Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitor Improves Leukocyte Energy Metabolism in Hereditary Hemorrhagic Telangiectasia
Abstract
:1. Introduction
2. Methods
2.1. Selection of Participants
2.2. RNA Isolation from Whole Blood
2.3. PBMC Isolation and Cultivation
2.4. Pharmacological Stabilization of HIF-1α
2.5. RNA Isolation and Gene Expression Analysis by Real-Time PCR
2.6. Protein Isolation and Western Blot
2.7. Metabolic Flux Analysis
2.8. Statistics
3. Results
3.1. HIF-1 Target Genes Related to Metabolism Are Downregulated in HHT Whole Blood
3.2. HIF1A and Metabolic Target Gene Expression Is Decreased in HHT PBMCs
3.3. HIF-1α Protein Is Reduced in HHT PBMCs but Can Be Pharmacologically Normalized
3.4. Metabolic Capacity Is Reduced in HHT PBMCs
3.4.1. HHT PBMCs Have Reduced Mitochondrial Metabolic Activity, Which Can Be Recovered by HIF Stabilization
3.4.2. Glycolytic Metabolism Is Reduced in HHT PBMCs but Recoverable through Pharmacological Stabilization of the HIF-1α Protein
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shovlin, C.; Buscarini, E.; Sabbà, C.; Mager, H.; Kjeldsen, A.; Pagella, F.; Sure, U.; Ugolini, S.; Torring, P.; Suppressa, P. The European Rare Disease Network for HHT Frameworks for management of hereditary haemorrhagic telangiectasia in general and speciality care. Eur. J. Med. Genet. 2022, 65, 104370. [Google Scholar] [CrossRef]
- Faughnan, M.; Palda, V.; Garcia-Tsao, G.; Geisthoff, U.; McDonald, J.; Proctor, D.; Spears, J.; Brown, D.; Buscarini, E.; Chesnutt, M.S.; et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J. Med. Genet. 2011, 48, 73–87. [Google Scholar] [CrossRef]
- Bernabéu, C.; Blanco, F.J.; Langa, C.; Garrido-Martin, E.M.; Botella, L.M. Involvement of the TGF-β superfamily signalling pathway in hereditary haemorrhagic telangiectasia. J. Appl. Biomed. 2010, 8, 169–177. [Google Scholar] [CrossRef]
- Travis, M.A.; Sheppard, D. TGF-β Activation and Function in Immunity. Annu. Rev. Immunol. 2014, 32, 51–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girod, S.D.; Giraud, S.; Decullier, E.; Lesca, G.; Cottin, V.; Faure, F.; Merrot, O.; Saurin, J.-C.; Cordier, J.-F.; Plauchu, H. Hemorrhagic hereditary telangiectasia (Rendu-Osler disease) and infectious diseases: An underestimated association. Clin. Infect. Dis. 2007, 44, 841–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirulli, A.; Loria, M.P.; Dambra, P.; Di Serio, F.; Ventura, M.T.; Amati, L.; Jirillo, E.; Sabba, C. Patients with hereditary hemorrhagic telangectasia (HHT) exhibit a deficit of polymorphonuclear cell and monocyte oxidative burst and phagocytosis: A possible correlation with altered adaptive immune responsiveness in HHT. Curr. Pharm. Des. 2006, 12, 1209–1215. [Google Scholar] [CrossRef]
- Droege, F.; Thangavelu, K.; Stuck, B.A.; Stang, A.; Lang, S.; Geisthoff, U. Life expectancy and comorbidities in patients with hereditary hemorrhagic telangiectasia. Vasc. Med. 2018, 23, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Geisthoff, U.; Droege, F.; König, J.; Lang, K.; Thangavelu, K.; Lang, S.; Stuck, B. Increased infection rates in HHT patients–results of an online survey. Laryngo-Rhino-Otologie 2018, 97, 10333. [Google Scholar]
- Guilhem, A.; Malcus, C.; Clarivet, B.; Plauchu, H.; Dupuis-Girod, S. Immunological abnormalities associated with hereditary haemorrhagic telangiectasia. J. Intern. Med. 2013, 274, 351–362. [Google Scholar] [CrossRef]
- Musso, M.; Capone, A.; Chinello, P.; Di Bella, S.; Galati, V.; Noto, P.; Taglietti, F.; Topino, S.; Petrosillo, N. Extra-cerebral severe infections associated with haemorrhagic hereditary telangiectasia (Rendu-Osler-Weber Disease): Five cases and a review of the literature. Le Infez. Med. 2014, 22, 50–56. [Google Scholar]
