The Effect of Environmental Disasters on Endocrine Status, Hematology Parameters, Body Composition, and Physical Performance in Young Soccer Players: A Case Study of the Aral Sea Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Study Area
2.3. Procedures
2.4. Data Collections Tools
2.4.1. Anthropometric Measures Assessment
2.4.2. Somatotype Assessment
2.4.3. Physical Fitness Parameters
Yo-Yo Intermittent Recovery Test Level 1 (YYIRT1)
Dribbling Shuttle Test (DSt)
Goal Accuracy Test (GAt)
2.4.4. Blood Sample Test
2.4.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dvorak, J.; Junge, A.; Graf-Baumann, T.; Peterson, L. Football is the most popular sport worldwide. Am. J. Sport. Med. 2004, 32, 3–4. [Google Scholar] [CrossRef]
- Larkin, P.; Marchant, D.; Syder, A.; Farrow, D. An eye for talent: The recruiters’ role in the Australian Football talent pathway. PLoS ONE 2020, 15, e0241307. [Google Scholar] [CrossRef] [PubMed]
- Hammami, M.A.; Ben Abderrahman, A.; Rhibi, F.; Nebigh, A.; Coppalle, S.; Ravé, G.; Tabka, Z.; Zouhal, H. Somatotype Hormone Levels and Physical Fitness in Elite Young Soccer Players over a Two-Year Monitoring Period. J. Sport. Sci. Med. 2018, 17, 455–464. [Google Scholar]
- Eskandarifard, E.; Nobarii, H.; Sogut, M.; Clemente, F.M.; Figueiredo, A.J. Exploring interactions between maturity status and playing time with fluctuations in physical fitness and hormonal markers in youth soccer players. Sci. Rep. 2022, 12, 4463. [Google Scholar] [CrossRef]
- Perroni, F.; Vetrano, M.; Camolese, G.; Guidetti, L.; Baldari, C. Anthropometric and Somatotype Characteristics of Young Soccer Players: Differences Among Categories, Subcategories, and Playing Position. J. Strength Cond. Res. 2015, 29, 2097–2104. [Google Scholar] [CrossRef]
- Sarmento, H.; Anguera, M.T.; Pereira, A.; Araújo, D. Talent Identification and Development in Male Football: A Systematic Review. Sport. Med. 2018, 48, 907–931. [Google Scholar] [CrossRef] [PubMed]
- Peña-González, I.; Fernández-Fernández, J.; Moya-Ramón, M.; Cervell, E. Relative Age Effect, Biological Maturation, and Coaches’ Efficacy Expectations in Young Male Soccer Players. Res. Q. Exerc. Sport 2018, 89, 373–379. [Google Scholar] [CrossRef]
- Mirkov, D.M.; Kukolj, M.; Ugarkovic, D.; Koprivica, V.J.; Jaric, S. Development of anthropometric and physical performance profiles of young elite male soccer players: A longitudinal study. J. Strength Cond. Res. 2010, 24, 2677–2682. [Google Scholar] [CrossRef]
- Bergkamp, T.L.G.; Frencken, W.G.P.; Niessen, A.S.M.; Meijer, R.R.; den Hartigh, R.J.R. How soccer scouts identify talented players. Eur. J. Sport. Sci. 2022, 22, 994–1004. [Google Scholar] [CrossRef]
- Krivonogov, S.K.; Burr, G.S.; Kuzmin, Y.V.; Gusskov, S.A.; Kurmanbaev, R.K.; Kenshinbay, T.I.; Voyakin, D.A. The fluctuating Aral Sea: A multidisciplinary-based history of the last two thousand years. Gondwana Res. 2014, 26, 284–300. [Google Scholar] [CrossRef]
- Christian, O.; Michael, G.; Ilkhom, A.; Tom, L.; Nataliya, V. Aeolian dust deposition in the southern Aral Sea region (Uzbekistan): Ground-based monitoring results from the LUCA project. Quat. Int. 2017, 429, 86–99. [Google Scholar]
