Evaluation of Antioxidant Activity, Cytotoxicity, and Genotoxicity of Ptychotis verticillata Essential Oil: Towards Novel Breast Cancer Therapeutics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Essential Oil Extraction
2.2. Qualitative and Semi-Quantitative Analysis of PVEO
2.3. Antioxidant Activity
2.3.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Scavenging Assay
2.3.2. β-Carotene Bleaching Assay
2.3.3. Total Antioxidant Capacity (TAC)
2.4. Prediction of the Toxicity Analysis (Pro-Tox II)
2.5. Genotoxic Effect
2.5.1. Blood Sample Collection and Treatment of Cells
2.5.2. Comet Assay
2.5.3. Microscopic Observation
2.5.4. Statistical Analysis
2.6. Cytotoxic Activity against Breast Cancer Cell Lines
2.6.1. Cell Lines
2.6.2. Determination of Cell Viability
3. Results and Discussion
3.1. Phytochemical Composition
3.2. Antioxidant Activity
3.3. Prediction of Organ Toxicity and Toxicity Endpoints In Silico
3.4. Genotoxic Effect
3.5. The Anticancer Effect of PVEO on Breast Cancer Cell Lines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des. 2018, 24, 4771–4778. [Google Scholar] [CrossRef] [PubMed]
- Bencheikh, N.; Radi, F.Z.; Fakchich, J.; Elbouzidi, A.; Ouahhoud, S.; Ouasti, M.; Bouhrim, M.; Ouasti, I.; Hano, C.; Elachouri, M. Ethnobotanical, Phytochemical, Toxicological, and Pharmacological Properties of Ziziphus lotus (L.) Lam.: A Comprehensive Review. Pharmaceuticals 2023, 16, 575. [Google Scholar] [CrossRef] [PubMed]
- Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D.; Elamrani, A.; Hano, C. An Overview of Bioactive Flavonoids from Citrus Fruits. Appl. Sci. 2022, 12, 29. [Google Scholar] [CrossRef]
- Madariaga-Mazón, A.; Hernández-Alvarado, R.B.; Noriega-Colima, K.O.; Osnaya-Hernández, A.; Martinez-Mayorga, K. Toxicity of secondary metabolites. Phys. Sci. Rev. 2019, 4, 20180116. [Google Scholar] [CrossRef]
- Taibi, M.; Elbouzidi, A.; Ou-Yahia, D.; Dalli, M.; Bellaouchi, R.; Tikent, A.; Roubi, M.; Gseyra, N.; Asehraou, A.; Hano, C.; et al. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis verticillata Duby Essential Oil from Eastern Morocco: An In Vitro and In Silico Analysis. Antibiotics 2023, 12, 655. [Google Scholar] [CrossRef] [PubMed]
- Bencheikh, N.; Elbouzidi, A.; Kharchoufa, L.; Ouassou, H.; Merrouni, I.A.; Mechchate, H.; Es-Safi, I.; Hano, C.; Addi, M.; Bouhrim, M.; et al. Inventory of medicinal plants used traditionally to manage kidney diseases in north-eastern Morocco: Ethnobotanical fieldwork and pharmacological evidence. Plants 2021, 10, 1966. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, H.D.; Toscano, V.; Puglia, G.D.; Genovese, C.; Raccuia, S.A. Cynara cardunculus L. as a multipurpose crop for plant secondary metabolites production in marginal stressed lands. Front. Plant Sci. 2020, 11, 240. [Google Scholar] [CrossRef]
- Belkhodja, H.; Belhouala, K.; Nehal, S. Phytochemical Screening and Evaluation of the Antiarthritic Potentialof Ammoides pusilla Aqueous Extract on Freund’s Adjuvant-Induced Rheumatoid Arthritis. Pharm. Sci. 2020, 27, 170–182. [Google Scholar] [CrossRef]
