Functional and Neural Correlates Associated with Conditioned Pain Modulation in Patients with Chronic Knee Osteoarthritis Pain: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessments
2.3. Demographic Variables
2.4. Pain-Related Variables
2.5. Clinical Scales
2.6. Genetic Variables
2.7. Neurophysiological Variables
2.7.1. Transcranial Magnetic Stimulation (TMS)
2.7.2. Resting-State Electroencephalography (EEG)
2.8. Statistical Analysis
3. Results
3.1. Demographics and Characteristics of the Population
3.2. Pain-Related Variables and CPM
3.3. Functional Variables and CPM
3.4. Neurophysiological Variables and CPM
3.5. Other Domains
4. Discussion
4.1. Activity-Related Pain Associated with CPM
4.2. Race as a Socioeconomic Surrogate
4.3. Balance and CPM
4.4. Brain Oscillatory Correlates of CPM
4.5. Negative Findings
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hurley, R.S.J.A. Osteoarthritis: StatPearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482326/ (accessed on 10 May 2023).
- Schaible, H.G. Mechanisms of chronic pain in osteoarthritis. Curr. Rheumatol. Rep. 2012, 14, 549–556. [Google Scholar]
- Fingleton, C.; Smart, K.; Moloney, N.; Fullen, B.M.; Doody, C. Pain sensitization in people with knee osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2015, 23, 1043–1056. [Google Scholar]
- Villafañe, J.H.; Pedersini, P.; Bertozzi, L.; Drago, L.; Fernandez-Carnero, J.; Bishop, M.D.; Berjano, P. Exploring the relationship between chronic pain and cortisol levels in subjects with osteoarthritis: Results from a systematic review of the literature. Osteoarthr. Cartil. 2020, 28, 572–580. [Google Scholar]
- Villafañe, J.H.; Valdes, K.; Pedersini, P.; Berjano, P. Osteoarthritis: A call for research on central pain mechanism and personalized prevention strategies. Clin. Rheumatol. 2019, 38, 583–584. [Google Scholar] [PubMed]
- Georgopoulos, V.; Akin-Akinyosoye, K.; Zhang, W.; McWilliams, D.F.; Hendrick, P.; Walsh, D.A. Quantitative sensory testing and predicting outcomes for musculoskeletal pain, disability, and negative affect: A systematic review and meta-analysis. Pain 2019, 160, 1920–1932. [Google Scholar]
- Kennedy, D.L.; Kemp, H.I.; Ridout, D.; Yarnitsky, D.; Rice, A.S.C. Reliability of conditioned pain modulation: A systematic review. Pain 2016, 157, 2410–2419. [Google Scholar] [PubMed] [Green Version]
- Yarnitsky, D. Conditioned pain modulation (the diffuse noxious inhibitory control-like effect): Its relevance for acute and chronic pain states. Curr. Opin. Anaesthesiol. 2010, 23, 611–615. [Google Scholar]
- Fernandes, C.; Pidal-Miranda, M.; Samartin-Veiga, N.; Carrillo-de-la-Peña, M.T. Conditioned pain modulation as a biomarker of chronic pain: A systematic review of its concurrent validity. Pain 2019, 160, 2679–2690. [Google Scholar]
- Holley, A.L.; Wilson, A.C.; Palermo, T.M. Predictors of the transition from acute to persistent musculoskeletal pain in children and adolescents: A prospective study. Pain 2017, 158, 794–801. [Google Scholar]
- Arendt-Nielsen, L.; Nie, H.; Laursen, M.B.; Laursen, B.S.; Madeleine, P.; Simonsen, O.H.; Graves-Nielsen, T. Sensitization in patients with painful knee osteoarthritis. Pain 2010, 149, 573–581. [Google Scholar]
- Edwards, R.R.; Dolman, A.J.; Martel, M.O.; Finan, P.H.; Lazaridou, A.; Cornelius, M.; Wasan, A.D. Variability in conditioned pain modulation predicts response to NSAID treatment in patients with knee osteoarthritis. BMC Musculoskelet. Disord. 2016, 17, 284. [Google Scholar]
