The Effect of Multi-Session Prefrontal Cortical Stimulation on Aggression: A Randomized, Double-Blind, Parallel-Group Trial
Abstract
:1. Introduction
Current Study
2. Methods
2.1. Participants
2.2. Trial Design
2.3. tDCS
2.4. Aggressive Behavior
2.5. Covariates
2.6. Statistical Analyses
3. Results
3.1. Participant Flow and Recruitment
3.2. Baseline Characteristics
3.3. Adherence and Tolerance to Protocol
3.4. Associations between Baseline Characteristics and Aggressive Behavior
3.5. tDCS Effects on Aggressive Behavior
3.6. Sensitivity Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoeffler, A. What are the costs of violence? Politics Philos. Econ. 2017, 16, 422–445. [Google Scholar] [CrossRef]
- Rissanen, E.; Kuvaja-Köllner, V.; Elonheimo, H.; Sillanmäki, L.; Sourander, A.; Kankaanpää, E. The long-term cost of childhood conduct problems: Finnish Nationwide 1981 Birth Cohort Study. J. Child Psychol. Psychiatry 2022, 63, 683–692. [Google Scholar] [CrossRef]
- Delgado, J.M. Aggressive behavior evoked by radio stimulation in monkey colonies. Am. Zool. 1966, 6, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Fanning, J.R.; Keedy, S.; Berman, M.E.; Lee, R.; Coccaro, E.F. Neural correlates of aggressive behavior in real time: A review of fMRI studies of laboratory reactive aggression. Curr. Behav. Neurosci. Rep. 2017, 4, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Raine, A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Res. Neuroimaging 2009, 174, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Bertsch, K.; Florange, J.; Herpertz, S.C. Understanding brain mechanisms of reactive aggression. Curr. Psychiatry Rep. 2020, 22, 81. [Google Scholar] [CrossRef]
- Chester, D.S.; Lynam, D.R.; Milich, R.; DeWall, C.N. Physical aggressiveness and gray matter deficits in ventromedial prefrontal cortex. Cortex 2017, 97, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Pietrini, P.; Guazzelli, M.; Basso, G.; Jaffe, K.; Grafman, J. Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. Am. J. Psychiatry 2000, 157, 1772–1781. [Google Scholar] [CrossRef]
- Anderson, S.W.; Barrash, J.; Bechara, A.; Tranel, D. Impairments of emotion and real-world complex behavior following childhood- or adult-onset damage to ventromedial prefrontal cortex. J. Int. Neuropsychol. Soc. 2006, 12, 224–235. [Google Scholar] [CrossRef]
- Grafman, J.; Schwab, K.; Warden, D.; Pridgen, A.; Brown, H.; Salazar, A.M. Frontal lobe injuries, violence, and aggression: A report of the Vietnam Head Injury Study. Neurology 1996, 46, 1231. [Google Scholar] [CrossRef]
- Ciaramelli, E.; Braghittoni, D.; di Pellegrino, G. It is the outcome that counts! Damage to the ventromedial prefrontal cortex disrupts the integration of outcome and belief information for moral judgment. J. Int. Neuropsychol. Soc. 2012, 18, 962–971. [Google Scholar] [CrossRef]
- Leopold, A.; Krueger, F.; dal Monte, O.; Pardini, M.; Pulaski, S.J.; Solomon, J.; Grafman, J. Damage to the left ventromedial prefrontal cortex impacts affective theory of mind. Soc. Cogn. Affect. Neurosci. 2012, 7, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.; Valero-Cabre, A.; Rotenberg, A.; Pascual-Leone, A. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, L.; Koslowsky, M.; Lavidor, M. tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Exp. Brain Res. 2012, 216, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.; Shah-Basak, P.P.; Hamilton, R. It’s the thought that counts: Examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul. 2015, 8, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Friehs, M.A.; Frings, C. Offline beats online: Transcranial direct current stimulation timing influences on working memory. Neuroreport 2019, 30, 795–799. [Google Scholar] [CrossRef]
- Gilam, G.; Abend, R.; Gurevitch, G.; Erdman, A.; Baker, H.; Ben-Zion, Z.; Hendler, T. Attenuating anger and aggression with neuromodulation of the vmPFC: A simultaneous tDCS-fMRI study. Cortex 2018, 109, 156–170. [Google Scholar] [CrossRef]