- Shovlin, C.; Bamford, K.; Sabbà, C.; Mager, H.-J.; Kjeldsen, A.; Droege, F.; Buscarini, E.; Dupuis-Girod, S. Prevention of serious infections in hereditary hemorrhagic telangiectasia: Roles for prophylactic antibiotics, the pulmonary capillaries-but not vaccination. Haematologica 2019, 104, e85. [Google Scholar] [CrossRef] [Green Version]
- Peter, M.R.; Jerkic, M.; Sotov, V.; Douda, D.N.; Ardelean, D.S.; Ghamami, N.; Lakschevitz, F.; Khan, M.A.; Robertson, S.J.; Glogauer, M. Impaired resolution of inflammation in the Endoglin heterozygous mouse model of chronic colitis. Mediat. Inflamm. 2014, 2014, 767185. [Google Scholar] [CrossRef]
- Droege, F.; Pylaeva, E.; Siakaeva, E.; Bordbari, S.; Spyra, I.; Thangavelu, K.; Lueb, C.; Domnich, M.; Lang, S.; Geisthoff, U. Impaired release of neutrophil extracellular traps and anemia-associated T cell deficiency in hereditary hemorrhagic telangiectasia. J. Clin. Med. 2020, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Basu, R.K.; Hubchak, S.; Hayashida, T.; Runyan, C.E.; Schumacker, P.T.; Schnaper, H.W. Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am. J. Physiol.-Ren. Physiol. 2011, 300, F898–F905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, C.; Hubchak, S.C.; Liang, X.; Rozen-Zvi, B.; Schumacker, P.T.; Hayashida, T.; Schnaper, H.W. Hypoxia-inducible factor-2α and TGF-β signaling interact to promote normoxic glomerular fibrogenesis. Am. J. Physiol.-Ren. Physiol. 2013, 305, F1323–F1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozen-Zvi, B.; Hayashida, T.; Hubchak, S.C.; Hanna, C.; Platanias, L.C.; William Schnaper, H. TGF-β/Smad3 activates mammalian target of rapamycin complex-1 to promote collagen production by increasing HIF-1α expression. Am. J. Physiol.-Ren. Physiol. 2013, 305, F485–F494. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Elsner, T.; Botella, L.M.; Velasco, B.; Corbí, A.; Attisano, L.; Bernabéu, C. Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. J. Biol. Chem. 2001, 276, 38527–38535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domene, C.; Jorgensen, C.; Schofield, C.J. Mechanism of molecular oxygen diffusion in a hypoxia-sensing prolyl hydroxylase using multiscale simulation. J. Am. Chem. Soc. 2020, 142, 2253–2263. [Google Scholar] [CrossRef]
- Fandrey, J.; Schödel, J.; Eckardt, K.-U.; Katschinski, D.M.; Wenger, R.H. Now a Nobel gas: Oxygen. Pflügers Arch.-Eur. J. Physiol. 2019, 471, 1343–1358. [Google Scholar] [CrossRef]
- Fandrey, J.; Gorr, T.A.; Gassmann, M. Regulating cellular oxygen sensing by hydroxylation. Cardiovasc. Res. 2006, 71, 642–651. [Google Scholar] [CrossRef]
- Kojima, H.; Sitkovsky, M.V.; Cascalho, M. HIF-1α deficiency perturbs T and B cell functions. Curr. Pharm. Des. 2003, 9, 1827–1832. [Google Scholar] [CrossRef]
- Kierans, S.; Taylor, C. Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J. Physiol. 2021, 599, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.T.; Scholz, C.C. The effect of HIF on metabolism and immunity. Nat. Rev. Nephrol. 2022, 18, 573–587. [Google Scholar] [CrossRef]
- Kerber, E.L.; Padberg, C.; Koll, N.; Schuetzhold, V.; Fandrey, J.; Winning, S. The importance of hypoxia-inducible factors (HIF-1 and HIF-2) for the pathophysiology of inflammatory bowel disease. Int. J. Mol. Sci. 2020, 21, 8551. [Google Scholar] [CrossRef]
- Kojima, H.; Gu, H.; Nomura, S.; Caldwell, C.C.; Kobata, T.; Carmeliet, P.; Semenza, G.L.; Sitkovsky, M.V. Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1α-deficient chimeric mice. Proc. Natl. Acad. Sci. USA 2002, 99, 2170–2174. [Google Scholar] [CrossRef] [PubMed]