- Graven-Nielsen, T.; Wodehouse, T.; Langford, R.M.; Arendt-Nielsen, L.; Kidd, B.L. Normalization of widespread hyperesthesia and facilitated spatial summation of deep-tissue pain in knee osteoarthritis patients after knee replacement. Arthritis Rheum. 2012, 64, 2907–2916. [Google Scholar] [PubMed]
- Petersen, K.K.; Arendt-Nielsen, L.; Finocchietti, S.; Hirata, R.P.; Simonsen, O.; Laursen, M.B.; Graven-Nielsen, T. Age Interactions on Pain Sensitization in Patients with Severe Knee Osteoarthritis and Controls. Clin. J. Pain 2017, 33, 1081–1087. [Google Scholar] [PubMed] [Green Version]
- Carlesso, L.C.; Law, L.F.; Wang, N.; Nevitt, M.; Lewis, C.E.; Neogi, T. Association of Pain Sensitization and Conditioned Pain Modulation to Pain Patterns in Knee Osteoarthritis. Arthritis Care Res. 2022, 74, 107–112. [Google Scholar]
- Kurien, T.; Arendt-Nielsen, L.; Petersen, K.K.; Graven-Nielsen, T.; Scammell, B.E. Preoperative Neuropathic Pain-like Symptoms and Central Pain Mechanisms in Knee Osteoarthritis Predicts Poor Outcome 6 Months After Total Knee Replacement Surgery. J. Pain 2018, 19, 1329–1341. [Google Scholar]
- Teixeira, P.E.P.; Zehry, H.I.; Chaudhari, S.; Dipietro, L.; Fregni, F. Pain perception in chronic knee osteoarthritis with varying levels of pain inhibitory control: An exploratory study. Scand. J. Pain 2020, 20, 651–661. [Google Scholar]
- Yarnitsky, D.; Granot, M.; Granovsky, Y. Pain modulation profile and pain therapy: Between pro- and antinociception. Pain 2014, 155, 663–665. [Google Scholar]
- Foucher, K.C.; Chmell, S.J.; Courtney, C.A. Duration of symptoms is associated with conditioned pain modulation and somatosensory measures in knee osteoarthritis. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2019, 37, 136–142. [Google Scholar]
- Ramaswamy, S.; Wodehouse, T. Conditioned pain modulation—A comprehensive review. Neurophysiol. Clin. 2021, 51, 197–208. [Google Scholar]
- Simis, M.; Pacheco-Barrios, K.; Uygur-Kucukseymen, E.; Castelo-Branco, L.; Battistella, L.R.; Fregni, F. Specific Electroencephalographic Signatures for Pain and Descending Pain Inhibitory System in Spinal Cord Injury. Pain Med. 2021, 23, 955–964. [Google Scholar]
- Teixeira, P.E.P.; Pacheco-Barrios, K.; Uygur-Kucukseymen, E.; Machado, R.M.; Balbuena-Pareja, A.; Giannoni-Luza, S.; Luna-Cuadros, M.A.; Cardenas-Rojas, A.; Gonzalez-Mego, P.; Mejia-Panod, P.F.; et al. Electroencephalography Signatures for Conditioned Pain Modulation and Pain Perception in Nonspecific Chronic Low Back Pain-An Exploratory Study. Pain Med. 2022, 23, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Uygur-Kucukseymen, E.; Castelo-Branco, L.; Pacheco-Barrios, K.; Luna-Cuadros, M.A.; Cardenas-Rojas, A.; Giannoni-Luza, S.; Zeng, H.; Gianlorenco, A.C.; Gnoatto-Medeiros, M.; Shaikh, E.S.; et al. Decreased neural inhibitory state in fibromyalgia pain: A cross-sectional study. Neurophysiol. Clin. 2020, 50, 279–288. [Google Scholar] [PubMed]
- Simis, M.; Imamura, M.; Sampaio de Melo, P.; Marduy, A.; Battistella, L.; Fregni, F. Deficit of Inhibition as a Marker of Neuroplasticity (DEFINE Study) in Rehabilitation: A Longitudinal Cohort Study Protocol. Front. Neurol. 2021, 12, 695406. [Google Scholar] [CrossRef]
