and as a Potential Treatment for Schizophrenia and Chronic Pain
3.3. DTI and TES for Understanding Brain Connections and Researching Treatments for Disorders Such as Schizophrenia and Chronic Pain
3.3.1. Applications of DTI: Mapping White Matter Tracts
3.3.2. Applications of TES: Non-Invasive Brain Stimulation
3.4. Limitations, Challenges, Potential Future Directions, and Improvements Related to DTI and TES Techniques
3.4.1. Limitations and Challenges of DTI
3.4.2. Future Directions and Improvements for DTI
3.4.3. Limitations and Challenges of TES
3.4.4. Future Directions and Improvements in TES
4. Neuroimaging and Brain Functions
4.1. Neuroimaging Studies on Neurodevelopmental Disorders, Such as ASD and ADHD
4.1.1. TES in ASD
4.1.2. TES in ADHD
4.2. Neuroimaging Studies on Neurological Disorders, Such as AD and PD
4.2.1. TES in AD
4.2.2. TES in PD
4.3. tDCS in the Mentioned Neurodevelopmental and Neurological Disorders, Including Its Mechanisms of Action
4.3.1. ASD
4.3.2. ADHD
4.3.3. AD
4.3.4. PD
5. Summary of Recent Advances in Neuroimaging and Their Impact on Neuroscience Research and Clinical Practice
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Litwinczuk, M.C.; Trujillo-Barreto, N.; Muhlert, N.; Cloutman, L.; Woollams, A. Relating Cognition to both Brain Structure and Function: A Systematic Review of Methods. Brain Connect. 2023, 13, 120–132. [Google Scholar] [CrossRef]
- Morita, T.; Asada, M.; Naito, E. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions. Front. Hum. Neurosci. 2016, 10, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elam, J.S.; Glasser, M.F.; Harms, M.P.; Sotiropoulos, S.N.; Andersson, J.L.R.; Burgess, G.C.; Curtiss, S.W.; Oostenveld, R.; Larson-Prior, L.J.; Schoffelen, J.M.; et al. The Human Connectome Project: A retrospective. Neuroimage 2021, 244, 118543. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, E.; Saharkhiz, S.; Rajabion, L.; Oskouei, H.B.; Seraji, M.; Fayaz, F.; Saliminia, S.; Sadjadi, S.M.; Soltanian-Zadeh, H. Simultaneous electroencephalography-functional magnetic resonance imaging for assessment of human brain function. Front. Syst. Neurosci. 2022, 16, 934266. [Google Scholar] [CrossRef] [PubMed]
- Bringas-Vega, M.L.; Michel, C.M.; Saxena, S.; White, T.; Valdes-Sosa, P.A. Neuroimaging and global health. Neuroimage 2022, 260, 119458. [Google Scholar] [CrossRef] [PubMed]
- Sepede, G.; De Berardis, D.; Campanella, D.; Perrucci, M.G.; Ferretti, A.; Salerno, R.M.; Di Giannantonio, M.; Romani, G.L.; Gambi, F. Neural correlates of negative emotion processing in bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 60, 1–10. [Google Scholar] [CrossRef]
- Florence, L.; Lassi, D.L.S.; Kortas, G.T.; Lima, D.R.; de Azevedo-Marques Perico, C.; Andrade, A.G.; Torales, J.; Ventriglio, A.; De Berardis, D.; De Aquino, J.P.; et al. Brain Correlates of the Alcohol Use Disorder Pharmacotherapy Response: A Systematic Review of Neuroimaging Studies. Brain Sci. 2022, 12, 386. [Google Scholar] [CrossRef]
- Bollmann, S.; Barth, M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog. Neurobiol. 2021, 207, 101936. [Google Scholar] [CrossRef]
- Heunis, S.; Lamerichs, R.; Zinger, S.; Caballero-Gaudes, C.; Jansen, J.F.A.; Aldenkamp, B.; Breeuwer, M. Quality and denoising in real-time functional magnetic resonance imaging neurofeedback: A methods review. Hum. Brain Mapp. 2020, 41, 3439–3467. [Google Scholar] [CrossRef] [Green Version]
- Humpston, C.; Garrison, J.; Orlov, N.; Aleman, A.; Jardri, R.; Fernyhough, C.; Allen, P. Real-Time Functional Magnetic Resonance Imaging Neurofeedback for the Relief of Distressing Auditory-Verbal Hallucinations: Methodological and Empirical Advances. Schizophr. Bull. 2020, 46, 1409–1417. [Google Scholar] [CrossRef]
- Rana, M.; Ruiz, S.; Corzo, A.S.; Muehleck, A.; Eck, S.; Salinas, C.; Zamorano, F.; Silva, C.; Rea, M.; Batra, A.; et al. Use of Real-Time Functional Magnetic Resonance Imaging-Based Neurofeedback to Downregulate Insular Cortex in Nicotine-Addicted Smokers. J. Vis. Exp. 2020, 160, e59441. [Google Scholar] [CrossRef] [PubMed]
- Gross, J. Magnetoencephalography in Cognitive Neuroscience: A Primer. Neuron 2019, 104, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.H.; Witzel, T.; Hamalainen, M.S.; Nummenmaa, A. Combining Noninvasive Electromagnetic and Hemodynamic Measures of Human Brain Activity. In Brain and Human Body Modeling 2020: Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative(R) 2019 Meeting; Makarov, S.N., Noetscher, G.M., Nummenmaa, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 179–193. [Google Scholar]
- Lv, H.; Wang, Z.; Tong, E.; Williams, L.M.; Zaharchuk, G.; Zeineh, M.; Goldstein-Piekarski, A.N.; Ball, T.M.; Liao, C.; Wintermark, M. Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. AJNR Am. J. Neuroradiol. 2018, 39, 1390–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viessmann, O.; Polimeni, J.R. High-resolution fMRI at 7 Tesla: Challenges, promises and recent developments for individual-focused fMRI studies. Curr. Opin. Behav. Sci. 2021, 40, 96–104. [Google Scholar] [CrossRef]
- Yen, C.; Chiang, M.C. Examining the effect of online advertisement cues on human responses using eye-tracking, EEG, and MRI. Behav. Brain Res. 2021, 402, 113128. [Google Scholar] [CrossRef]
- Shen, J.; Xu, C. Analysis of Brain Activity Changes in Patients with Parkinson’s Disease Based on Resting-State Functional Magnetic Resonance Imaging. J. Health Eng. 2022, 2022, 8561351. [Google Scholar] [CrossRef]
- Spinosa, V.; Brattico, E.; Campo, F.; Logroscino, G. A systematic review on resting state functional connectivity in patients with neurodegenerative disease and hallucinations. Neuroimage Clin. 2022, 35, 103112. [Google Scholar] [CrossRef]