- Wrobeln, A.; Leu, T.; Jablonska, J.; Geisthoff, U.; Lang, S.; Fandrey, J.; Droege, F. Altered hypoxia inducible factor regulation in hereditary haemorrhagic telangiectasia. Sci. Rep. 2022, 12, 5877. [Google Scholar] [CrossRef]
- Shovlin, C.L.; Guttmacher, A.E.; Buscarini, E.; Faughnan, M.E.; Hyland, R.H.; Westermann, C.J.; Kjeldsen, A.D.; Plauchu, H. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am. J. Med. Genet. 2000, 91, 66–67. [Google Scholar] [CrossRef]
- Janssen, J.J.; Lagerwaard, B.; Bunschoten, A.; Savelkoul, H.F.; van Neerven, R.J.; Keijer, J.; de Boer, V.C. Novel standardized method for extracellular flux analysis of oxidative and glycolytic metabolism in peripheral blood mononuclear cells. Sci. Rep. 2021, 11, 1662. [Google Scholar] [CrossRef]
- Pau, G.; Fuchs, F.; Sklyar, O.; Boutros, M.; Huber, W. EBImage—An R package for image processing with applications to cellular phenotypes. Bioinformatics 2010, 26, 979–981. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Shaligram, S.; Faughnan, M.E.; Clark, D.; Sun, Z.; Su, H. Reduction of endoglin receptor impairs mononuclear cell-migration. Explor. Med. 2020, 1, 136. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jiang, B.; Zhang, T.; Liu, L.; Wang, Y.; Wang, Y.; Chen, X.; Lin, H.; Zhou, L.; Xia, Y. Insulin and mTOR pathway regulate HDAC3-mediated deacetylation and activation of PGK1. PLoS Biol. 2015, 13, e1002243. [Google Scholar]
- Li, W.; Xu, M.; Li, Y.; Huang, Z.; Zhou, J.; Zhao, Q.; Le, K.; Dong, F.; Wan, C.; Yi, P. Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J. Transl. Med. 2020, 18, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlmann, J.; Siemens, N.; Kai-Larsen, Y.; Fiedler, T.; Bergman, P.; Johansson, L.; Norrby-Teglund, A. Phosphoglycerate kinase—A novel streptococcal factor involved in neutrophil activation and degranulation. J. Infect. Dis. 2016, 214, 1876–1883. [Google Scholar] [CrossRef] [Green Version]
- Dittus, C.; Streiff, M.; Ansell, J. Bleeding and clotting in hereditary hemorrhagic telangiectasia. World J. Clin. Cases WJCC 2015, 3, 330. [Google Scholar] [CrossRef]
- Arza, B.; Félez, J.; Lopez-Alemany, R.; Miles, L.A.; Munñoz-Cánoves, P. Identification of an epitope of α-enolase (a candidate plasminogen receptor) by phage display. Thromb. Haemost. 1997, 78, 1097–1103. [Google Scholar] [CrossRef]
- Fontán, P.A.; Pancholi, V.; Nociari, M.M.; Fischetti, V.A. Antibodies to streptococcal surface enolase react with human α-enolase: Implications in poststreptococcal sequelae. J. Infect. Dis. 2000, 182, 1712–1721. [Google Scholar] [CrossRef]
- López-Alemany, R.; Longstaff, C.; Hawley, S.; Mirshahi, M.; Fábregas, P.; Jardí, M.; Merton, E.; Miles, L.A.; Félez, J. Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against α-Enolase. Am. J. Hematol. 2003, 72, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.A.; Dahlberg, C.M.; Plescia, J.; Felez, J.; Kato, K.; Plow, E.F. Role of cell-surface lysines in plasminogen binding to cells: Identification of. alpha.-enolase as a candidate plasminogen receptor. Biochemistry 1991, 30, 1682–1691. [Google Scholar] [CrossRef]
- Redlitz, A.; Fowler, B.J.; Plow, E.F.; Miles, L.A. The role of an enolase-related molecule in plasminogen binding to cells. Eur. J. Biochem. 1995, 227, 407–415. [Google Scholar] [CrossRef]
- Wygrecka, M.; Marsh, L.M.; Morty, R.E.; Henneke, I.; Guenther, A.; Lohmeyer, J.; Markart, P.; Preissner, K.T. Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood J. Am. Soc. Hematol. 2009, 113, 5588–5598. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Vaeth, M.; Eckstein, M.; Delgobo, M.; Ramos, G.; Frantz, S.; Hofmann, U.; Gladow, N. Characterization of the effect of the GLUT-1 inhibitor BAY-876 on T cells and macrophages. Eur. J. Pharmacol. 2023, 945, 175552. [Google Scholar] [CrossRef]