- Reidler, J.S.; Mendonca, M.E.; Santana, M.B.; Wang, X.; Lenkinski, R.; Motta, A.F.; Marchand, S.; Latif, L.; Fregni, F. Effects of motor cortex modulation and descending inhibitory systems on pain thresholds in healthy subjects. J. Pain 2012, 13, 450–458. [Google Scholar]
- Lautenbacher, S.; Kunz, M.; Burkhardt, S. The effects of DNIC-type inhibition on temporal summation compared to single pulse processing: Does sex matter? Pain 2008, 140, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Streff, A.; Michaux, G.; Anton, F. Internal validity of inter-digital web pinching as a model for perceptual diffuse noxious inhibitory controls-induced hypoalgesia in healthy humans. Eur. J. Pain 2011, 15, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Tarragó, M.; Deitos, A.; Brietzke, A.P.; Vercelino, R.; Torres, I.L.S.; Fregni, F.; Caumo, W. Descending Control of Nociceptive Processing in Knee Osteoarthritis Is Associated with Intracortical Disinhibition: An Exploratory Study. Medicine 2016, 95, e3353. [Google Scholar]
- Tavares, D.R.B.; Okazaki, J.E.F.; Santana, M.V.D.A.; Pinto, A.C.P.N.; Tutiya, K.K.; Gazoni, F.M.; Pinto, C.B.; Santos, F.C.; Fregni, F.; Trevisani, V.F.M. Motor cortex transcranial direct current stimulation effects on knee osteoarthritis pain in elderly subjects with dysfunctional descending pain inhibitory system: A randomized controlled trial. Brain Stimul. 2021, 14, 477–487. [Google Scholar] [CrossRef]
- Asthana, M.K.; Brunhuber, B.; Mühlberger, A.; Reif, A.; Schneider, S.; Herrmann, M.J. Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism. Int. J. Neuropsychopharmacol. 2016, 19, pyv137. [Google Scholar] [CrossRef] [Green Version]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-invasive electrical magnetic stimulation of the brain spinal cord roots peripheral nerves: Basic principles procedures for routine clinical research application an updated report from an, I.F.C.N. Committee. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar]
- Schwenkreis, P.; Janssen, F.; Rommel, O.; Pleger, B.; Volker, B.; Hosbach, I.; Dertwinkel, R.; Maier, C.; Tegenthoff, M. Bilateral motor cortex disinhibition in complex regional pain syndrome (CRPS) type I of the hand. Neurology 2003, 61, 515–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuwer, M.R.; Lehmann, D.; Da Silva, F.L.; Matsuoka, S.; Sutherling, W.; Vibert, J.F. IFCN guidelines for topographic and frequency analysis of EEGs and EPs. The International Federation of Clinical Neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 52, 15–20. [Google Scholar] [PubMed]
- Jensen, K.B.; Regenbogen, C.; Ohse, M.C.; Frasnelli, J.; Freiherr, J.; Lundström, J.N. Brain activations during pain: A neuroimaging meta-analysis of patients with pain and healthy controls. Pain 2016, 157, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Tennant, P.W.G.; Murray, E.J.; Arnold, K.F.; Berrie, L.; Fox, M.P.; Gadd, S.C.; Harrison, W.J.; Keeble, C.; Ranker, L.R.; Textor, J.; et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: Review and recommendations. Int. J. Epidemiol. 2021, 50, 620–632. [Google Scholar] [CrossRef]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Seeley, M.K.; Lee, H.; Son, S.J.; Timmerman, M.; Lindsay, M.; Hopkins, J.T. A Review of the Relationships Between Knee Pain and Movement Neuromechanics. J. Sport Rehabil. 2021, 31, 684–693. [Google Scholar] [CrossRef]
