The Relationship between Fixation Stability and Retinal Structural Parameters in Children with Anisometropic, Strabismic and Mixed Amblyopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Procedure
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Birch, E.E. Amblyopia and binocular vision. Prog. Retin. Eye Res. 2013, 33, 67–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kates, M.M.; Beal, C.J. Amblyopia. JAMA 2021, 325, 408–408. [Google Scholar] [CrossRef]
- Magramm, I. Amblyopia: Etiology, Detection, and Treatment. Pediatr. Rev. 1992, 13, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Levi, D.M.; Knill, D.C.; Bavelier, D. Stereopsis and amblyopia: A mini-review. Vis. Res. 2015, 114, 17–30. [Google Scholar] [CrossRef]
- Sloper, J. The other side of amblyopia. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2016, 20, 1.e1–1.e13. [Google Scholar] [CrossRef] [PubMed]
- Gaier, E.D.; Gise, R.; Heidary, G. Imaging Amblyopia: Insights from Optical Coherence Tomography (OCT). Semin. Ophthalmol. 2019, 34, 303–311. [Google Scholar] [CrossRef]
- Chen, W.; Xu, J.; Zhou, J.; Gu, Z.; Huang, S.; Li, H.; Qin, Z.; Yu, X. Thickness of retinal layers in the foveas of children with anisometropic amblyopia. PLoS ONE 2017, 12, e0174537. [Google Scholar] [CrossRef] [Green Version]
- Andalib, D.; Javadzadeh, A.; Nabai, R.; Amizadeh, Y. Macular and Retinal Nerve Fiber Layer Thickness in Unilateral Anisometropic or Strabismic Amblyopia. J. Pediatr. Ophthalmol. Strabismus 2013, 50, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Al-Haddad, C.E.; Mollayess, G.M.E.L.; Cherfan, C.G.; Jaafar, D.F.; Bashshur, Z.F. Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br. J. Ophthalmol. 2011, 95, 1696–1699. [Google Scholar] [CrossRef]
- Can, G.D. Quantitative analysis of macular and peripapillary microvasculature in adults with anisometropic amblyopia. Int. Ophthalmol. 2020, 40, 1765–1772. [Google Scholar] [CrossRef]
- Karabulut, M.; Karabulut, S.; Sül, S.; Karalezli, A. Microvascular differences in amblyopic subgroups: An observational case–control study. Eur. J. Ophthalmol. 2021, 32, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Araki, S.; Miki, A.; Goto, K.; Yamashita, T.; Yoneda, T.; Haruishi, K.; Ieki, Y.; Kiryu, J.; Maehara, G.; Yaoeda, K. Foveal avascular zone and macular vessel density after correction for magnification error in unilateral amblyopia using optical coherence tomography angiography. BMC Ophthalmol. 2019, 19, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linderman, R.E.; Cava, J.A.; Salmon, A.E.; Chui, T.Y.; Marmorstein, A.D.; Lujan, B.J.; Rosen, R.B.; Carroll, J. Visual Acuity and Foveal Structure in Eyes with Fragmented Foveal Avascular Zones. Ophthalmol. Retin. 2020, 4, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.; Gu, X.; Wei, P.; Zhu, D. Optical coherence tomographic angiography in children with anisometropic amblyopia. BMC Ophthalmol. 2022, 22, 269. [Google Scholar] [CrossRef]
- Subramanian, V.; Jost, R.M.; Birch, E.E. A Quantitative Study of Fixation Stability in Amblyopia. Investig. Opthalmol. Vis. Sci. 2013, 54, 1998–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, K.R.; Cheng-Patel, C.S.; Jost, R.M.; Wang, Y.-Z.; Birch, E.E. Fixation instability during binocular viewing in anisometropic and strabismic children. Exp. Eye Res. 2019, 183, 29–37. [Google Scholar] [CrossRef]
