Efficiency of Amino Acid Utilization in Nellore Cattle Grazing Low-Quality Forage Supplemented with Different Sources of Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Treatments
2.2. Feed Intake, Digestibility, and Nitrogen Balance
2.3. Duodenal Flow
2.4. Blood Parameters
2.5. Analysis of Amino Acids
2.6. Chemical Analysis and Calculations
2.7. Statistical Analysis
3. Results
3.1. Intake and Duodenal Flow of Amino Acid
3.2. Apparent Digestibility and Nitrogen Balance
3.3. Blood Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tedeschi, L.O.; Muir, J.P.; Riley, D.G.; Fox, D.G. The role of ruminant animals in sustainable livestock intensification programs. Int. J. Sustain. Dev. World Ecol. 2015, 22, 452–465. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Ferret, A.; Reynolds, C.K.; Kristensen, N.B.; Van Vuuren, A.M. Strategies for optimizing nitrogen use by ruminants. Animal 2010, 4, 1184. [Google Scholar] [CrossRef]
- Abbasi, I.H.R.; Abbasi, F.; El-Hack, M.E.A.; Abdel-Latif, M.A.; Soomro, R.N.; Hayat, K.; Mohamed, M.A.E.; Bodinga, B.M.; Yao, J.; Cao, Y. Critical analysis of excessive utilization of crude protein in ruminants ration: Impact on environmental ecosystem and opportunities of supplementation of limiting amino acids—A review. Environ. Sci. Pollut. Res. 2017, 25, 181–190. [Google Scholar] [CrossRef]
- Romanzini, E.P.; Bernardes, P.A.; Munari, D.P.; Reis, R.A.; Malheiros, E.B. A review of three important points that can improve the beef cattle productivity in Brazil. Anim. Husb. Dairy Vet. Sci. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Lazzarini, I.; Detmann, E.; Sampaio, C.B.; Paulino, M.F.; Filho, S.C.V.; Souza, M.A.; Oliveira, F.A. Transit and degradation dynamics of neutral detergent fiber in cattle fed low-quality tropical forage and nitrogenous compounds. Arq. Bras. Med. Veterinária Zootec. 2009, 61, 635–647. [Google Scholar] [CrossRef]
- Figueiras, J.F.; Detmann, E.; Paulino, M.F.; Valente, T.N.P.; Filho, S.D.C.V.; Lazzarini, I. Intake and digestibility in cattle under grazing supplemented with nitrogenous compounds during dry season. Rev. Bras. Zootec. 2010, 39, 1303–1312. [Google Scholar] [CrossRef]
- Batista, E.D.; Detmann, E.; Titgemeyer, E.C.; Filho, S.C.V.; Valadares, R.F.D.; Prates, L.L.; Rennó, L.N.; Paulino, M.F. Effects of varying ruminally undegradable protein supplementation on forage digestion, nitrogen metabolism, and urea kinetics in Nellore cattle fed low-quality tropical forage. J. Anim. Sci. 2016, 94, 201–216. [Google Scholar] [CrossRef]
- Dijkstra, J.; Kebreab, E.; Mills, J.A.N.; Pellikaan, W.F.; López, S.; Bannink, A.; France, J. Predicting the profile of nutrients available for absorption: From nutrient requirement to animal response and environmental impact. Animal 2007, 1, 99–111. [Google Scholar] [CrossRef]