- Kadda, S.; Belabed, A.; Loukili, E.H.; Hammouti, B.; Fadlaoui, S. Temperature and extraction methods effects on yields, fatty acids, and tocopherols of prickly pear (Opuntia ficusindica L.) seed oil of eastern region of Morocco. Environ. Sci. Pollut. Res. 2022, 29, 158–166. [Google Scholar] [CrossRef]
- Zrouri, H.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Kharchoufa, L.; Ouahhoud, S.; Ouassou, H.; El Assri, S.; Choukri, M. Phytochemical analysis, antioxidant activity, and nephroprotective effect of the Raphanus sativus aqueous extract. Mediterr. J. Chem. 2021, 11, 84. [Google Scholar] [CrossRef]
- Ouahabi, S.; Loukili, E.H.; Elbouzidi, A.; Taibi, M.; Bouslamti, M.; Nafidi, H.-A.; Salamatullah, A.M.; Saidi, N.; Bellaouchi, R.; Addi, M. Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays. Life 2023, 13, 1393. [Google Scholar] [CrossRef] [PubMed]
- Elbouzidi, A.; Taibi, M.; Ouassou, H.; Ouahhoud, S.; Ou-Yahia, D.; Loukili, E.H.; Aherkou, M.; Mansouri, F.; Bencheikh, N.; Laaraj, S. Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals 2023, 16, 840. [Google Scholar] [CrossRef]
- Chaudhary, S.; Chandrashekar, K.S.; Pai, K.S.R.; Setty, M.M.; Devkar, R.A.; Reddy, N.D.; Shoja, M.H. Evaluation of antioxidant and anticancer activity of extract and fractions of Nardostachys jatamansi DC in breast carcinoma. BMC Complement. Altern. Med. 2015, 15, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Elbouzidi, A.; Ouassou, H.; Aherkou, M.; Kharchoufa, L.; Meskali, N.; Baraich, A.; Mechchate, H.; Bouhrim, M.; Idir, A.; Hano, C.; et al. LC-MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals 2022, 15, 1156. [Google Scholar] [CrossRef] [PubMed]
- Kandsi, F.; Lafdil, F.Z.; Elbouzidi, A.; Bouknana, S.; Miry, A.; Addi, M.; Conte, R.; Hano, C.; Gseyra, N. Evaluation of Acute and Subacute Toxicity and LC-MS/MS Compositional Alkaloid Determination of the Hydroethanolic Extract of Dysphania ambrosioides (L.) Mosyakin and Clemants Flowers. Toxins 2022, 14, 475. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [Green Version]
- Ouahhoud, S.; Khoulati, A.; Kadda, S.; Bencheikh, N.; Mamri, S.; Ziani, A.; Baddaoui, S.; Eddabbeh, F.-E.; Lahmass, I.; Benabbes, R.; et al. Antioxidant Activity, Metal Chelating Ability and DNA Protective Effect of the Hydroethanolic Extracts of Crocus sativus Stigmas, Tepals and Leaves. Antioxidants 2022, 11, 932. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Strubbia, S.; Lyons, B.P.; Lee, R.J. Spatial and temporal variation of three biomarkers in Mytilus edulis. Mar. Pollut. Bull. 2019, 138, 322–327. [Google Scholar] [CrossRef]
- Bartucci, M.; Morelli, C.; Mauro, L.; Ando’, S.; Surmacz, E. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res. 2001, 61, 6747–6754. [Google Scholar] [PubMed]
- Jlizi, S.; Lahmar, A.; Zardi-Bergaoui, A.; Ascrizzi, R.; Flamini, G.; Harrath, A.H.; Chekir-Ghedira, L.; Jannet, H. Ben Chemical composition and cytotoxic activity of the fractionated trunk bark essential oil from tetraclinis articulata (Vahl) mast. growing in tunisia. Molecules 2021, 26, 1110. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chen, H.; Chen, H.; Zhong, B.; Luo, X.; Chun, J. Antioxidant and Anticancer Activities of Essential Oil from Gannan Navel Orange Peel. Molecules 2017, 22, 1391. [Google Scholar] [CrossRef]