- Boutet, A.; Madhavan, R.; Elias, G.J.B.; Joel, S.E.; Gramer, R.; Ranjan, M.; Paramanandam, V.; Xu, D.; Germann, J.; Loh, A.; et al. Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nat. Commun. 2021, 12, 3043. [Google Scholar] [CrossRef]
- Zeng, C.; Chen, Z.; Yang, H.; Fan, Y.; Fei, L.; Chen, X.; Zhang, M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int. J. Biol. Sci. 2022, 18, 552–571. [Google Scholar] [CrossRef]
- Giraldo, D.L.; Smith, R.E.; Struyfs, H.; Niemantsverdriet, E.; De Roeck, E.; Bjerke, M.; Engelborghs, S.; Romero, E.; Sijbers, J.; Jeurissen, B. Investigating Tissue-Specific Abnormalities in Alzheimer’s Disease with Multi-Shell Diffusion MRI. J. Alzheimers Dis. 2022, 90, 1771–1791. [Google Scholar] [CrossRef]
- Raimondo, L.; Oliveira, L.A.F.; Heij, J.; Priovoulos, N.; Kundu, P.; Leoni, R.F.; van der Zwaag, W. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021, 243, 118503. [Google Scholar] [CrossRef] [PubMed]
- Warbrick, T. Simultaneous EEG-fMRI: What Have We Learned and What Does the Future Hold? Sensors 2022, 22, 2262. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Iriondo, I.; Jimenez-Marin, A.; Sierra, B.; Aginako, N.; Bonifazi, P.; Cortes, J.M. Brain Mapping of Behavioral Domains Using Multi-Scale Networks and Canonical Correlation Analysis. Front. Neurosci. 2022, 16, 889725. [Google Scholar] [CrossRef] [PubMed]
- Vanstrum, E.B.; Borzage, M.T.; Ha, J.; Chu, J.; Upreti, M.; Moats, R.A.; Lai, L.M.; Chiarelli, P.A. Development of an ultrafast brain MR neuronavigation protocol for ventricular shunt placement. J. Neurosurg. 2023, 138, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.-C.; Yen, C.; Chen, H.-L. Does Age Matter? Using Neuroscience Approaches to Understand Consumers’ Behavior towards Purchasing the Sustainable Product Online. Sustainability 2022, 14, 11352. [Google Scholar]
- Yen, C.; Chiang, M.-C. Trust me, if you can: A study on the factors that influence consumers’ purchase intention triggered by chatbots based on brain image evidence and self-reported assessments. Behav. Inf. Technol. 2021, 40, 1177–1194. [Google Scholar] [CrossRef]
- Omejc, N.; Peskar, M.; Miladinovic, A.; Kavcic, V.; Dzeroski, S.; Marusic, U. On the Influence of Aging on Classification Performance in the Visual EEG Oddball Paradigm Using Statistical and Temporal Features. Life 2023, 13, 391. [Google Scholar] [CrossRef]
- Vilou, I.; Varka, A.; Parisis, D.; Afrantou, T.; Ioannidis, P. EEG-Neurofeedback as a Potential Therapeutic Approach for Cognitive Deficits in Patients with Dementia, Multiple Sclerosis, Stroke and Traumatic Brain Injury. Life 2023, 13, 365. [Google Scholar] [CrossRef]
- Soler, A.; Moctezuma, L.A.; Giraldo, E.; Molinas, M. Automated methodology for optimal selection of minimum electrode subsets for accurate EEG source estimation based on Genetic Algorithm optimization. Sci. Rep. 2022, 12, 11221. [Google Scholar] [CrossRef]
- Munoz-Gutierrez, P.A.; Giraldo, E.; Bueno-Lopez, M.; Molinas, M. Localization of Active Brain Sources From EEG Signals Using Empirical Mode Decomposition: A Comparative Study. Front. Integr. Neurosci. 2018, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- Casson, A.J. Wearable EEG and beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Lioi, G.; Cury, C.; Perronnet, L.; Mano, M.; Bannier, E.; Lecuyer, A.; Barillot, C. Simultaneous EEG-fMRI during a neurofeedback task, a brain imaging dataset for multimodal data integration. Sci. Data 2020, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Poudel, G.R.; Jones, R.D. Multimodal Neuroimaging with Simultaneous fMRI and EEG. In Handbook of Neuroengineering; Thakor, N.V., Ed.; Springer: Singapore, 2020; pp. 1–23. [Google Scholar]
- Cohen, M.X. Where Does EEG Come From and What Does It Mean? Trends Neurosci. 2017, 40, 208–218. [Google Scholar] [CrossRef]
- Jee, S. Brain Oscillations and Their Implications for Neurorehabilitation. Brain Neurorehabilit. 2021, 14, e7. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhao, Y.; Shan, X.; Wei, H.L.; Guo, Y.; Chen, L.; Erkoyuncu, J.A.; Sarrigiannis, P.G. Brain functional and effective connectivity based on electroencephalography recordings: A review. Hum. Brain Mapp. 2022, 43, 860–879. [Google Scholar] [CrossRef]
- Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L.; Mesin, L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering 2023, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.; Kann, M.; Wang, Q. Neuromodulation of Neural Oscillations in Health and Disease. Biology 2023, 12, 371. [Google Scholar] [CrossRef]
- Boucher, S.; Arribarat, G.; Cartiaux, B.; Lallemand, E.A.; Peran, P.; Deviers, A.; Mogicato, G. Diffusion Tensor Imaging Tractography of White Matter Tracts in the Equine Brain. Front. Vet. Sci. 2020, 7, 382. [Google Scholar] [CrossRef]
- Boukadi, M.; Marcotte, K.; Bedetti, C.; Houde, J.C.; Desautels, A.; Deslauriers-Gauthier, S.; Chapleau, M.; Bore, A.; Descoteaux, M.; Brambati, S.M. Test-Retest Reliability of Diffusion Measures Extracted Along White Matter Language Fiber Bundles Using HARDI-Based Tractography. Front. Neurosci. 2018, 12, 1055. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Ma, X.; Wu, W.; Huang, F.; Yuan, C.; Guo, H. Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation. Magn. Reson. Med. 2015, 73, 1775–1785. [Google Scholar] [CrossRef]
- Qiu, A.; Mori, S.; Miller, M.I. Diffusion tensor imaging for understanding brain development in early life. Annu. Rev. Psychol. 2015, 66, 853–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwan, A.M.; Sunaert, S.; Schilling, K.; Descoteaux, M.; Landman, B.A.; Vandenbulcke, M.; Theys, T.; Dupont, P.; Emsell, L. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. Neuroimage 2022, 254, 119029. [Google Scholar] [CrossRef]