- Leonardi, C.; Stevenson, M.; Armentano, L.E. Effect of two levels of crude protein and methionine supplementation on performance of dairy cows. J. Dairy Sci. 2003, 86, 4033–4042. [Google Scholar] [CrossRef]
- de Souza, V.C.; Messana, J.D.; Batista, E.D.; Alves, K.L.G.C.; Dias, A.V.L.; Campos, L.M.; Lima, L.D.O.; Granja-Salcedo, Y.T.; Faria, L.R.; Carvalho, G.M.; et al. Assessing amino acid utilization in young Nellore steers fed high-concentrate diets with different sources and levels of nitrogen. Anim. Feed. Sci. Technol. 2020, 269, 114642. [Google Scholar] [CrossRef]
- Clark, J.H.; Klusmeyer, T.H.; Cameron, M.R. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 1992, 75, 2304–2323. [Google Scholar] [CrossRef]
- Li, C.; Beauchemin, K.A.; Yang, W.Z. Effects of supplemental canola meal and various types of distillers grains on ruminal degradability, duodenal flow, and intestinal digestibility of protein and amino acids in backgrounded heifers. J. Anim. Sci. 2013, 91, 5399–5409. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yan, S.M.; Beauchemin, K.A.; Yang, W.Z. Feeding diets varying in forage proportion and particle length to lactating dairy cows: II. Effects on duodenal flows and intestinal digestibility of amino acids. J. Dairy Sci. 2020, 103, 4355–4366. [Google Scholar] [CrossRef]
- Filho, S.C.V.; Machado, P.A.S.; Chizzotti, M.L.; Amaral, H.F.; Magalhães, K.A.; Capelle, E.R. 2020. CQBAL 4.0. Tabelas Brasileiras de Composição de Alimentos Para Bovinos. Available online: https://www.cqbal.com.br/#! (accessed on 10 August 2021).
- Zhuang, H.; Tang, N.; Yuan, Y. Purification and identification of antioxidant peptides from corn gluten meal. J. Funct. Foods 2013, 5, 1810–1821. [Google Scholar] [CrossRef]
- Mariz, L.D.S.; Amaral, P.M.; Valadares Filho, S.C.; Santos, S.A.; Detmann, E.; Marcondes, M.I.; Pereira, J.M.V.; Silva Jr, J.M.; Prados, L.F.; Faciola, A.P. Dietary protein reduction on microbial protein, amino acid digestibility, and body retention in beef cattle: 2. Amino acid intestinal absorption and their efficiency for whole-body deposition. J. Anim. Sci. 2018, 96, 670–683. [Google Scholar] [CrossRef]
- Titgemeyer, E.C. Amino Acid Utilization by Growing and Finishing Ruminants. In Amino Acids in Animal Nutrition; CABI Publishing: Wallingford, UK, 2003; p. 329. [Google Scholar] [CrossRef]
- Schwab, C.G. Balancing diets for amino acids: Nutritional, environmental and financial implications. In Proceedings of the 19th Annual Tri-State Dairy Nutrition Conference, Grand Wayne Center, Fort Wayne, IN, USA, 20–21 April 2010; Purdue University Press: West Lafayette, IN, USA, 2010. [Google Scholar]
- National Research Council—NRC. Nutrient Requirements of Dairy Cattle; National Research Council: Washington, DC, USA, 2016. [Google Scholar]