- Macintyre, A.N.; Gerriets, V.A.; Nichols, A.G.; Michalek, R.D.; Rudolph, M.C.; Deoliveira, D.; Anderson, S.M.; Abel, E.D.; Chen, B.J.; Hale, L.P. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014, 20, 61–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Fujii, H.; Mohan, S.V.; Goronzy, J.J.; Weyand, C.M. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells. J. Exp. Med. 2013, 210, 2119–2134. [Google Scholar] [CrossRef]
- Autissier, P.; Soulas, C.; Burdo, T.H.; Williams, K.C. Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytom. Part A J. Int. Soc. Adv. Cytom. 2010, 77, 410–419. [Google Scholar] [CrossRef]
- Kleiveland, C.R. Peripheral blood mononuclear cells. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer International Publishing AG: Cham, Switzerland, 2015; pp. 161–167. [Google Scholar]
- Cramer, T.; Yamanishi, Y.; Clausen, B.E.; Förster, I.; Pawlinski, R.; Mackman, N.; Haase, V.H.; Jaenisch, R.; Corr, M.; Nizet, V. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 2003, 112, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-L.; Tu, Y.; Liu, B.-C. Treatment of renal anemia with roxadustat: Advantages and achievement. Kidney Dis. 2020, 6, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T.D.; Palomino, H.L.; Brondstetter, T.I.; Kanelakis, K.C.; Wu, X.; Yan, W.; Merton, K.P.; Schoetens, F.; Ma, J.Y.; Skaptason, J. Prolyl hydroxylase inhibition corrects functional iron deficiency and inflammation-induced anaemia in rats. Br. J. Pharmacol. 2015, 172, 4078–4088. [Google Scholar] [CrossRef] [Green Version]
- Weiss, G.; Houston, T.; Kastner, S.; Johrer, K.; Grunewald, K.; Brock, J.H. Regulation of cellular iron metabolism by erythropoietin: Activation of iron-regulatory protein and upregulation of transferrin receptor expression in erythroid cells. Blood J. Am. Soc. Hematol. 1997, 89, 680–687. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, C.; Tsuchiya, K.; Maeda, K. Hypoxia-inducible factor prolyl hydroxylase inhibitors and iron metabolism. Int. J. Mol. Sci. 2023, 24, 3037. [Google Scholar] [CrossRef] [PubMed]
Gene | 5′ Primer | 3′ Primer |
---|---|---|
ACTB | TCACCCACACTGTGCCCATCTACGA | CAGCGGAACCGCTCATTGCCAATGG |
PGK1 | TGGACGTTAAAGGGAAGCGG | GCTCATAAGGACTACCGACTTGG |
ENO | GCCGTGAACGAGAAGTCCTG | ACGCCTGAAGAGACTCGGT |
HIF1A | TCACTGGGACTATTAGGCTCAGGT | CTCCATTACCCACCGCTGAA |
GLUT1 | TCTGGCATCAACGCTGTCTT | CTAGCGCGATGGTCATGAGT |
PFKL | GCTGGGCGGCACTATCATT | TCAGGTGCGAGTAGGTCCG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schild, Y.; Bosserhoff, J.; Droege, F.; Littwitz-Salomon, E.; Fandrey, J.; Wrobeln, A. Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitor Improves Leukocyte Energy Metabolism in Hereditary Hemorrhagic Telangiectasia. Life 2023, 13, 1708. https://doi.org/10.3390/life13081708
Schild Y, Bosserhoff J, Droege F, Littwitz-Salomon E, Fandrey J, Wrobeln A. Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitor Improves Leukocyte Energy Metabolism in Hereditary Hemorrhagic Telangiectasia. Life. 2023; 13(8):1708. https://doi.org/10.3390/life13081708
Chicago/Turabian StyleSchild, Yves, Jonah Bosserhoff, Freya Droege, Elisabeth Littwitz-Salomon, Joachim Fandrey, and Anna Wrobeln. 2023. "Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitor Improves Leukocyte Energy Metabolism in Hereditary Hemorrhagic Telangiectasia" Life 13, no. 8: 1708. https://doi.org/10.3390/life13081708
APA StyleSchild, Y., Bosserhoff, J., Droege, F., Littwitz-Salomon, E., Fandrey, J., & Wrobeln, A. (2023). Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitor Improves Leukocyte Energy Metabolism in Hereditary Hemorrhagic Telangiectasia. Life, 13(8), 1708. https://doi.org/10.3390/life13081708