- Tae, W.S.; Ham, B.J.; Pyun, S.B.; Kang, S.H.; Kim, B.J. Current Clinical Applications of Diffusion-Tensor Imaging in Neurological Disorders. J. Clin. Neurol. 2018, 14, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Andica, C.; Kamagata, K.; Hatano, T.; Saito, Y.; Ogaki, K.; Hattori, N.; Aoki, S. MR Biomarkers of Degenerative Brain Disorders Derived From Diffusion Imaging. J. Magn. Reson. Imaging 2020, 52, 1620–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kritikos, M.; Huang, C.; Clouston, S.A.P.; Pellecchia, A.C.; Santiago-Michels, S.; Carr, M.A.; Hagan, T.; Kotov, R.; Gandy, S.; Sano, M.; et al. DTI Connectometry Analysis Reveals White Matter Changes in Cognitively Impaired World Trade Center Responders at Midlife. J. Alzheimers Dis. 2022, 89, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Lawlor-Savage, L.; Kusi, M.; Clark, C.M.; Goghari, V.M. No evidence for an effect of a working memory training program on white matter microstructure. Intelligence 2021, 86, 101541. [Google Scholar] [CrossRef]
- Guo, W.; He, Y.; Zhang, W.; Sun, Y.; Wang, J.; Liu, S.; Ming, D. A novel non-invasive brain stimulation technique: “Temporally interfering electrical stimulation”. Front. Neurosci. 2023, 17, 1092539. [Google Scholar] [CrossRef]
- Li, K.P.; Wu, J.J.; Zhou, Z.L.; Xu, D.S.; Zheng, M.X.; Hua, X.Y.; Xu, J.G. Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sci. 2023, 13, 451. [Google Scholar] [CrossRef]
- Krause, M.R.; Vieira, P.G.; Pack, C.C. Transcranial electrical stimulation: How can a simple conductor orchestrate complex brain activity? PLoS Biol. 2023, 21, e3001973. [Google Scholar] [CrossRef]
- Parlikar, R.; Vanteemar, S.S.; Shivakumar, V.; Narayanaswamy, C.J.; Rao, P.N.; Ganesan, V. High definition transcranial direct current stimulation (HD-tDCS): A systematic review on the treatment of neuropsychiatric disorders. Asian J. Psychiatr. 2021, 56, 102542. [Google Scholar] [CrossRef]
- Yavari, F.; Nitsche, M.A.; Ekhtiari, H. Transcranial Electric Stimulation for Precision Medicine: A Spatiomechanistic Framework. Front. Hum. Neurosci. 2017, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, A.E.; Dickler, M.; Renauld, E.; Lenglos, C.; Ferland, F.; Rouillard, C.; Leblond, J.; Fecteau, S. Concurrent Transcranial Direct Current Stimulation and Resting-State Functional Magnetic Resonance Imaging in Patients with Gambling Disorder. Brain Connect. 2021, 11, 815–821. [Google Scholar] [CrossRef]
- Nardo, D.; Creasey, M.; Negus, C.; Pappa, K.; Aghaeifar, A.; Reid, A.; Josephs, O.; Callaghan, M.F.; Crinion, J.T. Transcranial direct current stimulation with functional magnetic resonance imaging: A detailed validation and operational guide. Wellcome Open Res. 2021, 6, 143. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Shin, Y.I.; Hong, K.S. Systemic Review on Transcranial Electrical Stimulation Parameters and EEG/fNIRS Features for Brain Diseases. Front. Neurosci. 2021, 15, 629323. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Fang, X.; Tang, W.; Hui, L.; Chen, Y.; Zhang, C.; Tian, X. Effects and potential mechanisms of transcranial direct current stimulation (tDCS) on auditory hallucinations: A meta-analysis. Psychiatry Res. 2019, 273, 343–349. [Google Scholar] [CrossRef]
- Pacheco-Barrios, K.; Cardenas-Rojas, A.; Thibaut, A.; Costa, B.; Ferreira, I.; Caumo, W.; Fregni, F. Methods and strategies of tDCS for the treatment of pain: Current status and future directions. Expert Rev. Med. Devices 2020, 17, 879–898. [Google Scholar] [CrossRef]
- Lin, A.P.; Chiu, C.C.; Chen, S.C.; Huang, Y.J.; Lai, C.H.; Kang, J.H. Using High-Definition Transcranial Alternating Current Stimulation to Treat Patients with Fibromyalgia: A Randomized Double-Blinded Controlled Study. Life 2022, 12, 1364. [Google Scholar] [CrossRef]
- Brown, G.L.; Brown, M.T. Transcranial electrical stimulation in neurological disease. Neural Regen. Res. 2022, 17, 2221–2222. [Google Scholar] [CrossRef]
- Khan, A.; Yuan, K.; Bao, S.C.; Ti, C.H.E.; Tariq, A.; Anjum, N.; Tong, R.K. Can Transcranial Electrical Stimulation Facilitate Post-stroke Cognitive Rehabilitation? A Systematic Review and Meta-Analysis. Front. Rehabil. Sci. 2022, 3, 795737. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Chen, Q.; Fu, Y.; Zheng, K. Transcranial Direct Current Stimulation Enhances Cognitive Function in Patients with Mild Cognitive Impairment and Early/Mid Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Brain Sci. 2022, 12, 562. [Google Scholar] [CrossRef]
- Iordan, A.D.; Ryan, S.; Tyszkowski, T.; Peltier, S.J.; Rahman-Filipiak, A.; Hampstead, B.M. High-definition transcranial direct current stimulation enhances network segregation during spatial navigation in mild cognitive impairment. Cereb. Cortex 2022, 32, 5230–5241. [Google Scholar] [CrossRef] [PubMed]
- Brunelin, J.; Mondino, M.; Gassab, L.; Haesebaert, F.; Gaha, L.; Suaud-Chagny, M.F.; Saoud, M.; Mechri, A.; Poulet, E. Examining transcranial direct-current stimulation (tDCS) as a treatment for hallucinations in schizophrenia. Am. J. Psychiatry 2012, 169, 719–724. [Google Scholar] [CrossRef]