- Valadares Filho, S.C.; Costa e Silva, L.F.; Lopes, S.A.; Prados, L.F.; Chizzotti, M.L.; Machado, P.A.S.; Bissaro, L.Z.; Furtado, T. Cálculo de exigências nutricionais, formulação de dietas e predição de desempenho de zebuínos puros e cruzados. UFV Viçosa 2016, 24, 2017. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine—NASEM. Nutrient requirements of beef cattle. In Nutrient Requirements of Domestic Animals, 8th ed.; National Academy Press: Washington, DC, USA, 2016; 494p. [Google Scholar]
- Johnson, A.D. Sample preparation and chemical analysis of vegetation. In Measurement of Grassland Vegetation and Animal Production; Manetje, L.T., Ed.; Commonwealth Agricultural Bureaux: Aberustwyth, UK, 1978; pp. 96–102. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed. Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Valente, T.N.P.; Detmann, E.; de Queiroz, A.C.; Valadares Filho, S.C.; Gomes, D.I.; Figueiras, J.F. Evaluation of ruminal degradation profiles of forages using bags made from different textiles. Rev. Bras. Zootec. 2011, 40, 2565–2573. [Google Scholar] [CrossRef]
- Udén, P.; Colucci, P.E.; Van Soest, P.J. Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. J. Sci. Food Agric. 1980, 31, 625–632. [Google Scholar] [CrossRef]
- Valadares, R.F.D.; Broderick, G.A.; Filho, S.C.V.; Clayton, M.K. Effect of replacing alfalfa with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 1999, 82, 2686–2696. [Google Scholar] [CrossRef]
- Cecava, M.J.; Merchen, N.R.; Gay, L.C.; Berger, L.L. Composition of ruminal bacteria harvested from steers as influenced by dietary energy level, feeding frequency, and isolation techniques. J. Dairy Sci. 1990, 73, 2480–2488. [Google Scholar] [CrossRef]
- Hagen, S.R.; Augustin, J.; Grings, E.; Tassinari, P. Precolumn phenylisothiocyanate derivatization and liquid chromatography of free amino acids in biological samples. Food Chem. 1993, 46, 319–323. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of the Association of the Analytical Chemists, 16th ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: A collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Fujihara, T.; Ørskov, E.R.; Reedsa, P.J.; Kylea, D.J. The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. J. Agric. Sci. 1987, 109, 7–12. [Google Scholar] [CrossRef]
- Zinn, R.A.; Owens, F.N. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 1986, 66, 157–166. [Google Scholar] [CrossRef]
- Detmann, E.; Costa e Silva, L.F.; Rocha, G.C.; Palma, M.N.N.; Rodrigues, J.P.P. Métodos para Análise de Alimentos, 2nd ed.; Suprema: Visconde do Rio Branco, Brazil, 2021; 350p. [Google Scholar]
- Fenner, H. Method for determining total volatile bases in rumen fluid by steam distillation. J. Dairy Sci. 1965, 48, 249–251. [Google Scholar] [CrossRef]
- Rulquin, H.; Vérité, R. Recent developments in ruminant nutrition 3. In Amino Acid Nutrition of Dairy Cows: Productive Effects and Animal Requirements; Nottingham University Press: Loughborough, UK, 1996; pp. 71–93. [Google Scholar]