- Brietzke, A.P.; Antunes, L.C.; Carvalho, F.; Elkifury, J.; Gasparin, A.; Sanches, P.R.S.; da Silva Junior, D.P.; Dussan-Sarria, J.A.; Souza, A.; da Silva Torres, I.L.; et al. Potency of descending pain modulatory system is linked with peripheral sensory dysfunction in fibromyalgia: An exploratory study. Medicine 2019, 98, e13477. [Google Scholar] [CrossRef]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation study of WOMAC: A health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J. Rheumatol. 1988, 15, 1833–1840. [Google Scholar]
- Torrance, G.W.; Feeny, D.; Furlong, W. Visual analog scales: Do they have a role in the measurement of preferences for health states? Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2001, 21, 329–334. [Google Scholar] [CrossRef]
- Imamura, M.; Pacheco-Barrios, K.; de Melo, P.S.; Marduy, A.; Battistella, L.; Simis, M.; Fregni, F. Maladaptive compensatory neural mechanisms associated with activity-related and non-specific osteoarthritis pain: Dissociation of the neural mechanisms of and VAS pain. PLoS ONE 2023, 19, 158–165. [Google Scholar]
- Damien, J.; Colloca, L.; Bellei-Rodriguez, C.; Marchand, S. Pain Modulation: From Conditioned Pain Modulation to Placebo and Nocebo Effects in Experimental and Clinical Pain. Int. Rev. Neurobiol. 2018, 139, 255–296. [Google Scholar] [PubMed]
- Pereira, C. Ethno-Racial POVERTY and Income Inequality in Brazil. In Commitment to Equity Handbook A Guide to Estimating the Impact of. Fiscal Policy on Inequality and Poverty; Lustig, N., Ed.; Brookings Institution Press and CEQ Institute: New Orleans, LA, USA, 2016. [Google Scholar]
- Janevic, M.R.; McLaughlin, S.J.; Heapy, A.A.; Thacker, C.; Piette, J.D. Racial and Socioeconomic Disparities in Disabling Chronic Pain: Findings From the Health and Retirement Study. J. Pain 2017, 18, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Brekke, M.; Hjortdahl, P.; Kvien, T.K. Severity of musculoskeletal pain: Relations to socioeconomic inequality. Soc. Sci. Med. 2002, 54, 221–228. [Google Scholar] [CrossRef]
- Eachus, J.; Chan, P.; Pearson, N.; Propper, C.; Davey Smith, G. An additional dimension to health inequalities: Disease severity and socioeconomic position. J. Epidemiol. Community Health 1999, 53, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Mills, S.E.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 2019, 123, e273–e283. [Google Scholar] [CrossRef]
- Peterka, R.J. Sensory integration for human balance control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar]
- Hirase, T.; Okubo, Y.; Sturnieks, D.L.; Lord, S.R. Pain Is Associated with Poor Balance in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2020, 21, 597–603.e8. [Google Scholar] [CrossRef]
- Hatfield, G.L.; Morrison, A.; Wenman, M.; Hammond, C.A.; Hunt, M.A. Clinical Tests of Standing Balance in the Knee Osteoarthritis Population: Systematic Review and Meta-analysis. Phys. Ther. 2016, 96, 324–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudman, L.; Laton, J.; Brouns, R.; Nagels, G.; Huysmans, E.; Buyl, R.; Ickmans, K.; Nijs, J.; Moens, M. Cortical mapping of painful electrical stimulation by quantitative electroencephalography: Unraveling the time-frequency-channel domain. J. Pain Res. 2017, 10, 2675–2685. [Google Scholar] [CrossRef] [Green Version]
- Knyazev, G.G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci. Biobehav. Rev. 2012, 36, 677–695. [Google Scholar] [CrossRef]