- Mondino, M.; Jardri, R.; Suaud-Chagny, M.F.; Saoud, M.; Poulet, E.; Brunelin, J. Effects of Fronto-Temporal Transcranial Direct Current Stimulation on Auditory Verbal Hallucinations and Resting-State Functional Connectivity of the Left Temporo-Parietal Junction in Patients With Schizophrenia. Schizophr. Bull. 2016, 42, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straudi, S.; Buja, S.; Baroni, A.; Pavarelli, C.; Pranovi, G.; Fregni, F.; Basaglia, N. The effects of transcranial direct current stimulation (tDCS) combined with group exercise treatment in subjects with chronic low back pain: A pilot randomized control trial. Clin. Rehabil. 2018, 32, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Luedtke, K.; Rushton, A.; Wright, C.; Jurgens, T.; Polzer, A.; Mueller, G.; May, A. Effectiveness of transcranial direct current stimulation preceding cognitive behavioural management for chronic low back pain: Sham controlled double blinded randomised controlled trial. BMJ 2015, 350, h1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arutiunian, V.; Gomozova, M.; Minnigulova, A.; Davydova, E.; Pereverzeva, D.; Sorokin, A.; Tyushkevich, S.; Mamokhina, U.; Danilina, K.; Dragoy, O. Structural brain abnormalities and their association with language impairment in school-aged children with Autism Spectrum Disorder. Sci. Rep. 2023, 13, 1172. [Google Scholar] [CrossRef]
- Bartolotti, J.; Sweeney, J.A.; Mosconi, M.W. Functional brain abnormalities associated with comorbid anxiety in autism spectrum disorder. Dev. Psychopathol. 2020, 32, 1273–1286. [Google Scholar] [CrossRef]
- Salari, N.; Rasoulpoor, S.; Rasoulpoor, S.; Shohaimi, S.; Jafarpour, S.; Abdoli, N.; Khaledi-Paveh, B.; Mohammadi, M. The global prevalence of autism spectrum disorder: A comprehensive systematic review and meta-analysis. Ital. J. Pediatr. 2022, 48, 112. [Google Scholar] [CrossRef]
- Shehata, L.A.O.; Ibrahim, O.; El-Kammash, T.H.; Gad, A.A. Brain volumetric and white matter structural connectivity alterations in autistic children: Case–control study. Egypt. J. Radiol. Nucl. Med. 2023, 54, 36. [Google Scholar] [CrossRef]
- Nisar, S.; Haris, M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol. Psychiatry 2023, 1–14. [Google Scholar] [CrossRef]
- Wolff, J.J.; Jacob, S.; Elison, J.T. The journey to autism: Insights from neuroimaging studies of infants and toddlers. Dev. Psychopathol. 2018, 30, 479–495. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Sohn, I.J.; Kim, N.; Sim, H.J.; Cheon, K.A. Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan. Exp. Neurobiol. 2015, 24, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Chen, H. Mapping brain functional and structural abnormities in autism spectrum disorder: Moving toward precision treatment. Psychoradiology 2022, 2, 78–85. [Google Scholar] [CrossRef]
- Desaunay, P.; Guillery, B.; Moussaoui, E.; Eustache, F.; Bowler, D.M.; Guenole, F. Brain correlates of declarative memory atypicalities in autism: A systematic review of functional neuroimaging findings. Mol. Autism 2023, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Goodwill, A.M.; Low, L.T.; Fox, P.T.; Fox, P.M.; Poon, K.K.; Bhowmick, S.S.; Chen, S.H.A. Meta-analytic connectivity modelling of functional magnetic resonance imaging studies in autism spectrum disorders. Brain Imaging Behav. 2023, 17, 257–269. [Google Scholar] [CrossRef]
- Gibbard, C.R.; Ren, J.; Skuse, D.H.; Clayden, J.D.; Clark, C.A. Structural connectivity of the amygdala in young adults with autism spectrum disorder. Hum. Brain Mapp. 2018, 39, 1270–1282. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; He, X.; Zhou, J.; Jin, C.; Shen, L.; Gao, Y.; Tian, M.; Zhang, H. Structural, Functional, and Molecular Imaging of Autism Spectrum Disorder. Neurosci. Bull. 2021, 37, 1051–1071. [Google Scholar] [CrossRef]
- Ali, H.; Rahman, H.; Lee, L.C.; Khan, N.Z.; Wu, L.S.; Mehra, S.; Mitra, M.; Labrique, A.B.; West, K.P., Jr.; Christian, P. Autism spectrum disorder in a rural community in Bangladesh: A mid-childhood assessment. Autism Res. 2022, 15, 328–339. [Google Scholar] [CrossRef]
- Breda, V.; Rohde, L.A.; Menezes, A.M.B.; Anselmi, L.; Caye, A.; Rovaris, D.L.; Vitola, E.S.; Bau, C.H.D.; Grevet, E.H. The neurodevelopmental nature of attention-deficit hyperactivity disorder in adults. Br. J. Psychiatry 2021, 218, 43–50. [Google Scholar] [CrossRef]
- von Gontard, A.; Hussong, J.; Yang, S.S.; Chase, J.; Franco, I.; Wright, A. Neurodevelopmental disorders and incontinence in children and adolescents: Attention-deficit/hyperactivity disorder, autism spectrum disorder, and intellectual disability-A consensus document of the International Children’s Continence Society. Neurourol. Urodyn. 2022, 41, 102–114. [Google Scholar] [CrossRef]
- Soman, S.M.; Vijayakumar, N.; Thomson, P.; Ball, G.; Hyde, C.; Silk, T.J. Functional and structural brain network development in children with attention deficit hyperactivity disorder. Hum. Brain Mapp. 2023, 44, 3394–3409. [Google Scholar] [CrossRef] [PubMed]
- Gonchigsuren, O.; Harada, M.; Hisaoka, S.; Higashi, K.; Matsumoto, Y.; Sumida, N.; Mori, T.; Ito, H.; Mori, K.; Miyoshi, M. Brain abnormalities in children with attention-deficit/hyperactivity disorder assessed by multi-delay arterial spin labeling perfusion and voxel-based morphometry. Jpn. J. Radiol. 2022, 40, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Pan, N.; Ji, S.; Qin, K.; Chen, Y.; Zhang, X.; He, M.; Suo, X.; Yu, Y.; Wang, S.; et al. Distinct brain structural abnormalities in attention-deficit/hyperactivity disorder and substance use disorders: A comparative meta-analysis. Transl. Psychiatry 2022, 12, 368. [Google Scholar] [CrossRef] [PubMed]
- Gehricke, J.G.; Kruggel, F.; Thampipop, T.; Alejo, S.D.; Tatos, E.; Fallon, J.; Muftuler, L.T. The brain anatomy of attention-deficit/hyperactivity disorder in young adults—A magnetic resonance imaging study. PLoS ONE 2017, 12, e0175433. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Seymour, K.E.; Crocetti, D.; Miller, M.I.; Mostofsky, S.H.; Rosch, K.S. Response control correlates of anomalous basal ganglia morphology in boys, but not girls, with attention-deficit/hyperactivity disorder. Behav. Brain Res. 2019, 367, 117–127. [Google Scholar] [CrossRef]