- Memar, M.Y.; Raei, P.; Alizadeh, N.; Aghdam, M.A.; Kafil, H.S. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Rev. Med. Microbiol. 2017, 28, 63–68. [Google Scholar] [CrossRef]
- Silva, E.R.; de Carvalho, F.O.; Teixeira, L.G.B.; Santos, N.G.L.; Felipe, F.A.; Santana, H.S.R.; Shanmugam, S.; Quintans Júnior, L.J.; de Souza Araújo, A.A.; Nunes, P.S. Pharmacological effects of carvacrol in in vitro studies: A review. Curr. Pharm. Des. 2018, 24, 3454–3465. [Google Scholar] [CrossRef] [PubMed]
- Hayani, M.; Bencheikh, N.; Ailli, A.; Bouhrim, M.; Elbouzidi, A.; Ouassou, H.; Kharchoufa, L.; Baraich, A.; Atbir, A.; Ayyad, F.Z.; et al. Quality Control, Phytochemical Profile, and Antibacterial Effect of Origanum compactum Benth. Essential Oil from Morocco. Int. J. Plant Biol. 2022, 13, 546–560. [Google Scholar] [CrossRef]
- Argane, R.; Benzaazoua, M.; Bouamrane, A.; Hakkou, R. Valorisation des rejets miniers du district Pb-Zn de Touissit-Boubker (région orientale-Maroc). Environ. Ingénierie Développement 2014, 66, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Tomi, P.; Bouyanzer, A.; Hammouti, B.; Desjobert, J.-M.; Costa, J.; Paolini, J. Chemical composition and antioxidant activity of essential oils and solvent extracts of Ptychotis verticillata from Morocco. Food Chem. Toxicol. 2011, 49, 533–536. [Google Scholar]
- Boulaghmen, F.; Chaouia, C.; Saidi, F. Composition chimique et propriétés antioxydante et antimicrobienne de l’huile essentielle d’Origanum floribundum Munby. Phytothérapie 2019, 17, 249–258. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phyther. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.; Mehta, A. In vitro evaluation of antioxidant activity of D-Limonene. Asian J. Pharm. Pharmacol. 2018, 4, 883–887. [Google Scholar] [CrossRef]
- Doak, S.H.; Manshian, B.; Jenkins, G.J.S.; Singh, N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat. Res. Toxicol. Environ. Mutagen. 2012, 745, 104–111. [Google Scholar] [CrossRef]
- Wilson, A.; Grabowski, P.; Elloway, J.; Ling, S.; Stott, J.; Doherty, A. Transforming early pharmaceutical assessment of genotoxicity: Applying statistical learning to a high throughput, multi end point in vitro micronucleus assay. Sci. Rep. 2021, 11, 2535. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Sadeghnia, H.R. Effect of safranal, a constituent of Crocus sativus (Saffron), on methyl methanesulfonate (MMS)–induced DNA damage in mouse organs: An alkaline single-cell gel electrophoresis (Comet) assay. DNA Cell Biol. 2007, 26, 841–846. [Google Scholar] [CrossRef]
- Tice, R.R.; Strauss, G.H. The single cell gel electrophoresis/comet assay: A potential tool for detecting radiation-induced DNA damage in humans. Stem Cells 1995, 13 (Suppl. 1), 207–214. [Google Scholar] [PubMed]