- Banks, J.R.; Heinold, B.; Schepanski, K. Impacts of the desiccation of the Aral Sea on the Central Asian dust life-cycle. J. Geophys. Res. Atmos. 2022, 127, e2022JD036618. [Google Scholar] [CrossRef]
- Boussetta, N.; Abedelmalek, S.; Khouloud, A.; Ben Anes, A.; Souissi, N. Does red orange juice supplementation has a protective effect on performance, cardiovascular parameters, muscle damage and oxidative stress markers following the Yo-Yo Intermittent Recovery Test Level-1 under polluted air? Int. J. Environ. Health Res. 2020, 30, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Zacharko, M.; Cichowicz, R.; Andrzejewski, M.; Chmura, P.; Kowalczuk, E.; Chmura, J.; Konefał, M. Air Pollutants Reduce the Physical Activity of Professional Soccer Players. Int. J. Environ. Res. Public Health. 2021, 18, 12928. [Google Scholar] [CrossRef]
- Sergeyev, O.; Burns, J.S.; Williams, P.L.; Korrick, S.A.; Lee, M.M.; Revich, B.; Hauser, R. The association of peripubertal serum concentrations of organochlorine chemicals and blood lead with growth and pubertal development in a longitudinal cohort of boys: A review of published results from the Russian Children’s Study. Rev. Environ. Health 2017, 32, 83–92. [Google Scholar] [CrossRef]
- Rzymski, P.; Klimaszyk, P.; Niedzielski, P.; Marszelewski, W.; Borowiak, D.; Nowiński, K.; Baikenzheyeva, A.; Kurmanbayev, R.; Aladin, N. Pollution with trace elements and rare-earth metals in the lower course of Syr Darya River and Small Aral Sea, Kazakhstan. Chemosphere 2019, 234, 81–88. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef]
- Boussetta, N.; Abedelmalek, S.; Aloui, K.; Souissi, N. The effect of air pollution on diurnal variation of performance in anaerobic tests, cardiovascular and hematological parameters, and blood gases on soccer players following the Yo-Yo Intermittent Recovery Test Level-1. Chronobiol. Int. 2017, 34, 903–920. [Google Scholar] [CrossRef]
- Bapayeva, G.; Poddighe, D.; Terzic, S.; Zhumadilova, A.; Kulbayeva, S.; Terzic, M. Organochlorine pesticides exposure in female adolescents: Potential impact on sexual hormones and interleukin-1 levels. Immunol. Res. 2018, 66, 756–760. [Google Scholar] [CrossRef]
- Fleisch, A.F.; Burns, J.S.; Williams, P.L.; Lee, M.M.; Sergeyev, O.; Korrick, S.A.; Hauser, R. Blood lead levels and serum insulin-like growth factor 1 concentrations in peripubertal boys. Environ. Health Perspect. 2013, 121, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Rodprasert, W.; Toppari, J.; Virtanen, H.E. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front. Endocrinol. 2021, 12, 706532. [Google Scholar] [CrossRef]
- Zawatski, W.; Lee, M.M. Male pubertal development: Are endocrine-disrupting compounds shifting the norms? J. Endocrinol. 2013, 218, R1–R12. [Google Scholar] [CrossRef]
- Iavicoli, I.; Fontana, L.; Bergamaschi, A. The effects of metals as endocrine disruptors. J. Toxicol. Environ. Health B Crit. Rev. 2009, 12, 206–223. [Google Scholar] [CrossRef]