- Brito, A.; Tremblay, G.; Bertrand, A.; Castonguay, Y.; Bélanger, G.; Michaud, R.; Lafrenière, C.; Martineau, R.; Berthiaume, R. Alfalfa baleage with increased concentration of nonstructural carbohydrates supplemented with a corn-based concentrate did not improve production and nitrogen utilization in early lactation dairy cows. J. Dairy Sci. 2014, 97, 6970–6990. [Google Scholar] [CrossRef]
- Rodriguez, N.M. Exigências em aminoácidos para vacas de alta produção. In Simpósio Latino-Americano de Nutrição Animal e Seminário sobre Tecnologia da Produção de Rações; Campinas. Anais… Campinas: Colégio Brasileiro de Nutrição Animal: Campinas, Brazil, 1996; pp. 103–137. [Google Scholar]
- Ipharraguerre, I.R.; Clark, J.H. Impacts of the source and amount of crude protein on the intestinal supply of nitrogen fractions and performance of dairy cows. J. Dairy Sci. 2005, 88, E22–E37. [Google Scholar] [CrossRef]
- Ipharraguerre, I.R.; Clark, J.H. A meta-analysis of ruminal outflow of nitrogen fractions in dairy cows. Adv. Dairy Res. 2014, 2, 1–13. [Google Scholar] [CrossRef]
- Detmann, E.; Paulino, M.F.; Mantovani, H.C.; Filho, S.d.C.V.; Sampaio, C.B.; de Souza, M.A.; Lazzarini, Í.; Detmann, K.S.C. Parameterization of ruminal fibre degradation in low-quality tropical forage using Michaelis-Menten kinetics. Livest. Sci 2009, 126, 136–146. [Google Scholar] [CrossRef]
- Brito, C.J.F.A.d.; Rodella, R.A. Breve histórico das relações entre anatomia vegetal e qualidade de gramíneas forrageiras com ênfase para o gênero Brachiaria. Rev. Agric. 2001, 76, 19–36. [Google Scholar]
- Firkins, J.L.; Yu, Z.; Morrison, M. Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 2007, 90, E1–E16. [Google Scholar] [CrossRef]
- Mehrez, A.Z.; Orskov, E.R.; Mcdonald, I. Rates of rumen fermentation in relation to ammonia concentration. Br. J. Nutr. 1977, 38, 437–443. [Google Scholar] [CrossRef]
- Cerrate, S.; Ekmay, R.; England, J.A.; Coon, C. Predicting nutrient digestibility and energy value for broilers. Poult. Sci. 2019, 98, 3994–4007. [Google Scholar] [CrossRef]
- National Research Council—NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Research Council: Washington, DC, USA, 2001; 363p. [Google Scholar]
- Cecava, M.J.; Parker, J.E. Intestinal supply of amino acids in steers fed ruminally degradable and undegradable crude protein sources alone or in combination. J. Anim. Sci. 1993, 71, 1596–1605. [Google Scholar] [CrossRef]
- Yang, W.Z.; Beauchemin, K.A. Grain processing, forage-to-concentrate ratio, and forage length effects on ruminal nitrogen degradation and flows of amino acids to the duodenum. J. Dairy Sci. 2004, 87, 2578–2590. [Google Scholar] [CrossRef]
- Huang, X.; Estes, K.A.; Yoder, P.S.; Wang, C.; Jiang, N.; Pilonero, T.; Hanigan, M.D. Assessing availability of amino acids from various feedstuffs in dairy cattle using a stable isotope-based approach. J. Dairy Sci. 2019, 102, 10983–10996. [Google Scholar] [CrossRef]
- Broderick, G.A. Desirable characteristics of forage legumes for improving protein utilization in ruminants. J. Anim. Sci. 1995, 73, 2760–2773. [Google Scholar] [CrossRef]