- Huynh, V.; Lütolf, R.; Rosner, J.; Luechinger, R.; Curt, A.; Kollias, S.; Michels, L.; Hubli, M. Descending pain modulatory efficiency in healthy subjects is related to structure and resting connectivity of brain regions. NeuroImage 2022, 247, 118742. [Google Scholar] [CrossRef]
- Knyazev, G.G. Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci. Biobehav. Rev. 2007, 31, 377–395. [Google Scholar] [CrossRef]
- Steriade, M. Grouping of brain rhythms in corticothalamic systems. Neuroscience 2006, 137, 1087–1106. [Google Scholar] [CrossRef] [PubMed]
- Simis, M.; Imamura, M.; Pacheco-Barrios, K.; Marduy, A.; de Melo, P.S.; Mendes, A.J.; Teixeira, P.E.P.; Battistella, L.; Fregni, F. EEG theta and beta bands as brain oscillations for different knee osteoarthritis phenotypes according to disease severity. Sci. Rep. 2022, 12, 1480. [Google Scholar] [CrossRef] [PubMed]
- Junior, J.S.; Nicholas, M.K.; Pereira, I.A.; de Matos Pimenta, C.A.; Asghari, A.; Cruz, R.M. Validação da Escala de Pensamentos Catastróficos sobre Dor. Acta Fisiátrica 2008, 15, 31–36. [Google Scholar]
- Sullivan, M.J.L.; Bishop, S.R.; Pivik, J. The Pain Catastrophizing Scale: Development and validation. Psychol. Assess. 1995, 7, 524–532. [Google Scholar] [CrossRef]
- Freire, M.Á.; Figueiredo, V.L.M.D.; Gomide, A.; Jansen, K.; Silva, R.A.D.; Magalhães, P.V.D.S.; Kapczinski, F.P. Escala Hamilton: Estudo das características psicométricas em uma amostra do sul do Brasil. J. Bras. De Psiquiatr. 2014, 63, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Botega, N.J.; Bio, M.R.; Zomignani, M.A.; Garcia, C., Jr.; Pereira, W.A. [Mood disorders among inpatients in ambulatory and validation of the anxiety and depression scale HAD]. Rev. De Saude Publica 1995, 29, 355–363. [Google Scholar]
- Freitas, S.; Simões, M.R.; Martins, C.; Vilar, M.; Santana, I. Estudos de adaptação do Montreal Cognitive Assessment (MoCA) para a população portuguesa. Avaliação Psicológica 2010, 9, 345–357. [Google Scholar]
- Johns, M.W. Reliability and factor analysis of the Epworth Sleepiness Scale. Sleep 1992, 15, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, T.J. Detecting change in patients with stroke using the Berg Balance Scale. Aust. J. Physiother. 2001, 47, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, B. Timed walking tests of exercise capacity in chronic cardiopulmonary illness. J. Cardiopulm. Rehabil. 1996, 16, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed "Up & Go": A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Ferraz CRJRBRSantos, W.; Meinão, I.; Quaresma, M.R. Tradução para a língua portuguesa e validação do questionário genérico de avaliação de qualidade de vida SF-36 (Brasil SF-36). Rev bras reumatol 1999, 39, 143–150. [Google Scholar]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Delorme, A.; Sejnowski, T.; Makeig, S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 2007, 34, 1443–1449. [Google Scholar] [CrossRef] [Green Version]
- Malcolm, M.P.; Triggs, W.J.; Light, K.E.; Shechtman, O.; Khandekar, G.; Gonzalez Rothi, L.J. Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clin.Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2006, 117, 1037–1046. [Google Scholar] [CrossRef]
Demographics | |
Age | 68.46 ± 9.84 |
Sex (%) | |
Male | 15 (18) |
Female | 70 (82) |
Race (%) | |
White | 53 (62) |
Black | 11 (13) |
Mixed | 17 (20) |
Asian | 4 (5) |
Education Level (%) | |