- Rubia, K. Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) and Its Clinical Translation. Front. Hum. Neurosci. 2018, 12, 100. [Google Scholar] [CrossRef] [Green Version]
- Tabiee, M.; Azhdarloo, A.; Azhdarloo, M. Comparing executive functions in children with attention deficit hyperactivity disorder with or without reading disability: A resting-state EEG study. Brain Behav. 2023, 13, e2951. [Google Scholar] [CrossRef]
- D’Urso, G.; Toscano, E.; Sanges, V.; Sauvaget, A.; Sheffer, C.E.; Riccio, M.P.; Ferrucci, R.; Iasevoli, F.; Priori, A.; Bravaccio, C.; et al. Cerebellar Transcranial Direct Current Stimulation in Children with Autism Spectrum Disorder: A Pilot Study on Efficacy, Feasibility, Safety, and Unexpected Outcomes in Tic Disorder and Epilepsy. J. Clin. Med. 2021, 11, 143. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, S.; Lugo-Marin, J.; Setien-Ramos, I.; Gisbert-Gustemps, L.; Arteaga-Henriquez, G.; Diez-Villoria, E.; Ramos-Quiroga, J.A. Transcranial direct current stimulation in Autism Spectrum Disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2021, 48, 89–109. [Google Scholar] [CrossRef]
- Luckhardt, C.; Schutz, M.; Muhlherr, A.; Mossinger, H.; Boxhoorn, S.; Dempfle, A.; Salvador, R.; Ruffini, G.; Pereira, H.C.; Castelo-Branco, M.; et al. Phase-IIa randomized, double-blind, sham-controlled, parallel group trial on anodal transcranial direct current stimulation (tDCS) over the left and right tempo-parietal junction in autism spectrum disorder-StimAT: Study protocol for a clinical trial. Trials 2021, 22, 248. [Google Scholar] [CrossRef]
- Prillinger, K.; Radev, S.T.; Amador de Lara, G.; Klobl, M.; Lanzenberger, R.; Plener, P.L.; Poustka, L.; Konicar, L. Repeated Sessions of Transcranial Direct Current Stimulation on Adolescents With Autism Spectrum Disorder: Study Protocol for a Randomized, Double-Blind, and Sham-Controlled Clinical Trial. Front. Psychiatry 2021, 12, 680525. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Kong, X.; Li, J.; Yang, J.; Huang, Y.; Huang, M.; Sun, B.; Su, J.; Chen, H.; Wan, G.; et al. Transcranial Direct Current Stimulation (tDCS) over the Left Dorsal Lateral Prefrontal Cortex in Children with Autism Spectrum Disorder (ASD). Neural Plast. 2021, 2021, 6627507. [Google Scholar] [CrossRef] [PubMed]
- Auvichayapat, P.; Intayot, K.; Udomchat, C.; Suphakunpinyo, C.; Patjanasoontorn, N.; Keeratitanont, K.; Tunkamnerdthai, O.; Jensen, M.P.; Humbert, A.T.; Auvichayapat, N. Long-term effects of transcranial direct current stimulation in the treatment of autism spectrum disorder: A randomized controlled trial. Dev. Med. Child Neurol. 2022, 65, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Sousa, B.; Martins, J.; Castelo-Branco, M.; Goncalves, J. Transcranial Direct Current Stimulation as an Approach to Mitigate Neurodevelopmental Disorders Affecting Excitation/Inhibition Balance: Focus on Autism Spectrum Disorder, Schizophrenia, and Attention Deficit/Hyperactivity Disorder. J. Clin. Med. 2022, 11, 2839. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, Z.; Cheng, L.; Tian, R.; Zhao, W.; Du, J.; Zhang, Y.; Wang, C. Effect of Transcranial Direct Current Stimulation on the Mismatch Negativity Features of Deviated Stimuli in Children With Autism Spectrum Disorder. Front. Neurosci. 2022, 16, 721987. [Google Scholar] [CrossRef]
- Wilson, J.E. Transcranial direct current stimulation for children with autism spectrum disorder: Implications for school-based settings. Dev. Med. Child Neurol. 2022, 65, 730–731. [Google Scholar] [CrossRef]
- Kang, J.; Fan, X.; Zhong, Y.; Casanova, M.F.; Sokhadze, E.M.; Li, X.; Niu, Z.; Geng, X. Transcranial Direct Current Stimulation Modulates EEG Microstates in Low-Functioning Autism: A Pilot Study. Bioengineering 2023, 10, 98. [Google Scholar] [CrossRef]
- Barham, H.; Buyukgok, D.; Aksu, S.; Soyata, A.Z.; Bulut, G.; Eskicioglu, G.; Baral Kulaksizoglu, I. Evidence for modulation of planning and working memory capacities by transcranial direct current stimulation in a sample of adults with attention deficit hyperactivity disorder. Neurosci. Lett. 2022, 790, 136883. [Google Scholar] [CrossRef]
- Dubreuil-Vall, L.; Gomez-Bernal, F.; Villegas, A.C.; Cirillo, P.; Surman, C.; Ruffini, G.; Widge, A.S.; Camprodon, J.A. Transcranial Direct Current Stimulation to the Left Dorsolateral Prefrontal Cortex Improves Cognitive Control in Patients with Attention-Deficit/Hyperactivity Disorder: A Randomized Behavioral and Neurophysiological Study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 439–448. [Google Scholar] [CrossRef]
- Guimaraes, R.S.Q.; Bandeira, I.D.; Barretto, B.L.; Barretto, T.L.; Wanke, T.; Alves, C.O.C.; de Carvalho, C.F.; Lucena, P.H.; Rodrigues-Silva, L.; Lucena, R. The effects of transcranial direct current stimulation on attention and inhibitory control of children and adolescents with attention-deficit/hyperactivity disorder (ADHD): Study protocol for a randomized, sham-controlled, triple-blind, cross-over trial. Medicine 2021, 100, e24283. [Google Scholar] [CrossRef]