- Henson, J.E.; Schigoethe, D.J.; Maiga, H.A. Lactational evaluation of protein supplements of varying ruminal degradabilities. J. Dairy Sci. 1997, 80, 385–392. [Google Scholar] [CrossRef]
- Ladeira, M.M.; Rodriguez, N.M.; Borges, I.; Gonçalves, L.C.; Saliba, E.D.O.S.; Miranda, L.F. Balanço de nitrogênio, degradabilidade de aminoácidos e concentração de ácidos graxos voláteis no rúmen de ovinos alimentados com feno de Stylosanthes guianensis. Rev. Bras. Zootec. 2002, 31, 2357–2363. [Google Scholar] [CrossRef]
- Richardson, C.R.; Hatfield, E.E. The limiting amino acids in growing cattle. J. Anim. Sci. 1978, 46, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Gibb, D.J.; Klopfenstein, T.J.; Britton, R.A.; Lewis, A.J. Plasma amino acid response to graded levels of escape protein. J. Anim. Sci. 1992, 70, 2885–2892. [Google Scholar] [CrossRef]
- González, F.H.D.; Scheffer, J.L.F.S. Perfil sanguíneo: Ferramenta de análise clínica, metabólica e nutricional. In Simpósio de Patologia Clínica Veterinária; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 2003. [Google Scholar]
- Wittwer, F.; Reyes, J.M.; Opitz, H.; Contreras, P.A.; Böhmwald, H. Determinación de urea en muestras de leche de rebaños bovinos para el diagnóstico de desbalance nutricional. Arch. Med. Vet 1993, 25, 165–172. [Google Scholar]
- Oliveira, A.S.; Valadares, R.F.D.; Filho, S.D.C.V.; Cecon, P.R.; Rennó, L.N.; Queiroz, A.C.D.; Chizzotti, M.L. Produção de proteína microbiana e estimativas das excreções de derivados de purinas e de uréia em vacas lactantes alimentadas com rações isoprotéicas contendo diferentes níveis de compostos nitrogenados nãoprotéicos. Rev. Bras. Zootec. 2001, 30, 1621–1629. [Google Scholar] [CrossRef]
- Church, D.C. Fisiologia Digestiva y Nutrición de los Ruminantes; Acríbia: Zaragoza, Spain, 1993; 641p. [Google Scholar]
- Russell, J.B.; O’connor, J.D.; Fox, D.G.; Van Soest, P.J.; Sniffen, C.J. A net carbohydrate and protein system for evaluating cattle diets. 1. Ruminal fermentation. J. Anim. Sci. Savoy 1992, 70, 3551–3561. [Google Scholar] [CrossRef]
- Schroeder, G.F.; Titgemeyer, E.C. Interaction between protein and energy supply on protein utilization in growing cattle: A review. Livest. Sci. 2008, 114, 1–10. [Google Scholar] [CrossRef]
- Lazzarini, I. Nutritional Performance of Cattle under Grazing during Dry and Rainy Seasons Supplemented with Nitrogenous Compounds and/or Starch. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2011; p. 80. [Google Scholar]
- Atkinson, R.L.; Toone, C.D.; Ludden, P.A. Effects of supplemental ruminally degradable protein versus increasing amounts of supplemental ruminally undegradable protein on site and extent of digestion and ruminal characteristics in lambs fed low-quality forage. J. Anim. Sci. 2007, 85, 3322–3330. [Google Scholar] [CrossRef]
Supplement | |||