Illiterate | 2 (2) |
Elementary | 34 (40) |
High School | 26 (31) |
Superior | 23 (27) |
BMI | 32.26 ± 5.31 |
Most affected side of the knee (%) | |
Left | 5 (6) |
Right | 16 (20) |
Bilateral | 59 (74) |
Clinical characteristics | |
Time of ongoing pain (months) | 97.4819 ± 102.94 |
Pain Catastrophizing | 13.83 ± 10.89 |
WOMAC Pain Score | 10.42 ± 4.02 |
Average of VAS Pain | 5.37 ± 2.14 |
HAM-D | 9.08 ± 5.61 |
HAD-Anxiety | 5.71 ± 4.09 |
MOCA | 21.66 ± 5.00 |
Sf36 | 55.55 ± 20 |
Adjusted R-Squared: 0.09 | |||
---|---|---|---|
Baseline Variables | β-Coefficient | p-Value | 95% CI |
WOMAC Pain Score | −0.13 | 0.003 * | −0.21 to −0.04 |
Pain catastrophizing scale | 0.005 | 0.721 | −0.02 to 0.03 |
Race | 0.09 | 0.773 | −0.53 to 0.72 |
Age | −0.02 | 0.212 | −0.05 to 0.01 |
Sex | 0.25 | 0.481 | −0.45 to 0.96 |
Adjusted R-Squared: 0.11 | |||
---|---|---|---|
Baseline Variables | β-Coefficient | p-Value | 95% CI |
WOMAC Pain Score | −0.08 | 0.014 * | −0.156 to −0.018 |
Berg Balance Scale | 0.04 | 0.033 * | 0.003 to 0.080 |
Race | 0.15 | 0.592 | −0.423 to 0.739 |
Sex | 0.22 | 0.511 | −0.472 to 0.927 |
EEG Variables | β-Coefficient | p-Value | 95% CI |
---|---|---|---|
Frontal area | |||
Adjusted R-squared: 0.08 | |||
Relative power of delta waves | −3.11 | 0.021 * | −5.90 to −0.33 |
Pain catastrophizing scale | −0.02 | 0.164 | −0.05 to −0.00 |
Race | −0.35 | 0.362 | −1.14 to 0.43 |
Age | −0.003 | 0.843 | −0.039 to 0.032 |
Sex | −0.25 | 0.652 | −1.42 to 0.90 |
Central area | |||
Adjusted R-squared: 0.07 | |||
Relative power of delta waves | −3.23 | 0.040 * | −6.34 to −0.11 |
Pain catastrophizing scale | −0.02 | 0.180 | −0.05 to 0.01 |
Race | −0.26 | 0.503 | −1.07 to 0.53 |
Age | −0.005 | 0.751 | −0.04 to 0.03 |
Sex | −0.25 | 0.660 | −1.42 to 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simis, M.; Pacheco-Barrios, K.; Vasquez-Avila, K.; Rebello-Sanchez, I.; Parente, J.; Castelo-Branco, L.; Marduy, A.; de Melo, P.S.; Imamura, M.; Battistella, L.; et al. Functional and Neural Correlates Associated with Conditioned Pain Modulation in Patients with Chronic Knee Osteoarthritis Pain: A Cross-Sectional Study. Life 2023, 13, 1697. https://doi.org/10.3390/life13081697
Simis M, Pacheco-Barrios K, Vasquez-Avila K, Rebello-Sanchez I, Parente J, Castelo-Branco L, Marduy A, de Melo PS, Imamura M, Battistella L, et al. Functional and Neural Correlates Associated with Conditioned Pain Modulation in Patients with Chronic Knee Osteoarthritis Pain: A Cross-Sectional Study. Life. 2023; 13(8):1697. https://doi.org/10.3390/life13081697
Chicago/Turabian StyleSimis, Marcel, Kevin Pacheco-Barrios, Karen Vasquez-Avila, Ingrid Rebello-Sanchez, Joao Parente, Luis Castelo-Branco, Anna Marduy, Paulo S. de Melo, Marta Imamura, Linamara Battistella, and et al. 2023. "Functional and Neural Correlates Associated with Conditioned Pain Modulation in Patients with Chronic Knee Osteoarthritis Pain: A Cross-Sectional Study" Life 13, no. 8: 1697. https://doi.org/10.3390/life13081697
APA StyleSimis, M., Pacheco-Barrios, K., Vasquez-Avila, K., Rebello-Sanchez, I., Parente, J., Castelo-Branco, L., Marduy, A., de Melo, P. S., Imamura, M., Battistella, L., & Fregni, F. (2023). Functional and Neural Correlates Associated with Conditioned Pain Modulation in Patients with Chronic Knee Osteoarthritis Pain: A Cross-Sectional Study. Life, 13(8), 1697. https://doi.org/10.3390/life13081697