- Chen, C.-Y. Right ventrolateral prefrontal cortex involvement in proactive and reactive aggression: A transcranial direct current stimulation study. Neuroreport 2018, 29, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Riva, P.; Romero Lauro, L.J.; DeWall, C.N.; Chester, D.S.; Bushman, B.J. Reducing aggressive responses to social exclusion using transcranial direct current stimulation. Soc. Cogn. Affect. Neurosci. 2015, 10, 352–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, P.; Gabbiadini, A.; Romero Lauro, L.J.; Andrighetto, L.; Volpato, C.; Bushman, B.J. Neuromodulation can reduce aggressive behavior elicited by violent video games. Cogn. Affect. Behav. Neurosci. 2017, 17, 452–459. [Google Scholar] [CrossRef]
- Choy, O.; Raine, A.; Hamilton, R.H. Stimulation of the prefrontal cortex reduces intentions to commit aggression: A randomized, double-blind, placebo-controlled, stratified, parallel-group trial. J. Neurosci. 2018, 38, 6505–6512. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Raine, A.; Choy, O.; Hamilton, R. Effects of prefrontal cortical stimulation on aggressive and antisocial behavior: A double-blind, stratified, randomized, sham-controlled, parallel-group trial. J. Exp. Criminol. 2020, 16, 367–387. [Google Scholar] [CrossRef]
- Dambacher, F.; Schuhmann, T.; Lobbestael, J.; Arntz, A.; Brugman, S.; Sack, A.T. No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression. PLoS ONE 2015, 10, e0132170. [Google Scholar] [CrossRef] [Green Version]
- Hortensius, R.; Schutter, D.J.; Harmon-Jones, E. When anger leads to aggression: Induction of relative left frontal cortical activity with transcranial direct current stimulation increases the anger–aggression relationship. Soc. Cogn. Affect. Neurosci. 2011, 7, 342–347. [Google Scholar] [CrossRef]
- Song, S.; Zilverstand, A.; Gui, W.; Li, H.-j.; Zhou, X. Effects of single-session versus multi-session non-invasive brain stimulation on craving and consumption in individuals with drug addiction, eating disorders or obesity: A meta-analysis. Brain Stimul. 2019, 12, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Molero-Chamizo, A.; Riquel, R.M.; Moriana, J.A.; Nitsche, M.A.; Rivera-Urbina, G.N. Bilateral prefrontal cortex anodal tDCS effects on self-reported aggressiveness in imprisoned violent offenders. Neuroscience 2019, 397, 31–40. [Google Scholar] [CrossRef]
- Sergiou, C.S.; Santarnecchi, E.; Romanella, S.M.; Wieser, M.J.; Franken, I.H.; Rassin, E.G.; van Dongen, J.D. tDCS targeting the Ventromedial Prefrontal Cortex reduces reactive aggression and modulates electrophysiological responses in a forensic population. Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 2022, 7, 95–107. [Google Scholar]
- Dambacher, F.; Schuhmann, T.; Lobbestael, J.; Arntz, A.; Brugman, S.; Sack, A.T. Reducing proactive aggression through non-invasive brain stimulation. Soc. Cogn. Affect. Neurosci. 2015, 10, 1303–1309. [Google Scholar] [CrossRef] [Green Version]
- Gallucci, A.; Riva, P.; Lauro, L.J.R.; Bushman, B.J. Stimulating the ventrolateral prefrontal cortex (VLPFC) modulates frustration-induced aggression: A tDCS experiment. Brain Stimul. 2020, 13, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Geniole, S.N.; MacDonell, E.T.; McCormick, C.M. The Point Subtraction Aggression Paradigm as a laboratory tool for investigating the neuroendocrinology of aggression and competition. Horm. Behav. 2017, 92, 103–116. [Google Scholar] [CrossRef]
- Knehans, R.; Schuhmann, T.; Roef, D.; Nelen, H.; à Campo, J.; Lobbestael, J. Modulating behavioural and self-reported aggression with non-invasive brain stimulation: A literature review. Brain Sci. 2022, 12, 200. [Google Scholar] [CrossRef]