- Leffa, D.T.; Grevet, E.H.; Bau, C.H.D.; Schneider, M.; Ferrazza, C.P.; da Silva, R.F.; Miranda, M.S.; Picon, F.; Teche, S.P.; Sanches, P.; et al. Transcranial Direct Current Stimulation vs Sham for the Treatment of Inattention in Adults with Attention-Deficit/Hyperactivity Disorder: The TUNED Randomized Clinical Trial. JAMA Psychiatry 2022, 79, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Nejati, V.; Movahed Alavi, M.; Nitsche, M.A. The Impact of Attention Deficit-hyperactivity Disorder Symptom Severity on the Effectiveness of Transcranial Direct Current Stimulation (tDCS) on Inhibitory Control. Neuroscience 2021, 466, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Liu, J.; Wu, Y.C.; Wei, Y.; Xie, H.J.; Zhang, T.; Zhang, Z. A randomized, sham-controlled trial of high-definition transcranial direct current stimulation on the right orbital frontal cortex in children and adolescents with attention-deficit hyperactivity disorder. Front. Psychiatry 2023, 14, 987093. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.S.; Schellenberg, G.; Lee, W.P. The role of structural variations in Alzheimer’s disease and other neurodegenerative diseases. Front. Aging Neurosci. 2022, 14, 1073905. [Google Scholar] [CrossRef]
- Chiang, M.C.; Tsai, T.Y.; Wang, C.J. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. Int. J. Mol. Sci. 2023, 24, 6328. [Google Scholar] [CrossRef]
- Chiang, M.C.; Cheng, Y.C.; Chen, S.J.; Yen, C.H.; Huang, R.N. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction. Exp. Cell Res. 2016, 347, 322–331. [Google Scholar] [CrossRef]
- Chiang, M.C.; Nicol, C.J.; Cheng, Y.C. Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress. Neurochem. Int. 2018, 115, 1–10. [Google Scholar] [CrossRef]
- Rajah Kumaran, K.; Yunusa, S.; Perimal, E.; Wahab, H.; Muller, C.P.; Hassan, Z. Insights into the Pathophysiology of Alzheimer’s Disease and Potential Therapeutic Targets: A Current Perspective. J. Alzheimers Dis. 2023, 91, 507–530. [Google Scholar] [CrossRef]
- Giannakopoulos, P.; Rodriguez, C.; Montandon, M.L.; Garibotto, V.; Haller, S.; Herrmann, F.R. Personality Impact on Alzheimer’s Disease—Signature and Vascular Imaging Markers: A PET-MRI Study. J. Alzheimers Dis. 2022, 85, 1807–1817. [Google Scholar] [CrossRef]
- Schwarz, A.J. The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders. Neurotherapeutics 2021, 18, 686–708. [Google Scholar] [CrossRef]
- Rittman, T. Neurological update: Neuroimaging in dementia. J. Neurol. 2020, 267, 3429–3435. [Google Scholar] [CrossRef]
- Rao, Y.L.; Ganaraja, B.; Murlimanju, B.V.; Joy, T.; Krishnamurthy, A.; Agrawal, A. Hippocampus and its involvement in Alzheimer’s disease: A review. 3 Biotech 2022, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Marquez, F.; Yassa, M.A. Neuroimaging Biomarkers for Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardanaz, C.G.; Ramirez, M.J.; Solas, M. Brain Metabolic Alterations in Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 3785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Guan, Z.; Zhang, Y.; Sun, W.; Li, W.; Hu, J.; Li, B.; Ye, G.; Meng, H.; Huang, X.; et al. Disrupted coupling between salience network segregation and glucose metabolism is associated with cognitive decline in Alzheimer’s disease—A simultaneous resting-state FDG-PET/fMRI study. Neuroimage Clin. 2022, 34, 102977. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Gan, Y.; Zhang, Z.; Cui, Y.; Zhang, Z.; Liu, Z.; Wang, Z.; Zhou, J.; Sossi, V.; Stoessl, A.J.; et al. Multimodal Imaging of Substantia Nigra in Parkinson’s Disease with Levodopa-Induced Dyskinesia. Mov. Disord. 2023, 38, 616–625. [Google Scholar] [CrossRef]
- Readman, M.R.; Crawford, T.J.; Linkenauger, S.A.; Bek, J.; Poliakoff, E. Motor imagery vividness and symptom severity in Parkinson’s disease. J. Neuropsychol. 2023, 17, 180–192. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, L.; Ou, R.; Wei, Q.; Gu, X.; Liu, K.; Lin, J.; Yang, T.; Xiao, Y.; Gong, Q.; et al. Motor progression marker for newly diagnosed drug-naive patients with Parkinson’s disease: A resting-state functional MRI study. Hum. Brain Mapp. 2023, 44, 901–913. [Google Scholar] [CrossRef]
- Bidesi, N.S.R.; Vang Andersen, I.; Windhorst, A.D.; Shalgunov, V.; Herth, M.M. The role of neuroimaging in Parkinson’s disease. J. Neurochem. 2021, 159, 660–689. [Google Scholar] [CrossRef]
- Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Prim. 2021, 7, 47. [Google Scholar] [CrossRef]
- McGregor, M.M.; McKinsey, G.L.; Girasole, A.E.; Bair-Marshall, C.J.; Rubenstein, J.L.R.; Nelson, A.B. Functionally Distinct Connectivity of Developmentally Targeted Striosome Neurons. Cell Rep. 2019, 29, 1419–1428.e5. [Google Scholar] [CrossRef]
- McGregor, M.M.; Nelson, A.B. Circuit Mechanisms of Parkinson’s Disease. Neuron 2019, 101, 1042–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajji, T.K. Transcranial Magnetic and Electrical Stimulation in Alzheimer’s Disease and Mild Cognitive Impairment: A Review of Randomized Controlled Trials. Clin. Pharm. 2019, 106, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Pini, L.; Pizzini, F.B.; Boscolo-Galazzo, I.; Ferrari, C.; Galluzzi, S.; Cotelli, M.; Gobbi, E.; Cattaneo, A.; Cotelli, M.S.; Geroldi, C.; et al. Brain network modulation in Alzheimer’s and frontotemporal dementia with transcranial electrical stimulation. Neurobiol. Aging 2022, 111, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.M.; Machado, D.; Silva-Sauerc, L.D.; Regis, C.T.; Mendes, C.; de Araujo, J.S.S.; de Araujo, K.D.T.; Costa, L.P.; Queiroz, M.; Leitao, M.M.; et al. Effects of multisite anodal transcranial direct current stimulation combined with cognitive stimulation in patients with Alzheimer’s disease and its neurophysiological correlates: A double-blind randomized clinical trial. Neurophysiol. Clin. 2022, 52, 117–127. [Google Scholar] [CrossRef]
- Marchi, L.Z.; Ferreira, R.G.D.; de Lima, G.N.S.; da Silva, J.A.S.; da Cruz, D.M.C.; Fernandez-Calvo, B.; Andrade, S. Multisite transcranial direct current stimulation associated with cognitive training in episodic memory and executive functions in individuals with Alzheimer’s disease: A case report. J. Med. Case Rep. 2021, 15, 185. [Google Scholar] [CrossRef]