- Zumbado, M.; Luzardo, O.P.; Lara, P.C.; Alvarez-León, E.E.; Losada, A.; Apolinario, R.; Serra-Majem, L.; Boada, L.D. Insulin-like growth factor-I (IGF-I) serum concentrations in healthy children and adolescents: Relationship to level of contamination by DDT-derivative pesticides. Growth Horm. IGF Res. 2010, 20, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Luzardo, O.P.; Henríquez-Hernández, L.A.; Valerón, P.F.; Lara, P.C.; Almeida-González, M.; Losada, A.; Zumbado, M.; Serra-Majem, L.; Alvarez-León, E.E.; Boada, L.D. The relationship between dioxin-like polychlorobiphenyls and IGF-I serum levels in healthy adults: Evidence from a cross-sectional study. PLoS ONE 2012, 7, e38213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yerkudov, V.O.; Zaslavsky, D.V.; Pugovkin, A.P.; Matchanov, A.T.; Rozumbetov, K.U.; Dauletov, R.K.; Esemuratova, S.P.; Nazhimov, I.I.; Puzyrev, V.G. Anthropometric Characteristics of Young Adults in Areas with Different Ecological Risks in the Aral Sea Region, Uzbekistan. Hum. Ecol. 2020, 10, 45–54. [Google Scholar] [CrossRef]
- Yerkudov, V.O.; Pugovkin, A.P.; Matchanov, A.T.; Nazhimov, I.I.; Rozumbetov, K.U. Anthropometric characteristics of junior male athletes—Karakalpakstan residents. Hum. Sport Med. 2022, 22, 16–22. (In Russian) [Google Scholar]
- Massa, M.; Moreira, A.; Costa, R.A.; Lima, M.R.; Thiengo, C.R.; Marquez, W.Q.; Coutts, A.J.; Aoki, M.S. Biological maturation influences selection process in youth elite soccer players. Biol. Sport 2022, 39, 435–441. [Google Scholar] [CrossRef]
- Soliman, A.; De Sanctis, V.; Elalaily, R.; Bedair, S. Advances in pubertal growth and factors influencing it: Can we increase pubertal growth? Indian J. Endocrinol. Metab. 2014, 18, 53–62. [Google Scholar] [CrossRef]
- Slimani, M.; Baker, J.S.; Cheour, F.; Taylor, L.; Bragazzi, N.L. Steroid hormones and psychological responses to soccer matches: Insights from a systematic review and meta-analysis. PLoS ONE 2017, 12, e0186100. [Google Scholar] [CrossRef]
- Serdar, B.; LeBlanc, W.G.; Norris, J.M.; Dickinson, L.M. Potential effects of polychlorinated biphenyls (PCBs) and selected organochlorine pesticides (OCPs) on immune cells and blood biochemistry measures: A cross-sectional assessment of the NHANES 2003–2004 data. Environ. Health 2014, 13, 114. [Google Scholar] [CrossRef] [Green Version]
- Freire, C.; Koifman, R.J.; Koifman, S. Hematological and hepatic alterations in Brazilian population heavily exposed to organochlorine pesticides. J. Toxicol. Environ. Health A 2015, 78, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Riebe, D.; Ehrman, J.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription. American College of Sports Medicine’s Guidelines for Exercise Testing and Prescription, 10th ed.; Guidelines for Exercise Testing and Prescription; Wolters Kluwer: Philadelphia, PA, USA, 2018; 472p. [Google Scholar]
- Nobari, H.; Aquino, R.; Clemente, F.M.; Khalafi, M.; Adsuar, J.C.; Pérez-Gómez, J. Description of acute and chronic load, training monotony and strain over a season and its relationships with well-being status: A study in elite under-16 soccer players. Physiol. Behav. 2020, 225, 113117. [Google Scholar] [CrossRef]