- Fairbairn, D.W.; Olive, P.L.; O’Neill, K.L. The comet assay: A comprehensive review. Mutat. Res. Genet. Toxicol. 1995, 339, 37–59. [Google Scholar] [CrossRef]
- Tice, R.R.; Andrews, P.W.; Hirai, O.; Singh, N.P. The single cell gel (SCG) assay: An electrophoretic technique for the detection of DNA damage in individual cells. Biol. React. Intermed. IV Mol. Cell Eff. Their Impact Hum. Health 1991, 283, 157–164. [Google Scholar]
- Llana-Ruiz-Cabello, M.; Maisanaba, S.; Puerto, M.; Prieto, A.I.; Pichardo, S.; Moyano, R.; González-Pérez, J.A.; Cameán, A.M. Genotoxicity evaluation of carvacrol in rats using a combined micronucleus and comet assay. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2016, 98, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Bacanlı, M.; Başaran, A.A.; Başaran, N. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food Chem. Toxicol. 2015, 81, 160–170. [Google Scholar] [CrossRef]
- Aydin, S.; Başaran, A.A.; Başaran, N. The effects of thyme volatiles on the induction of DNA damage by the heterocyclic amine IQ and mitomycin C. Mutat. Res. 2005, 581, 43–53. [Google Scholar] [CrossRef] [PubMed]
No. | Compound Name | Formula | Mol. Wt. | RT (min) | Peak Area (%) |
---|---|---|---|---|---|
1 | α-Thujene | C10H16 | 136.23 | 5.075 | 0.21 |
2 | α-Pinene | C10H16 | 136.23 | 5.204 | 1.61 |
3 | β-Pinene | C10H16 | 136.23 | 5.933 | 0.29 |
4 | β-Myrcene | C10H16 | 136.23 | 6.107 | 1.24 |
5 | (+)-2-Carene | C10H16 | 136.23 | 6.582 | 0.60 |
6 | β-Cymene | C10H14 | 134.22 | 6.732 | 9.35 |
7 | D-Limonene | C10H16 | 136.23 | 6.792 | 22.10 |
8 | γ-Terpinene | C10H16 | 136.23 | 7.290 | 9.78 |
9 | p-Menth-4(8)-en-3-one | C10H16O | 152.23 | 9.060 | 2.26 |
10 | p-Menth-1-en-4-ol | C10H18O | 154.25 | 9.334 | 0.94 |
11 | p-Menth-1-en-8-ol | C12H22O2 | 198.30 | 9.568 | 0.93 |
12 | Cinnamic aldehyde | C9H8O | 132.16 | 9.968 | 4.09 |
13 | 4,4,7a-Trimethyl-2,4,5,6,7,7a-hexahydro-1H-inden-1-one | C12H18O | 178.27 | 10.934 | 4.34 |
14 | Thymol | C10H14O | 150.22 | 11.076 | 1.52 |
15 | Carvacrol | C10H14O | 150.22 | 11.186 | 29.82 |
16 | Copaene | C15H24 | 204.35 | 12.303 | 0.38 |
17 | Caryophyllene | C15H24 | 204.35 | 12.976 | 3.57 |
18 | 1,5,9,9-Tetramethyl-1,4,7-cycloundecatriene | C15H24 | 204.35 | 13.457 | 0.85 |
19 | Valencen | C15H24 | 204.35 | 13.710 | 1.16 |
20 | Germacrene D | C15H24 | 204.35 | 13.817 | 1.56 |
21 | α-Muurolene | C15H24 | 204.35 | 14.018 | 0.82 |
22 | Δ-Cadinene | C15H24 | 204.35 | 14.313 | 1.96 |
23 | Eicosanoic acid | C20H40O2 | 312.50 | 14.772 | 0.62 |
Hydrocarbon monoterpenes | 45.18 | ||||
Oxygenated monoterpenes | 43.90 | ||||
Hydrocarbon sesquiterpenes | 10.30 | ||||
Oxygenated sesquiterpenes | 0.62 | ||||
Total identified (%) | 100 |
EO/Reference | TAC * | β-Carotene Bleaching Assay (µg/mL) | DPPH Scavenging Capacity IC50 (µg/mL) |
---|---|---|---|
PVEO | 258.98 ± 9.52 | 143.16 ± 2.17 | 258.11 ± 2.12 |
Ascorbic acid (AA) | - | - | 234.89 ± 2.36 |
Butylated hydroxytoluene (BHT) | - | 26.23 ± 5.92 | - |
No. | Hepatotoxicity | Carcinogenicity | Cytotoxicity | Immunotoxicity | Mutagenicity | Predicted LD50 (mg/kg) | Class |
---|---|---|---|---|---|---|---|