- Rasmussen, I.D.; Boayue, N.M.; Mittner, M.; Bystad, M.; Gronli, O.K.; Vangberg, T.R.; Csifcsak, G.; Aslaksen, P.M. High-Definition Transcranial Direct Current Stimulation Improves Delayed Memory in Alzheimer’s Disease Patients: A Pilot Study Using Computational Modeling to Optimize Electrode Position. J. Alzheimers Dis. 2021, 83, 753–769. [Google Scholar] [CrossRef]
- Saxena, V.; Pal, A. Role of Transcranial Direct Current Stimulation in the Management of Alzheimer’s Disease: A Meta-analysis of Effects, Adherence and Adverse Effects. Clin. Psychopharmacol. Neurosci. 2021, 19, 589–599. [Google Scholar] [CrossRef]
- Ni, R.; Yuan, Y.; Yang, L.; Meng, Q.; Zhu, Y.; Zhong, Y.; Cao, Z.; Zhang, S.; Yao, W.; Lv, D.; et al. Novel Non-invasive Transcranial Electrical Stimulation for Parkinson’s Disease. Front. Aging Neurosci. 2022, 14, 880897. [Google Scholar] [CrossRef]
- Aksu, S.; Uslu, A.; Iscen, P.; Tulay, E.E.; Barham, H.; Soyata, A.Z.; Demirtas-Tatlidede, A.; Yildiz, G.B.; Bilgic, B.; Hanagasi, H.; et al. Does transcranial direct current stimulation enhance cognitive performance in Parkinson’s disease mild cognitive impairment? An event-related potentials and neuropsychological assessment study. Neurol. Sci. 2022, 43, 4029–4044. [Google Scholar] [CrossRef]
- Lee, S.A.; Kim, M.K. The Effect of Transcranial Direct Current Stimulation Combined with Visual Cueing Training on Motor Function, Balance, and Gait Ability of Patients with Parkinson’s Disease. Medicina 2021, 57, 1146. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Thrasher, A.T. Effect of concurrent transcranial direct current stimulation on instrumented timed up and go task performance in people with Parkinson’s disease: A double-blind and cross-over study. J. Clin. Neurosci. 2022, 100, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Sadler, C.M.; Kami, A.T.; Nantel, J.; Lommen, J.; Carlsen, A.N. Transcranial Direct Current Stimulation Over Motor Areas Improves Reaction Time in Parkinson’s Disease. Front. Neurol. 2022, 13, 913517. [Google Scholar] [CrossRef]
- Wong, P.L.; Yang, Y.R.; Huang, S.F.; Fuh, J.L.; Chiang, H.L.; Wang, R.Y. Transcranial Direct Current Stimulation on Different Targets to Modulate Cortical Activity and Dual-Task Walking in Individuals with Parkinson’s Disease: A Double Blinded Randomized Controlled Trial. Front. Aging Neurosci. 2022, 14, 807151. [Google Scholar] [CrossRef] [PubMed]
Study | Effects | Reference |
---|---|---|
Auvichayapat, P. et al. (2022) | The main objective of this paper is to investigate the lasting effects of tDCS on the treatment of patients with ASD. The study utilized a randomized controlled trial design, with the control group receiving sham stimulation and the experimental group receiving tDCS treatment. The study evaluated the efficacy of treatment at 6 and 12 months post-treatment. The findings suggest that compared to the control group, the experimental group who received tDCS demonstrated significant improvements in symptoms of autism, language, and social interaction 6 and 12 months after treatment. | [95] |
D’Urso, G. et al. (2021) | Research focuses on cerebellar transcranial direct current stimulation’s efficacy, feasibility, and safety in children with autism spectrum disorders. The study also explored unexpected results, such as the impact of tic disorders and epilepsy in these children. | [90] |
Kang, J. et al. (2023) | The main objective of this article is to explore the potential impact of tDCS on ASD by examining differences in EEG microstates between typically developing children and those with ASD. Moreover, the study aimed to compare EEG microstates and scores on the Autism Behavior Checklist before and after tDCS in children with ASD who were given either experimental or sham stimulation. The results indicate that tDCS could be a promising intervention for ASD. | [99] |
Prillinger, K. et al. (2021) | The main objective of this paper is to outline the study protocol for a double-blind, randomized, and sham-controlled clinical trial that seeks to examine the impact of repeated tDCS sessions on adolescents who have ASD. The paper includes comprehensive information on the study design, criteria for participant selection, intervention procedures, outcome measures, and statistical analysis approach. | [93] |
Qiu, J. et al. (2021) | This article centers on investigating the impact of tDCS on the left dorsolateral prefrontal cortex on cognitive and behavioral functioning among children with ASD. Specifically, the study aims to determine whether tDCS can enhance social communication, executive function, and behavior among children diagnosed with ASD. | [94] |
Sun, C. et al. (2022) | This paper aims to evaluate the effects of tDCS, one of the first-line treatments, on neuronal activity in children with autism. Specifically, the study explored the impact of tDCS on the MMN (mismatch negativity) response characteristics of brain-dysregulated stimuli in children with autism, which is related to the perception and language development of children with autism. The study used quantitative electroencephalography (QEEG) technology to measure brain electrical activity and compared tDCS with sham stimulation (sham) to assess its effect on MMN responses. | [97] |
Study | Effects | Reference |
---|---|---|
Barham, H. et al. (2022) | This research aims to explore the possibility of using tDCS to enhance executive function, with a focus on planning and working memory, in adults diagnosed with ADHD. Through conducting five consecutive sessions of neuropsychological tests, the study aims to compare the effectiveness of active tDCS and sham stimulation. The study concludes that tDCS can be an effective method to modulate cognitive functions in adults diagnosed with ADHD. | [100] |