- Nobari, H.; Cholewa, J.M.; Pérez-Gómez, J.; Castillo-Rodríguez, A. Effects of 14-weeks betaine supplementation on pro-inflammatory cytokines and hematology status in professional youth soccer players during a competition season: A double blind, randomized, placebo-controlled trial. J. Int. Soc. Sport. Nutr. 2021, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Nobari, H.; Oliveira, R.; Clemente, F.M.; Pérez-Gómez, J.; Pardos-Mainer, E.; Ardigò, L.P. Somatotype, Accumulated Workload, and Fitness Parameters in Elite Youth Players: Associations with Playing Position. Children 2021, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.E.L.; Heath, B.H. Somatotyping. Development and Applications; Cambridge University Press: Cambridge, UK, 1990; 503p. [Google Scholar]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sport. Med. 2008, 38, 37–51. [Google Scholar] [CrossRef]
- Eskandarifard, E.; Silva, R.; Nobari, H.; Clemente, F.M.; Pérez-Gómez, J.; Figueiredo, A.J. Maturational effect on physical capacities and anabolic hormones in under-16 elite footballers: A cross-sectional study. Sport Sci. Health 2022, 18, 297–305. [Google Scholar] [CrossRef]
- Eskandarifard, E.; Nobari, H.; Clemente, F.M.; Silva, R.; Silva, A.F.; Figueiredo, A.J. Associations between match participation, maturation, physical fitness, and hormonal levels in elite male soccer player U15: A prospective study with observational cohort. BMC Pediatr. 2022, 22, 196. [Google Scholar] [CrossRef]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31, 010502. [Google Scholar] [CrossRef]
- Donnelly, A.A.; MacIntyre, T.E.; O’Sullivan, N.; Warrington, G.; Harrison, A.J.; Igou, E.R.; Jones, M.; Gidlow, C.; Brick, N.; Lahart, I.; et al. Environmental Influences on Elite Sport Athletes Well Being: From Gold, Silver, and Bronze to Blue Green and Gold. Front. Psychol. 2016, 7, 1167. [Google Scholar] [CrossRef] [Green Version]
- Rundell, K.W.; Anderson, S.D.; Sue-Chu, M.; Bougault, V.; Boulet, L.P. Air quality and temperature effects on exercise-induced bronchoconstriction. Compr. Physiol. 2015, 5, 579–610. [Google Scholar]
- Lichter, A.; Pestel, N.; Sommer, E. Productivity effects of air pollution: Evidence from professional soccer. Labour Econ. 2017, 48, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, C.; Després, J.P.; Tremblay, A. Plasma organochlorine concentrations in endurance athletes and obese individuals. Med. Sci. Sport. Exerc. 2002, 34, 1971–1975. [Google Scholar] [CrossRef]
- Andrzejewski, M.; Podgórski, T.; Kryściak, J.; Chmura, P.; Konefał, M.; Chmura, J.; Marynowicz, J.; Adrian, J.; Pluta, B. Anabolic-catabolic hormonal responses in youth soccer players during a half-season. Res. Sport. Med. 2021, 29, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Perroni, F.; Migliaccio, S.; Borrione, P.; Vetrano, M.; Amatori, S.; Sisti, D.; Rocchi, M.B.L.; Salerno, G.; Vescovo, R.D.; Cavarretta, E.; et al. Can Haematological and Hormonal Biomarkers Predict Fitness Parameters in Youth Soccer Players? A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 6294. [Google Scholar] [CrossRef]
- Nobari, H.; Kargarfard, M.; Minasian, V.; Cholewa, J.M.; Pérez-Gómez, J. The effects of 14-week betaine supplementation on endocrine markers, body composition and anthropometrics in professional youth soccer players: A double blind, randomized, placebo-controlled trial. J. Int. Soc. Sport. Nutr. 2021, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Muscella, A.; Vetrugno, C.; Spedicato, M.; Stefàno, E.; Marsigliante, S. The effects of training on hormonal concentrations in young soccer players. J. Cell. Physiol. 2019, 234, 20685–20693. [Google Scholar] [CrossRef] [PubMed]