- Minarik, T.; Berger, B.; Althaus, L.; Bader, V.; Biebl, B.; Brotzeller, F.; Fusban, T.; Hegemann, J.; Jesteadt, L.; Kalweit, L. The importance of sample size for reproducibility of tDCS effects. Front. Hum. Neurosci. 2016, 10, 453. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Huang, D.; Chen, S.; Wang, S.; Guo, W.; Luo, J.; Ye, H.; Chen, Y. Modulating the activity of ventromedial prefrontal cortex by anodal tDCS enhances the trustee’s repayment through altruism. Front. Psychol. 2016, 7, 1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fertonani, A.; Ferrari, C.; Miniussi, C. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin. Neurophysiol. 2015, 126, 2181–2188. [Google Scholar] [CrossRef] [PubMed]
- Bechara, A.; Damasio, A.R.; Damasio, H.; Anderson, S.W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994, 50, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ouerchefani, R.; Ouerchefani, N.; Allain, P.; Ben Rejeb, M.R.; Le Gall, D. Relationships between executive function, working memory, and decision-making on the Iowa Gambling Task: Evidence from ventromedial patients, dorsolateral patients, and normal subjects. J. Neuropsychol. 2019, 13, 432–461. [Google Scholar] [CrossRef]
- Cools, R.; Clark, L.; Owen, A.M.; Robbins, T.W. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J. Neurosci. 2002, 22, 4563–4567. [Google Scholar] [CrossRef] [Green Version]
- Hampton, A.N.; Bossaerts, P.; O’doherty, J.P. The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans. J. Neurosci. 2006, 26, 8360–8367. [Google Scholar] [CrossRef] [Green Version]
- Gandiga, P.C.; Hummel, F.C.; Cohen, L.G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 2006, 117, 845–850. [Google Scholar] [CrossRef]
- Cherek, D.R.; Moeller, F.G.; Schnapp, W.; Dougherty, D.M. Studies of violent and nonviolent male parolees: I. Laboratory and psychometric measurements of aggression. Biol. Psychiatry 1997, 41, 514–522. [Google Scholar] [CrossRef]
- Skibsted, A.P.; Cunha-Bang, S.d.; Carré, J.M.; Hansen, A.E.; Beliveau, V.; Knudsen, G.M.; Fisher, P.M. Aggression-related brain function assessed with the Point Subtraction Aggression Paradigm in fMRI. Aggress. Behav. 2017, 43, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Raine, A.; Dodge, K.; Loeber, R.; Gatzke-Kopp, L.; Lynam, D.; Reynolds, C.; Stouthamer-Loeber, M.; Liu, J. The reactive–proactive aggression questionnaire: Differential correlates of reactive and proactive aggression in adolescent boys. Aggress. Behav. 2006, 32, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Paulhus, D.L.; Neumann, C.S.; Hare, R.D. Manual for the Self-Report Psychopathy Scale; Multi-Health Systems: Toronto, ON, Canada, 2009. [Google Scholar]
- Sweeten, G. Scaling criminal offending. J. Quant. Criminol. 2012, 28, 533–557. [Google Scholar] [CrossRef]
- Lynam, D.R.; Purdue University, West Lafayette, IN, USA. Development of a Short Form of the UPPS-P Impulsive Behavior Scale. Unpublished Technical Report. 2013. [Google Scholar]
- Gross, J.J.; John, O.P. Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. J. Personal. Soc. Psychol. 2003, 85, 348. [Google Scholar] [CrossRef]
- Tangney, J.P.; Baumeister, R.F.; Boone, A.L. High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. J. Personal. 2004, 72, 271–324. [Google Scholar] [CrossRef] [PubMed]
- Committee for Proprietary Medicinal Products. Points to consider on adjustment for baseline covariates. Stat. Med. 2004, 23, 701. [Google Scholar] [CrossRef]
- Kahan, B.C.; Jairath, V.; Doré, C.J.; Morris, T.P. The risks and rewards of covariate adjustment in randomized trials: An assessment of 12 outcomes from 8 studies. Trials 2014, 15, 139. [Google Scholar] [CrossRef]
- Gibaldi, M.; Sullivan, S. Intention-to-Treat Analysis in Randomized Trials: Who Gets Counted? J. Clin. Pharmacol. 1997, 37, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Unnebrink, K.; Windeler, J. Intention-to-treat: Methods for dealing with missing values in clinical trials of progressively deteriorating diseases. Stat. Med. 2001, 20, 3931–3946. [Google Scholar] [CrossRef]
- James, K.E.; Bloch, D.A.; Lee, K.K.; Kraemer, H.C.; Fuller, R.K. An index for assessing blindness in a multi-center clinical trial: Disulfiram for alcohol cessation -- A VA cooperative study. Stat. Med. 1996, 15, 1421–1434. [Google Scholar] [CrossRef]