- Shaikh, A.G.; Otero-Millan, J.; Kumar, P.; Ghasia, F.F. Abnormal Fixational Eye Movements in Amblyopia. PLoS ONE 2016, 11, e0149953. [Google Scholar] [CrossRef]
- Chung, S.T.; Kumar, G.; Li, R.W.; Levi, D.M. Characteristics of fixational eye movements in amblyopia: Limitations on fixation stability and acuity? Vis. Res. 2015, 114, 87–99. [Google Scholar] [CrossRef]
- González, E.G.; Wong, A.M.F.; Niechwiej-Szwedo, E.; Tarita-Nistor, L.; Steinbach, M.J. Eye Position Stability in Amblyopia and in Normal Binocular Vision. Investig. Opthalmol. Vis. Sci. 2012, 53, 5386–5394. [Google Scholar] [CrossRef] [Green Version]
- Koylu, M.T.; Ozge, G.; Kucukevcilioglu, M.; Mutlu, F.M.; Ceylan, O.M.; Akıncıoglu, D.; Ayyıldız, O. Fixation Characteristics of Severe Amblyopia Subtypes: Which One is Worse? Semin. Ophthalmol. 2017, 32, 553–558. [Google Scholar] [CrossRef]
- Wang, S.; Tian, T.; Zou, L.; Wu, S.; Liu, Y.; Wen, W.; Liu, H. Fixation Characteristics of Severe Amblyopia with Eccentric Fixation and Central Fixation Assessed by the MP-1 Microperimeter. Semin. Ophthalmol. 2021, 36, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Scaramuzzi, M.; Murray, J.; Otero-Millan, J.; Nucci, P.; Shaikh, A.G.; Ghasia, F.F. Fixation instability in amblyopia: Oculomotor disease biomarkers predictive of treatment effectiveness. Prog. Brain Res. 2019, 249, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zou, L.; Tian, T.; Zhan, A.; Liu, Y.; Wen, W.; Liu, H. Fixation stability improvement after occlusion treatment for severe amblyopia. Int. Ophthalmol. 2021, 42, 1007–1012. [Google Scholar] [CrossRef]
- Carpineto, P.; Ciancaglini, M.; Nubile, M.; Di Marzio, G.; Toto, L.; Di Antonio, L.; Mastropasqua, L. Fixation Patterns Evaluation by Means of MP-1 Microperimeter in Microstrabismic Children Treated for Unilateral Amblyopia. Eur. J. Ophthalmol. 2007, 17, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Maneschg, O.A.; Barboni, M.T.S.; Nagy, Z.Z.; Németh, J. Fixation stability after surgical treatment of strabismus and biofeedback fixation training in amblyopic eyes. BMC Ophthalmol. 2021, 21, 264. [Google Scholar] [CrossRef]
- Balaratnasingam, C.; Inoue, M.; Ahn, S.; McCann, J.; Dhrami-Gavazi, E.; Yannuzzi, L.A.; Freund, K.B. Visual Acuity Is Correlated with the Area of the Foveal Avascular Zone in Diabetic Retinopathy and Retinal Vein Occlusion. Ophthalmology 2016, 123, 2352–2367. [Google Scholar] [CrossRef]
- Gigengack, N.K.; Oertel, F.C.; Motamedi, S.; Bereuter, C.; Duchow, A.; Rust, R.; Bellmann-Strobl, J.; Ruprecht, K.; Schmitz-Hübsch, T.; Paul, F.; et al. Structure–function correlates of vision loss in neuromyelitis optica spectrum disorders. Sci. Rep. 2022, 12, 17545. [Google Scholar] [CrossRef]
- Miki, A.; Hayashida, M.; Inoue, Y.; Yamada, Y.; Nakamura, M. The relationship between foveal avascular zone and fixation stability in patients with a history of retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2753. [Google Scholar]