- Slimani, M.; Nikolaidis, P.T. Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position and age group: A systematic review. J. Sport. Med. Phys. Fit. 2019, 59, 141–163. [Google Scholar] [CrossRef]
- Koundourakis, N.E.; Margioris, A.N. The complex and bidirectional interaction between sex hormones and exercise performance in team sports with emphasis on soccer. Hormones 2019, 18, 151–172. [Google Scholar] [CrossRef]
- Eliakim, A.; Nemet, D. Exercise training, physical fitness and the growth hormone-insulin-like growth factor-1 axis and cytokine balance. Med. Sport Sci. 2010, 55, 128–140. [Google Scholar]
- Zanetti, V.; Aoki, M.S.; Bradley, P.; Carling, C.; Marino, T.K.; Moreira, A. Running Performance and Hormonal, Maturity and Physical Variables in Starting and Non-Starting Elite U14 Soccer Players During a Congested Match Schedule. J. Hum. Kinet. 2021, 80, 287–295. [Google Scholar] [CrossRef]
- Deprez, D.; Coutts, A.J.; Lenoir, M.; Fransen, J.; Pion, J.; Philippaerts, R.; Vaeyens, R. Reliability and validity of the Yo-Yo intermittent recovery test level 1 in young soccer players. J. Sport. Sci. 2014, 32, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Saidi, K.; Zouhal, H.; Rhibi, F.; Tijani, J.M.; Boullosa, D.; Chebbi, A.; Hackney, A.C.; Granacher, U.; Bideau, B.; Ben Abderrahman, A. Effects of a six-week period of congested match play on plasma volume variations, hematological parameters, training workload and physical fitness in elite soccer players. PLoS ONE 2019, 14, e0219692. [Google Scholar] [CrossRef] [Green Version]
- Rampinini, E.; Sassi, A.; Azzalin, A.; Castagna, C.; Menaspà, P.; Carlomagno, D.; Impellizzeri, F.M. Physiological determinants of Yo-Yo intermittent recovery tests in male soccer players. Eur. J. Appl. Physiol. 2010, 108, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Mohr, M.; Amstrup, T.; Rysgaard, T.; Johansen, J.; Steensberg, A.; Pedersen, P.K.; Bangsbo, J. The yo-yo intermittent recovery test: Physiological response, reliability, and validity. Med. Sci. Sport. Exerc. 2003, 35, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.; Sparks, M.; Coetzee, B. Physiological and Sprint Kinetics Associated With the Yo-Yo Intermittent Recovery Test Level 1 Performances in Soccer Players. Int. J. Sport. Physiol. Perform. 2022, 17, 1382–1390. [Google Scholar] [CrossRef]
- Laiosa, M.D.; Tate, E.R. Fetal Hematopoietic stem cells are the canaries in the coal mine that portend later life immune deficiency. Endocrinology 2015, 156, 3458–3465. [Google Scholar] [CrossRef]
- Smith, B.W.; Rozelle, S.S.; Leung, A.; Ubellacker, J.; Parks, A.; Nah, S.K.; French, D.; Gadue, P.; Monti, S.; Chui, D.H.; et al. The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation. Blood 2013, 122, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Warren, A.M.; Grossmann, M. Haematological actions of androgens. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 1, 101653. [Google Scholar] [CrossRef]
- Mancera-Soto, E.; Ramos-Caballero, D.M.; Magalhaes, J.; Chaves Gomez, S.; Schmidt, W.F.J.; Cristancho-Mejía, E. Quantification of testosterone-dependent erythropoiesis during male puberty. Exp. Physiol. 2021, 106, 1470–1481. [Google Scholar] [CrossRef]