Dubreuil-Vall, L. et al. (2021) | The study finds that anodal tDCS targeting the left dorsolateral prefrontal cortex modulates cognitive and physiological measures in the Eriksen flanker task in a state-dependent manner, suggesting that tDCS has a positive effect on cognition in ADHD. Furthermore, the study highlights the importance of event-related potentials as cross-sectional biomarkers for executive performance and their implications for developing personalized treatments for ADHD. | [101] |
Guimaraes, R.S.Q. et al. (2021) | The study utilizes a randomized, triple-blind, sham-controlled crossover design to assess the therapeutic effects, as well as the safety and feasibility of tDCS treatment. Multiple neuropsychological tests, including the Wechsler Intelligence Scale and the Neuropsychological Assessment Battery, will be administered to assess patient performance before and after tDCS treatment. The study’s outcomes may facilitate the development of alternative, non-pharmaceutical treatments for enhancing cognitive and behavioral performance in patients diagnosed with ADHD. | [102] |
Nejati, V. et al. (2021) | This research aimed to investigate the impact of tDCS on inhibitory control in children with ADHD and assess whether the severity of ADHD symptoms influenced the effectiveness of tDCS. The study involved two groups of children with ADHD, one with severe and the other with mild symptoms, who underwent anodal or sham tDCS over the right dorsolateral prefrontal cortex while performing inhibitory control tasks. | [104] |
Study | Effects | Reference |
---|---|---|
Andrade, S.M. et al. (2022) | The research is a double-blind, randomized clinical trial involving 36 AD patients. The results demonstrated that anodal tDCS + CS enhanced overall cognitive function and altered EEG brain activity in comparison to sham tDCS + CS, and changes in cognitive performance were related to modifications in EEG measures of brain activity. | [127] |
Rasmussen, I.D. et al. (2021) | The objective of this research paper is to explore the impact of personalized HD-tDCS on memory performance and brain structure in individuals with AD. The study utilized computer modeling based on each patient’s MRI to determine the most effective electrode placement for optimal treatment outcomes. The findings indicated that different electrode placements yielded the best outcomes for each individual patient. Furthermore, the study revealed that after receiving HD-tDCS treatment, participants in the experimental group demonstrated significant enhancements in delayed memory and Mini-Mental State Examination (MMSE) scores. The results also showed a significant positive correlation between the strength of the electric field in the prefrontal cortex and memory improvement in the experimental group. | [129] |
Saxena, V. et al. (2021) | The analysis included 11 studies of high quality, and the findings demonstrated that tDCS significantly improves cognition in AD compared to placebo treatment. Furthermore, anodal tDCS was observed to be more effective than cathodal and dual stimulation. The meta-analysis concludes that tDCS, particularly anodal tDCS, is a well-tolerated and effective intervention for treating AD. | [130] |
Study | Effects | Reference |
---|---|---|
Aksu et al. (2022) | Specifically, the study aimed to investigate the effectiveness and neural mechanisms of tDCS on cognitive functions in PD. The study involved 26 individuals with PD who received ten sessions of either active or sham tDCS applied over the dorsolateral prefrontal cortex twice daily for five days The results of the study showed that active tDCS led to improvements in delayed recall and executive functions and increased N1 and NoGo N2 amplitudes, which are believed to reflect attention, discriminability, cognitive control, and conflict monitoring. Overall, the article suggests that tDCS may have therapeutic potential for PD by improving cognitive control, episodic memory, and underlying neural mechanisms. | [132] |
Mishra and Thrasher (2022) | The study used a double-blind, cross-over, and sham-controlled design and included 20 participants with PD. The findings indicated that combining DLPFC stimulation with task performance resulted in improved cognitive performance, which persisted even after tDCS treatment had ended. However, there was no significant impact on mobility. | [134] |
Wong et al. (2022) | The study randomly assigned 36 participants to four groups: primary motor cortex tDCS, dorsal lateral prefrontal cortex (DLPFC) tDCS, cerebellum tDCS, or sham tDCS. The results indicated that all tDCS groups showed significantly improved dual-task gait speed compared to the pre-test. Still, the DLPFC tDCS group exhibited the most critical advance in dual-task walking speed and an increase in the silent period compared to the M1 tDCS and sham tDCS groups. | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, C.; Lin, C.-L.; Chiang, M.-C. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life 2023, 13, 1472. https://doi.org/10.3390/life13071472
Yen C, Lin C-L, Chiang M-C. Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life. 2023; 13(7):1472. https://doi.org/10.3390/life13071472
Chicago/Turabian StyleYen, Chiahui, Chia-Li Lin, and Ming-Chang Chiang. 2023. "Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders" Life 13, no. 7: 1472. https://doi.org/10.3390/life13071472
APA StyleYen, C., Lin, C. -L., & Chiang, M. -C. (2023). Exploring the Frontiers of Neuroimaging: A Review of Recent Advances in Understanding Brain Functioning and Disorders. Life, 13(7), 1472. https://doi.org/10.3390/life13071472