Probability | |||||||
1 | 0.86 | 0.55 | 0.98 | 0.78 | 0.73 | 5000 | V |
2 | 0.86 | 0.60 | 0.99 | 0.93 | 0.75 | 3700 | V |
3 | 0.80 | 0.66 | 0.97 | 0.95 * | 0.71 * | 4700 | V |
4 | 0.77 | 0.60 | 0.99 | 0.98 | 0.75 | 5000 | V |
5 | 0.78 | 0.71 | 0.69 | 0.74 | 0.81 | 4800 | V |
6 | 0.87 | 0.67 * | 0.98 | 0.98 | 0.89 | 2374 | V |
7 | 0.76 | 0.65 | 0.95 | 0.97 * | 0.82 * | 4400 | V |
8 | 0.83 | 0.60 | 0.98 | 0.92 | 0.82 | 2500 | V |
9 | 0.70 | 0.82 | 0.84 | 0.85 | 0.99 | 470 | IV |
10 | 0.80 | 0.72 | 0.99 | 0.83 | 0.88 | 1016 | IV |
11 | 0.72 | 0.76 | 0.90 | 0.64 | 0.99 | 2830 | V |
12 | 0.70 | 0.71 | 0.72 * | 0.92 | 0.98 | 1850 | IV |
13 | 0.68 | 0.58 | 0.90 | 0.98 | 0.93 | 5000 | V |
14 | 0.75 | 0.60 | 0.93 | 0.99 | 0.89 | 640 | IV |
15 | 0.75 | 0.60 | 0.96 | 0.99 | 0.89 | 810 | IV |
16 | 0.97 | 0.57 | 0.85 | 0.78 | 0.99 | 5000 | V |
17 | 0.80 | 0.70 | 0.95 | 0.54 * | 0.75 | 5300 | V |
18 | 0.82 | 0.76 | 0.79 | 0.97 | 0.87 | 3650 | V |
19 | 0.76 | 0.66 | 0.75 | 0.81 | 0.85 | 5000 | V |
20 | 0.80 | 0.73 | 0.83 | 0.80 * | 0.87 | 5300 | V |
21 | 0.83 | 0.80 | 0.76 | 0.68 | 0.60 | 4400 | V |
22 | 0.82 | 0.75 | 0.69 | 0.66 | 0.68 | 4390 | V |
23 | 0.52 | 0.63 | 0.74 | 0.99 | 1.00 | 900 | IV |
Treatments | IC50 Value ± SD (µg/mL) * | Selectivity Index (SI) ** | |||
---|---|---|---|---|---|
MDA-MB-231 | MCF-7 | PBMC | MCF-7 | MDA-MB-231 | |
PVEO | 19.72 ± 4.81 | 78.44 ± 5.23 | 311.83 ± 8.21 | 3.97 | 15.80 |
Cisplatin | 14.30 ± 4.22 | 4.17 ± 2.38 | 31.65 ± 5.41 | 7.57 | 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taibi, M.; Elbouzidi, A.; Ouahhoud, S.; Loukili, E.H.; Ou-Yahya, D.; Ouahabi, S.; Alqahtani, A.S.; Noman, O.M.; Addi, M.; Bellaouchi, R.; et al. Evaluation of Antioxidant Activity, Cytotoxicity, and Genotoxicity of Ptychotis verticillata Essential Oil: Towards Novel Breast Cancer Therapeutics. Life 2023, 13, 1586. https://doi.org/10.3390/life13071586
Taibi M, Elbouzidi A, Ouahhoud S, Loukili EH, Ou-Yahya D, Ouahabi S, Alqahtani AS, Noman OM, Addi M, Bellaouchi R, et al. Evaluation of Antioxidant Activity, Cytotoxicity, and Genotoxicity of Ptychotis verticillata Essential Oil: Towards Novel Breast Cancer Therapeutics. Life. 2023; 13(7):1586. https://doi.org/10.3390/life13071586
Chicago/Turabian StyleTaibi, Mohamed, Amine Elbouzidi, Sabir Ouahhoud, El Hassania Loukili, Douâae Ou-Yahya, Safae Ouahabi, Ali S. Alqahtani, Omar M. Noman, Mohamed Addi, Reda Bellaouchi, and et al. 2023. "Evaluation of Antioxidant Activity, Cytotoxicity, and Genotoxicity of Ptychotis verticillata Essential Oil: Towards Novel Breast Cancer Therapeutics" Life 13, no. 7: 1586. https://doi.org/10.3390/life13071586
APA StyleTaibi, M., Elbouzidi, A., Ouahhoud, S., Loukili, E. H., Ou-Yahya, D., Ouahabi, S., Alqahtani, A. S., Noman, O. M., Addi, M., Bellaouchi, R., Asehraou, A., Saalaoui, E., Guerrouj, B. E., & Chaabane, K. (2023). Evaluation of Antioxidant Activity, Cytotoxicity, and Genotoxicity of Ptychotis verticillata Essential Oil: Towards Novel Breast Cancer Therapeutics. Life, 13(7), 1586. https://doi.org/10.3390/life13071586