- Nourinia, R.; Rajavi, Z.; Sabbaghi, H.; Hassanpour, K.; Ahmadieh, H.; Kheiri, B.; Rajabpour, M. Optical Coherence Tomography Angiography in Patients with Amblyopia. Strabismus 2022, 30, 132–138. [Google Scholar] [CrossRef]
- Ye, H.; Wang, S.; Zhang, Y.; Fang, W.; Ye, H.; Chen, L.; Qiao, T. Microvasculature evaluation of anisometropic amblyopia children by Angio-OCT. Sci. Rep. 2023, 13, 2780. [Google Scholar] [CrossRef]
- Huang, X.; Liao, M.; Li, S.; Liu, L. The effect of treatment on retinal microvasculature in children with unilateral amblyopia. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2021, 25, 287.e1–287.e7. [Google Scholar] [CrossRef]
- Yilmaz, I.; Ocak, O.B.; Yilmaz, B.S.; Inal, A.; Gokyigit, B.; Taskapili, M. Comparison of quantitative measurement of foveal avascular zone and macular vessel density in eyes of children with amblyopia and healthy controls: An optical coherence tomography angiography study. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2017, 21, 224–228. [Google Scholar] [CrossRef]
- McKee, S.P.; Levi, D.M.; Movshon, J.A. The pattern of visual deficits in amblyopia. J. Vis. 2003, 3, 380–405. [Google Scholar] [CrossRef] [Green Version]
- Crossland, M.D.; Dunbar, H.M.P.B.; Rubin, G.S. Fixation stability measurement using the mp1 microperimeter. Retina 2009, 29, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Shahlaee, A.; Pefkianaki, M.; Hsu, J.; Ho, A.C. Measurement of Foveal Avascular Zone Dimensions and its Reliability in Healthy Eyes Using Optical Coherence Tomography Angiography. Am. J. Ophthalmol. 2016, 161, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Scaramuzzi, M.; Murray, J.; Otero-Millan, J.; Nucci, P.; Shaikh, A.G.; Ghasia, F.F. Part time patching treatment outcomes in children with amblyopia with and without fusion maldevelopment nystagmus: An eye movement study. PLoS ONE 2020, 15, e0237346. [Google Scholar] [CrossRef] [PubMed]
- Molina-Martín, A.; Piñero, D.P.; Pérez-Cambrodí, R.J. Normal Values for Microperimetry with the MAIA Microperimeter: Sensitivity and Fixation Analysis in Healthy Adults and Children. Eur. J. Ophthalmol. 2017, 27, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.U.; Saker, S.; Wilde, C.; Pellizzari, C.; Pallikaris, A.; Notaroberto, N.; Rubinstein, M.; Rui, C.; Limoli, P.; Smolek, M.K.; et al. Reference Clinical Database for Fixation Stability Metrics in Normal Subjects Measured with the MAIA Microperimeter. Transl. Vis. Sci. Technol. 2016, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Mølgaard, I.-L.; Biering-Sørensen, K.; Michelsen, N.; Elmer, J.; Rydberg, A. Amblyopia screening in kindergartens with tno stereotest. Acta Ophthalmol. 1984, 62, 156–162. [Google Scholar] [CrossRef]
- Miladinović, A.; Quaia, C.; Ajčević, M.; Diplotti, L.; Cumming, B.G.; Pensiero, S.; Accardo, A. Ocular-following responses in school-age children. PLoS ONE 2022, 17, e0277443. [Google Scholar] [CrossRef]
- Quaia, C.; FitzGibbon, E.J.; Optican, L.M.; Cumming, B.G. Binocular Summation for Reflexive Eye Movements: A Potential Diagnostic Tool for Stereodeficiencies. Investig. Opthalmol. Vis. Sci. 2018, 59, 5816–5822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strabismic Amblyopia | Anisometropic Amblyopia | Mixed Amblyopia | Control | p-Value | |