---|---|---|---|
Item | Forage 1 | NPN | CGM |
Chemical composition 2, % of DM | |||
DM, % | 75.6 | 93.9 | 91.2 |
OM | 94.1 | 99.7 | 97.4 |
NDF | 70.4 | - | 7.98 |
ADF | 37.1 | - | 2.22 |
iNDF | 30.3 | - | 1.71 |
NFC | 16.8 | - | 28.9 |
EE | 1.29 | - | 1.71 |
CP | 5.51 | 275 | 58.7 |
RDP 3, % of CP | 63.3 | 100 | 30.3 |
RUP 3, % of CP | 36.7 | - | 69.7 |
Essential amino acids (EAA), % of DM | |||
Arginine | 0.16 | - | 2.17 |
Histidine | 0.06 | - | 1.49 |
Isoleucine | 0.15 | - | 2.82 |
Leucine | 0.29 | - | 10.9 |
Lysine | 0.19 | - | 1.41 |
Methionine | 0.02 | - | 1.32 |
Phenylalanine | 0.16 | - | 3.98 |
Threonine | 0.18 | - | 2.40 |
Valine | 0.21 | - | 3.19 |
Non-essential AA (NEAA), % of DM | |||
Alanine | 0.27 | - | 6.03 |
Aspartic Acid | 0.39 | - | 5.33 |
Cystine | 0.03 | - | 1.14 |
Glutamic Acid | 0.47 | - | 15.7 |
Glycine | 0.23 | - | 1.95 |
Proline | 0.28 | - | 6.21 |
Serine | 0.21 | - | 3.95 |
Tyrosine | 0.08 | - | 3.37 |
Supplement 1 | SEM 2 | p-Value | ||
---|---|---|---|---|
Item 3 | NPN | CGM | ||
n | 8 | 8 | ||
DM, kg/d | 2.75 | 2.61 | 0.182 | 0.910 |
DM supplement, kg/d | 0.10 | 0.34 | 0.043 | 0.013 |
DM forage, kg/d | 2.65 | 2.26 | 0.179 | 0.244 |
CP, kg/d | 0.43 | 0.34 | 0.034 | 0.516 |
Essential amino acids (EAA) | ||||
Arginine | 5.95 | 12.1 | 1.749 | 0.019 |
Histidine | 2.73 | 7.27 | 1.161 | 0.015 |
Isoleucine | 6.14 | 14.4 | 2.291 | 0.019 |
Leucine | 14.3 | 48.8 | 8.466 | 0.015 |
Lysine | 6.40 | 9.90 | 1.287 | 0.035 |
Methionine | 1.27 | 5.54 | 1.050 | 0.016 |
Phenylalanine | 6.95 | 19.2 | 3.127 | 0.016 |
Threonine | 6.96 | 13.6 | 1.991 | 0.023 |
Valine | 7.95 | 17.2 | 2.614 | 0.020 |
Non-essential AA (NEAA) | ||||
Alanine | 11.2 | 29.5 | 4.813 | 0.017 |
Aspartic Acid | 14.7 | 29.3 | 4.555 | 0.028 |
Cystine | 1.44 | 5.11 | 0.855 | 0.013 |
Glutamic Acid | 22.8 | 71.7 | 12.33 | 0.016 |
Glycine | 7.90 | 12.9 | 1.749 | 0.032 |
Proline | 11.3 | 30.5 | 4.654 | 0.013 |
Serine | 8.63 | 20.2 | 3.180 | 0.019 |
Tyrosine | 4.34 | 14.9 | 2.589 | 0.014 |
AA total | 141 | 362 | 58.33 | 0.017 |
EAA | 58.7 | 148 | 23.68 | 0.018 |
NEAA | 82.4 | 214 | 34.64 | 0.017 |
Supplement 1 | SEM 2 | p-Value | ||
---|---|---|---|---|
Item | NPN | CGM | ||
n | 8 | 8 | ||
Essential amino acids (EAA), g/d | ||||
Arginine | 14.9 | 14.6 | 2.228 | 0.885 |
Histidine | 6.67 | 6.88 | 1.093 | 0.871 |
Isoleucine | 16.6 | 16.4 | 2.472 | 0.969 |
Leucine | 30.6 | 32.6 | 5.113 | 0.815 |
Lysine | 22.8 | 21.6 | 2.842 | 0.819 |
Methionine | 7.78 | 7.58 | 0.946 | 0.818 |
Phenylalanine | 18.2 | 18.5 | 2.711 | 0.941 |
Threonine | 18.8 | 18.2 | 2.619 | 0.914 |
Valine | 19.8 | 19.6 | 2.893 | 0.983 |
Non-essential AA (NEAA), g/d | ||||
Alanine | 26.3 | 26.5 | 3.787 | 0.922 |
Aspartic Acid | 35.5 | 34.5 | 4.486 | 0.834 |
Cystine | 4.78 | 5.12 | 0.799 | 0.754 |
Glutamic Acid | 43.0 | 46.6 | 7.300 | 0.766 |
Glycine | 21.4 | 20.0 | 2.998 | 0.823 |
Proline | 16.2 | 17.7 | 2.918 | 0.736 |
Serine | 17.4 | 17.5 | 2.560 | 0.992 |