- Guo, W.; Bachman, E.; Li, M.; Roy, C.N.; Blusztajn, J.; Wong, S.; Chan, S.Y.; Serra, C.; Jasuja, R.; Travison, T.G.; et al. Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell 2013, 12, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Otake, S.; Sasaki, T.; Shirai, T.; Tsukiji, N.; Tamura, S.; Takano, K.; Ozaki, Y.; Suzuki-Inoue, K. CLEC-2 stimulates IGF-1 secretion from podoplanin-positive stromal cells and positively regulates erythropoiesis in mice. J. Thromb. Haemost. 2021, 19, 1572–1584. [Google Scholar] [CrossRef]
- Heo, H.R.; Chen, L.; An, B.; Kim, K.S.; Ji, J.; Hong, S.H. Hormonal regulation of hematopoietic stem cells and their niche: A focus on estrogen. Int. J. Stem Cells 2015, 8, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Aloui, K.; Abedelmalek, S.; Chtourou, H.; Wong, D.P.; Boussetta, N.; Souissi, N. Effects of time-of-day on oxidative stress, cardiovascular parameters, biochemical markers, and hormonal response following level-1 Yo-Yo intermittent recovery test. Physiol. Int. 2017, 104, 77–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radosavljević, T.; Mladenović, D.; Jakovljević, V.; Vucvić, D.; Rasć-Marković, A.; Hrncić, D.; Djuric, D.; Stanojlović, O. Oxidative stress in liver and red blood cells in acute lindane toxicity in rats. Hum. Exp. Toxicol. 2009, 28, 747–757. [Google Scholar] [CrossRef]
- Giles, L.V.; Koehle, M.S. The health effects of exercising in air pollution. Sport. Med. 2014, 44, 223–249. [Google Scholar] [CrossRef]
- Noon, M.R.; Eyre, E.L.J.; Ellis, M.; Myers, T.D.; Morris, R.O.; Mundy, P.D.; Penny, R.; Clarke, N.D. The influence of recruitment age and anthropometric and physical characteristics on the development pathway of English academy football players. Int. J. Sport. Physiol. Perform. 2021, 16, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, W.; Turner, A.; Weston, M.; Russell, M.; Johnston, M.; Kilduff, L. Neuromuscular, biochemical, endocrine, and mood responses to small-sided games’ training in professional soccer. J. Strength Cond. Res. 2018, 32, 2569–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toselli, S.; Campa, F.; Maietta Latessa, P.; Greco, G.; Loi, A.; Grigoletto, A.; Zaccagni, L. Differences in maturity and anthropometric and morphological characteristics among young male basketball and soccer players and non-players. Int. J. Environ. Res. Public Health 2021, 18, 3902. [Google Scholar] [CrossRef]
- Tounsi, M.; Aouichaoui, C.; Tabka, Z.; Trabelsi, Y. Specific physical performances among male elite youth soccer players: Effect of maturity status. J. Sport. Med. Phys. Fit. 2021, 61, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Abarghoueinejad, M.; Barreira, D.; Dias, C.; Guimarães, E.; Baxter-Jone, A.D.G.; Maia, J. Body physique, body composition, physical performance, technical and tactical skills, psychological development, and club characteristics of young male Portuguese soccer players: The INEX Study. Int. J. Environ. Res. Public Health 2021, 18, 3560. [Google Scholar] [CrossRef] [PubMed]
- Hermanussen, M.; Erofeev, S.; Scheffler, C. The socio-endocrine regulation of human growth. Acta Paediatr. 2022, 111, 2077–2081. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, O.; Marino, R.; De Luca, F.; Phillip, M.; Baron, J. Endocrine regulation of the growth plate. Horm. Res. Paediatr. 2005, 64, 157–165. [Google Scholar] [CrossRef] [PubMed]