---|---|---|---|---|---|
BCVA (logMAR) | 0.362 ± 0.267 | 0.250 (0.800) | 0.450 ± 0.356 | 0.000 (0.100) | <0.001 |
Stereoacuity (arc seconds) | 400 (700) | 200 (720) | 800 (400) | 40 (15) | <0.001 |
Log BCEA 95% (log deg2) | 0.323 ± 0.496 | 0.079 ± 0.354 | 0.110 ± 0.425 | −0.316 ± 0.255 | 0.002 |
Log BCEA 63% (log deg2) | −0.143 ± −0.496 | −0.391 ± 0.336 | −0.397 ± 0.467 | −0.699 (0.602) | 0.006 |
FAZ area (mm2) | 0.270 ± 0.173 | 0.369 ± 0.190 | 0.354 ± 0.113 | 0.269 ± 0.112 | 0.277 |
Central macular thickness (µm) | 269.0 (83.0) | 269.4 ± 20.0 | 251.5 ± 23.7 | 261.1 ± 27.6 | 0.496 |
Central macular volume (µm3) | 0.21 ± 0.01 | 0.22 ± 0.01 | 0.21 ± 0.01 | 0.22 (0.37) | 0.291 |
Axial length (mm) | 21.86 ± 0.62 | 22.34 ± 1.79 | 22.22 (6.41) | 22.47 ± 1.20 | 0.563 |
Strabismic Amblyopia | Anisometropic Amblyopia | Mixed Amblyopia | Control | |
---|---|---|---|---|
BCVA (logMAR) | 0.189 ± 0.226 | 0.194 ± 0.191 | 0.333 ± 0.367 | −0.007 (0.100) |
p = 0.050 | p = 0.003 | p = 0.106 | p = 1.000 | |
Log BCEA 95% (log deg2) | 0.235 ± 0.380 | 0.240 ± 0.433 | 0.003 ± 0.449 | −0.052 (0.862) |
p = 0.097 | p = 0.066 | p = 0.855 | p = 0.132 | |
Log BCEA 63% (log deg2) | 0.288 ± 0.421 | 0.236 ± 0.424 | −0.069 ± 0.428 | −0.038 (0.778) |
p = 0.058 | p = 0.086 | p = 1.000 | p = 0.418 | |
FAZ area (mm2) | −0.025 (1.060) | 0.033 ± 0.091 | −0.002 ± 0.081 | −0.007 (0.130) |
p = 0.310 | p = 0.105 | p = 1.000 | p = 0.571 | |
Central macular thickness (µm) | 16.7 ± 17.2 | 19.1 ± 14.8 | 21.0 (19.0) | −0.143 (22.0) |
p = 0.025 | p < 0.001 | p = 0.063 | p = 1.000 | |
Central macular volume (µm3) | 0.01 ± 0.01 | 0.01 (0.03) | 0.01 ± 0.01 | 0.00 (0.37) |
p = 0.073 | p = 0.002 | p = 0.181 | p = 0.098 | |
Axial length (mm) | −0.12 ± 0.19 | −0.26 (6.5) | 0.64 ± 1.5 | 0.00 (0.33) |
p = 0.074 | p = 0.438 | p = 1.000 | p = 0.483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mompart-Martínez, R.; Argilés, M.; Cardona, G.; Cavero-Roig, L.; González-Sanchís, L.; Pighin, M.S. The Relationship between Fixation Stability and Retinal Structural Parameters in Children with Anisometropic, Strabismic and Mixed Amblyopia. Life 2023, 13, 1517. https://doi.org/10.3390/life13071517
Mompart-Martínez R, Argilés M, Cardona G, Cavero-Roig L, González-Sanchís L, Pighin MS. The Relationship between Fixation Stability and Retinal Structural Parameters in Children with Anisometropic, Strabismic and Mixed Amblyopia. Life. 2023; 13(7):1517. https://doi.org/10.3390/life13071517
Chicago/Turabian StyleMompart-Martínez, Raquel, Marc Argilés, Genis Cardona, Lluís Cavero-Roig, Lluís González-Sanchís, and Maria Soledad Pighin. 2023. "The Relationship between Fixation Stability and Retinal Structural Parameters in Children with Anisometropic, Strabismic and Mixed Amblyopia" Life 13, no. 7: 1517. https://doi.org/10.3390/life13071517
APA StyleMompart-Martínez, R., Argilés, M., Cardona, G., Cavero-Roig, L., González-Sanchís, L., & Pighin, M. S. (2023). The Relationship between Fixation Stability and Retinal Structural Parameters in Children with Anisometropic, Strabismic and Mixed Amblyopia. Life, 13(7), 1517. https://doi.org/10.3390/life13071517