Tyrosine | 14.9 | 15.2 | 2.468 | 0.975 |
Taurine | 1.51 | 2.52 | 0.397 | 0.160 |
AA total | 337 | 341 | 49.31 | 0.954 |
EAA | 156 | 156 | 22.64 | 0.998 |
NEAA | 179 | 183 | 26.85 | 0.932 |
AA from ruminal microorganism, g/d | ||||
AA total | 150 | 180 | 35.94 | 0.777 |
EAA | 68.0 | 83.0 | 15.99 | 0.782 |
NEAA | 82.4 | 97.5 | 20.04 | 0.773 |
Supplement (S) 1 | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|
Item | NPN | CGM | Time | S | Time × S | |
n | 8 | 8 | ||||
N-NH3, mg/dL | 24.4 | 23.1 | 0.331 | <0.001 | 0.327 | 0.624 |
Microbial-N, g/d | 26.3 | 30.1 | 6.412 | - | 0.844 | - |
Bacterial efficiency 4 | 116.9 | 160.7 | 26.89 | - | 0.638 | - |
Nitrogen balance, g/d | ||||||
Urinary-N excretion | 28.2 | 30.6 | 2.636 | - | 0.424 | - |
Fecal-N excretion | 35.4 | 32.4 | 0.857 | - | 0.056 | - |
Retained-N | 14.9 | −4.33 | 7.590 | - | 0.320 | - |
Essential amino acids (EAA) digestibility, g/kg of DM | ||||||
Arginine | 592.9 | 598.6 | 20.18 | - | 0.626 | - |
Histidine | 596.9 | 608.0 | 22.82 | - | 0.923 | - |
Isoleucine | 584.0 | 589.8 | 21.73 | - | 0.947 | - |
Leucine | 599.9 | 639.8 | 24.78 | - | 0.822 | - |
Lysine | 670.3 | 661.1 | 15.63 | - | 0.691 | - |
Methionine | 700.0 | 695.7 | 21.35 | - | 0.322 | - |
Phenylalanine | 582.7 | 612.3 | 21.85 | - | 0.978 | - |
Threonine | 559.9 | 559.0 | 24.06 | - | 0.707 | - |
Valine | 569.9 | 580.4 | 21.26 | - | 0.871 | - |
Non-essential AA (NEAA) digestibility, g/kg of DM | ||||||
Alanine | 522.4 | 559.5 | 30.90 | - | 0.792 | - |
Aspartic Acid | 680.8 | 681.4 | 27.80 | - | 0.978 | - |
Cystine | 652.0 | 683.7 | 21.36 | - | 0.952 | - |
Glutamic Acid | 592.7 | 616.6 | 28.92 | - | 0.915 | - |
Glycine | 555.4 | 542.1 | 24.57 | - | 0.825 | - |
Proline | 536.3 | 581.4 | 29.33 | - | 0.901 | - |
Serine | 529.1 | 547.3 | 29.97 | - | 0.964 | - |
Tyrosine | 648.6 | 666.7 | 19.41 | - | 0.869 | - |
AA total, g/kg of DM | 598.8 | 615.7 | 23.25 | - | 0.979 | - |
EAA, g/kg of DM | 602.9 | 616.0 | 20.53 | - | 0.863 | - |
NEAA, g/kg of DM | 591.5 | 609.8 | 26.22 | - | 0.956 | - |
Supplement 1 | SEM 2 | p-Value | ||
---|---|---|---|---|
Item | NPN | CGM | ||
n | 8 | 8 | ||
Essential amino acids (EAA) | ||||
Arginine | 454.3 | 342.9 | 458.7 | 0.690 |
Histidine | 536.7 | 539.2 | 476.9 | 0.960 |
Isoleucine | 479.3 | 422.6 | 469.8 | 0.850 |
Leucine | 622.8 | 796.1 | 672.6 | 0.796 |
Lysine | 620.1 | 581.4 | 355.2 | 0.885 |
Methionine | 595.8 | 545.2 | 354.2 | 0.707 |
Phenylalanine | 528.2 | 521.6 | 519.2 | 0.929 |
Threonine | 520.8 | 461.7 | 525.7 | 0.862 |
Valine | 513.0 | 482.3 | 503.2 | 0.899 |
Non-essential AA (NEAA) | ||||
Alanine | 500.7 | 571.7 | 580.0 | 0.938 |
Aspartic Acid | 639.0 | 603.1 | 405.1 | 0.906 |
Cystine | 720.9 | 880.0 | 672.8 | 0.839 |
Glutamic Acid | 578.4 | 678.4 | 543.9 | 0.838 |
Glycine | 535.5 | 425.6 | 569.3 | 0.864 |
Proline | 708.7 | 305.4 | 679.3 | 0.627 |
Serine | 580.3 | 601.3 | 680.6 | 0.974 |