- van der Eerden, B.C.; Karperien, M.; Wit, J.M. Systemic and local regulation of the growth plate. Endocr. Rev. 2003, 24, 782–801. [Google Scholar] [CrossRef] [Green Version]
- Song, S.H.; Lee, H.; Song, H.R.; Kim, M.J.; Park, J.H. Fibrocartilaginous intramedullary bone forming tumor of the distal femur mimicking osteosarcoma. J. Korean Med. Sci. 2013, 28, 631–635. [Google Scholar] [CrossRef] [Green Version]
- Johnston, F.E. Somatic Growth of the Infant and Preschool Child. In Human Growth; Volume 2: Postnatal Growth; Falkner, A., Tanner, J.M., Eds.; Plenum Press: New York, NY, USA; London, UK, 1978; pp. 91–117. [Google Scholar]
- Llurda-Almuzara, L.; Pérez-Bellmunt, A.; Labata-Lezaun, N.; López-de-Celis, C.; Moran, J.; Clark, N.C. Sex differences in pre-season anthropometric, balance and range-of-motion characteristics in elite youth soccer players. Healthcare 2022, 10, 819. [Google Scholar] [CrossRef]
- Ackerman, K.E.; Skrinar, G.S.; Medvedova, E.; Misra, M.; Miller, K.K. Estradiol levels predict bone mineral density in male collegiate athletes: A pilot study. Clin. Endocrinol. 2012, 76, 339–345. [Google Scholar] [CrossRef]
- Maïmoun, L.; Lumbroso, S.; Manetta, J.; Paris, F.; Leroux, J.L.; Sultan, C. Testosterone is significantly reduced in endurance athletes without impact on bone mineral density. Horm. Res. Paediatr. 2003, 59, 285–292. [Google Scholar] [CrossRef]
Parameter | EG (Mean, 95% CI) | CG (Mean, 95% CI) | p-Value | Cohen’s d |
---|---|---|---|---|
Hormonal parameters | ||||
IGF-1 (ng/mL) | 441.37 (415.90; 466.83) | 429.83 (406.21; 453.46) | 0.52 | – |
TT (nmol/L) | 27.65 (26.51; 28.79) | 32.69 (30.35; 35.04) | 0.001 ** | 1.02 |
E2 (pg/mL) | 20.85 (18.45; 23.24) | 26.87 (24.20; 29.54) | 0.001 ** | 0.89 |
C (nmol/L) | 237.88 (206.93; 268.82) | 232.69 (203.34; 262.05) | 0.97 | – |
Hematological parameters | ||||
RBC × 1012/L | 4.67 (4.46; 4.88) | 5.13 (4.95; 5.31) | 0.002 ** | 0.88 |
Hb (g/L) | 138.27 (136.52; 140.01) | 154.57 (143.22; 147.92) | 0.001 ** | 1.31 |
Ht (%) | 40.40 (39.07; 41.23) | 46.40 (44.29; 48.01) | 0.001 ** | 1.52 |
MCH (pg) | 29.92 (28.76; 31.17) | 28.53 (27.83; 28.24) | 0.12 | – |
MCV (fl) | 86.07 (84.64; 89.09) | 90.57 (88.65; 92.49) | 0.02 * | 0.67 |
Fe (µmol/L) | 16.98 (15.77; 18.19) | 17.68 (16.35; 19.01) | 0.42 | – |
Physical Fitness parameters | ||||
YYIR1 (m) | 1528.00 (1343.20; 1713.17) | 1742.67 (1572.67; 1912.60) | 0.04 * | 0.45 |
DSt (nbt) | 38.00 (36.00; 40.00) | 39.00 (38.00; 42.00) | 0.12 | – |
DSt (sec) | 26.63 (25.37; 27.90) | 27.51 (26.42; 28.59) | 0.36 | – |
Test | EG (Mean, 95% CI) | CG (Mean, 95%CI) |
---|---|---|
1 goal from 5 tries | 0.23 (0.08; 0.47) | 0.17 (0.04; 0.39) |
2 goals from 5 tries | 0.27 (0.10; 0.51) | 0.20 (0.06; 0.43) |
3 goals from 5 tries | 0.30 (0.13; 0.54) | 0.33 (0.15; 0.57) |
4 goals from 5 tries | 0.17 (0.04; 0.39) | 0.23 (0.08; 0.47) |
5 goals from 5 tries | 0.03 (0.0003; 0.21) | 0.07 (0.005; 0.26) |
Parameters | EG (Mean, 95% CI) | CG (Mean, 95% CI) | p-Value | Cohen’s d |
---|---|---|---|---|
Anthropometrical parameters | ||||
H (cm) | 174.03 (172.64; 175.42) | 175.27 (173.43; 177.16) | 0.48 | – |
BM (kg) | 67.84 (65.16; 70.52) | 64.14 (61.84; 66.44) | 0.04 * | 0.55 |