Tyrosine | 550.4 | 787.2 | 669.5 | 0.902 |
AA total | 572.2 | 577.2 | 489.1 | 0.979 |
EAA | 552.6 | 535.8 | 464.4 | 0.919 |
NEAA | 581.4 | 603.5 | 520.6 | 0.979 |
Supplement (S) 1 | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|
Item | NPN | CGM | Time | S | Time × S | |
n | 8 | 8 | ||||
Total protein, g/dL | 7.28 | 7.05 | 0.148 | 0.1382 | 0.287 | 0.366 |
Albumin, g/dL | 2.41 | 2.52 | 0.052 | 0.6376 | 0.017 | 0.820 |
Urea, mg/dL | 46.2 | 48.3 | 1.978 | <0.001 | 0.237 | 0.269 |
Essential amino acids (EAA), μmol/L | ||||||
Arginine | 81.57 | 94.14 | 3.778 | - | 0.487 | - |
Histidine | 61.42 | 76.17 | 5.399 | - | 0.592 | - |
Isoleucine | 45.45 | 64.54 | 3.316 | - | 0.050 | - |
Leucine | 57.88 | 66.19 | 5.790 | - | 0.894 | - |
Methionine | 59.10 | 68.75 | 3.845 | - | 0.702 | - |
Threonine | 49.96 | 67.48 | 3.283 | - | 0.067 | - |
Valine | 17.91 | 17.63 | 0.137 | - | 0.758 | - |
Non-essential (NEAA), μmol/L | ||||||
Alanine | 81.61 | 110.49 | 6.291 | - | 0.074 | - |
Aspartic Acid | 39.37 | 45.16 | 2.027 | - | 0.466 | - |
Cystine | 41.37 | 68.66 | 4.426 | - | 0.015 | - |
Glutamic Acid | 71.45 | 80.63 | 3.279 | - | 0.765 | - |
Glycine | 13.45 | 19.46 | 1.239 | - | 0.095 | - |
Proline | 161.07 | 201.24 | 10.44 | - | 0.338 | - |
Serine | 35.03 | 45.02 | 2.479 | - | 0.121 | - |
Tyrosine | 10.45 | 13.23 | 0.763 | - | 0.136 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, A.V.L.; Messana, J.D.; Granja-Salcedo, Y.T.; Alfonso, Y.F.M.; Silva, L.G.; Camargo, K.D.V.; Alves, K.L.G.C.; Gonçalves, P.H.; Reis, R.A.; Berchielli, T.T. Efficiency of Amino Acid Utilization in Nellore Cattle Grazing Low-Quality Forage Supplemented with Different Sources of Nitrogen. Life 2023, 13, 1622. https://doi.org/10.3390/life13081622
Dias AVL, Messana JD, Granja-Salcedo YT, Alfonso YFM, Silva LG, Camargo KDV, Alves KLGC, Gonçalves PH, Reis RA, Berchielli TT. Efficiency of Amino Acid Utilization in Nellore Cattle Grazing Low-Quality Forage Supplemented with Different Sources of Nitrogen. Life. 2023; 13(8):1622. https://doi.org/10.3390/life13081622
Chicago/Turabian StyleDias, Ana Veronica Lino, Juliana Duarte Messana, Yury Tatiana Granja-Salcedo, Yeison Fabian Murilo Alfonso, Lorrayny Galoro Silva, Karine Dalla Vecchia Camargo, Kênia Larissa Gomes Carvalho Alves, Paloma Helena Gonçalves, Ricardo Andrade Reis, and Telma Teresinha Berchielli. 2023. "Efficiency of Amino Acid Utilization in Nellore Cattle Grazing Low-Quality Forage Supplemented with Different Sources of Nitrogen" Life 13, no. 8: 1622. https://doi.org/10.3390/life13081622
APA StyleDias, A. V. L., Messana, J. D., Granja-Salcedo, Y. T., Alfonso, Y. F. M., Silva, L. G., Camargo, K. D. V., Alves, K. L. G. C., Gonçalves, P. H., Reis, R. A., & Berchielli, T. T. (2023). Efficiency of Amino Acid Utilization in Nellore Cattle Grazing Low-Quality Forage Supplemented with Different Sources of Nitrogen. Life, 13(8), 1622. https://doi.org/10.3390/life13081622