BMI (kg/m2) | 22.39 (21.39; 23.18) | 21.99 (21.24; 22.74) | 0.54 | – |
SH (cm) | 85.99 (83.69; 88.29) | 81.91 (79.52; 84.30) | 0.01 * | 0.64 |
LL (cm) | 88.04 (86.14; 89.94) | 93.69 (92.06; 95.33) | 0.001 ** | 1.19 |
Diameters | ||||
BACD (cm) | 34.26 (33.41; 35.11) | 32.33 (31.10; 33.53) | 0.02 * | 0.69 |
APCD (cm) | 18.82 (18.20; 19.43) | 17.84 (17.44; 18.26) | 0.02 * | 0.71 |
PBD (cm) | 27.45 (26.91; 27.99) | 26.08 (25.22; 29.94) | 0.01 * | 0.71 |
WD (cm) | 6.06 (5.85; 6.22) | 5.81 (5.68; 5.95) | 0.01 * | 0.53 |
KD (cm) | 9.07 (8.81; 9.35) | 8.55 (8.34; 8.76) | 0.001 ** | 0.83 |
ED (cm) | 8.86 (8.57; 9.17) | 8.25 (7.99; (8.51) | 0.001 ** | 0.82 |
AD (cm) | 7.12 (7.01; 7.84) | 6.84 (6.62; 7.07) | 0.02 * | 0.66 |
Circumference | ||||
UAC (cm) | 30.45 (29.50; 31.40) | 32.28 (30.76; 33.80) | 0.11 | – |
CC (cm) | 35.03 (34.22; 35.85) | 35.60 (34.96; 36.24) | 0.26 | – |
FC(cm) | 26.79 (26.19; 27.39) | 26.36 (25.75; 26.98) | 0.48 | – |
TC (cm) | 56.10 (54.73; 57.47) | 54.27 (52.80; 55.73) | 0.10 | – |
Skinfold | ||||
TS (cm) | 0.65 (0.60; 0.71) | 0.64 (0.58; 0.69) | 0.81 | – |
FS (cm) | 0.60 (0.53; 0.67) | 0.55 (0.49; 0.61) | 0.28 | – |
SS(cm) | 0.81 (0.75; 0.87) | 0.78 (0.72; 0.83) | 0.38 | – |
MBS (cm) | 0.94 (0.82; 1.06) | 0.89 (0.80; 0.98) | 0.64 | – |
SS (cm) | 0.76 (0.69; 0.83) | 0.68 (0.61; 0.76) | 0.05 * | 0.34 |
FTS (cm) | 0.88 (0.74; 1.02) | 0.74 (0.67; 0.81) | 0.22 | – |
CBS (cm) | 0.11 (0.10; 0.12) | 0.10 (0.09; 0.10) | 0.02 * | 0.60 |
Somatotype profile | ||||
Ectomorph | 2.71 (2.35; 3.08) | 3.52 (3.10; 3.95) | 0.01 * | 0.76 |
Mesomorph | 5.98 (5.64; 6.33) | 5.42 (5.08; 5.77) | 0.02 * | 0.61 |
Endomorph | 2.18 (2.00; 2.37) | 2.04 (1.84; 2.24) | 0.19 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erkudov, V.O.; Rozumbetov, K.U.; González-Fernández, F.T.; Pugovkin, A.P.; Nazhimov, I.I.; Matchanov, A.T.; Ceylan, H.İ. The Effect of Environmental Disasters on Endocrine Status, Hematology Parameters, Body Composition, and Physical Performance in Young Soccer Players: A Case Study of the Aral Sea Region. Life 2023, 13, 1503. https://doi.org/10.3390/life13071503
Erkudov VO, Rozumbetov KU, González-Fernández FT, Pugovkin AP, Nazhimov II, Matchanov AT, Ceylan Hİ. The Effect of Environmental Disasters on Endocrine Status, Hematology Parameters, Body Composition, and Physical Performance in Young Soccer Players: A Case Study of the Aral Sea Region. Life. 2023; 13(7):1503. https://doi.org/10.3390/life13071503
Chicago/Turabian StyleErkudov, Valerii O., Kenjabek U. Rozumbetov, Francisco Tomás González-Fernández, Andrey P. Pugovkin, Ilal I. Nazhimov, Azat T. Matchanov, and Halil İbrahim Ceylan. 2023. "The Effect of Environmental Disasters on Endocrine Status, Hematology Parameters, Body Composition, and Physical Performance in Young Soccer Players: A Case Study of the Aral Sea Region" Life 13, no. 7: 1503. https://doi.org/10.3390/life13071503
APA StyleErkudov, V. O., Rozumbetov, K. U., González-Fernández, F. T., Pugovkin, A. P., Nazhimov, I. I., Matchanov, A. T., & Ceylan, H. İ. (2023). The Effect of Environmental Disasters on Endocrine Status, Hematology Parameters, Body Composition, and Physical Performance in Young Soccer Players: A Case Study of the Aral Sea Region. Life, 13(7), 1503. https://doi.org/10.3390/life13071503