- Bang, H.; Ni, L.; Davis, C.E. Assessment of blinding in clinical trials. Control. Clin. Trials 2004, 25, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Ugawa, Y. Adverse events of tDCS and tACS: A review. Clin. Neurophysiol. Pract. 2017, 2, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Young, L.; Bechara, A.; Tranel, D.; Damasio, H.; Hauser, M.; Damasio, A. Damage to ventromedial prefrontal cortex impairs judgment of harmful intent. Neuron 2010, 65, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Abend, R.; Sar-El, R.; Gonen, T.; Jalon, I.; Vaisvaser, S.; Bar-Haim, Y.; Hendler, T. Modulating emotional experience using electrical stimulation of the medial-prefrontal cortex: A preliminary tDCS-fMRI study. Neuromodulation Technol. Neural Interface 2019, 22, 884–893. [Google Scholar] [CrossRef]
- Yu, J.; Tseng, P.; Hung, D.L.; Wu, S.W.; Juan, C.H. Brain stimulation improves cognitive control by modulating medial-frontal activity and preSMA-vmPFC functional connectivity. Hum. Brain Mapp. 2015, 36, 4004–4015. [Google Scholar] [CrossRef] [PubMed]
- Boes, A.D.; Bechara, A.; Tranel, D.; Anderson, S.W.; Richman, L.; Nopoulos, P. Right ventromedial prefrontal cortex: A neuroanatomical correlate of impulse control in boys. Soc. Cogn. Affect. Neurosci. 2009, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Weidler, C.; Habel, U.; Wallheinke, P.; Wagels, L.; Hofhansel, L.; Ling, S.; Blendy, J.A.; Clemens, B. Consequences of prefrontal tDCS on inhibitory control and reactive aggression. Soc. Cogn. Affect. Neurosci. 2022, 17, 120–130. [Google Scholar] [CrossRef]
- Singer, T.; Seymour, B.; O’Doherty, J.P.; Stephan, K.E.; Dolan, R.J.; Frith, C.D. Empathic neural responses are modulated by the perceived fairness of others. Nature 2006, 439, 466–469. [Google Scholar] [CrossRef] [Green Version]
- Rosell, D.R.; Siever, L.J. The neurobiology of aggression and violence. CNS Spectr. 2015, 20, 254–279. [Google Scholar] [CrossRef]
- Raine, A. The neuromoral theory of antisocial, violent, and psychopathic Behavior. Psychiatry Res. 2019, 277, 64–69. [Google Scholar] [CrossRef]
- Sergiou, C.S.; Santarnecchi, E.; Franken, I.H.; van Dongen, J.D. The effectiveness of Transcranial Direct Current Stimulation as an intervention to improve empathic abilities and reduce violent behavior: A literature review. Aggress. Violent Behav. 2020, 55, 101463. [Google Scholar] [CrossRef]
Characteristic | Included (n = 88) | Excluded (n = 35) | Statistic | p Value |
---|---|---|---|---|
Demographic variables | ||||
Gender | ||||
Female | 46 | 20 | Chi2 = 0.24 | 0.63 |
Male | 42 | 15 | ||
Age, y | 23.82 (5.60) | 23.94 (4.73) | t = 0.12 | 0.91 |
Ethnicity | ||||
Chinese | 72 | 31 | Chi2 = 0.84 | 0.36 |
Non-Chinese | 16 | 4 | ||
Baseline measures | ||||
Aggression | 10.16 (4.85) | 10.83 (4.55) | t = 0.70 | 0.48 |
Psychopathy | 55.00 (15.08) | 56.09 (13.19) | t = 0.37 | 0.71 |
Variety of offending | 6.55 (2.91) | 7.06 (2.70) | t = 0.90 | 0.37 |
Lack of premeditation | 1.87 (0.49) | 1.84 (0.41) | t = −0.32 | 0.75 |
Sensation-seeking | 2.91 (0.68) | 2.55 (0.66) | t = −2.72 | 0.01 |
Cognitive appraisal | 31.48 (4.86) | 30.34 (5.93) | t = −1.10 | 0.28 |
Expressive suppression | 17.50 (4.45) | 17.23 (4.33) | t = −0.31 | 0.76 |
Self-control | 40.31 (7.78) | 39.69 (7.82) | t = −0.40 | 0.69 |
Social adversity | 2.00 (1.51) | 1.89 (0.93) | t = −0.51 | 0.61 |
Characteristic | tDCS Group (n = 47) | Sham Group (n = 41) | Statistic b | p Value | Males (n = 42) | Females (n = 46) | Statistic b | p Value |
---|---|---|---|---|---|---|---|---|
Gender | ||||||||
Female | 22 | 24 | Chi2 = 1.21 | 0.27 | ||||
Male | 25 | 17 | ||||||
Age, y | 24.94 (7.35) | 22.54 (1.72) | t = −2.17 | 0.04 | 24.98 (6.97) | 22.76 (3.74) | t = −1.88 | 0.06 |
Ethnicity | ||||||||
Chinese | 36 | 36 | Chi2 = 1.85 | 0.17 | 35 | 37 | Chi2 = 0.12 | 0.73 |
Non-Chinese | 11 | 5 | 7 | 9 | ||||
Aggression | 10.19 (5.05) | 10.12 (4.66) | t = −0.07 | 0.95 | 9.95 (5.03) | 10.35 (4.72) | t = 0.38 | 0.71 |
Psychopathy | 55.10 (15.22) | 54.88 (15.10) | t = −0.07 | 0.94 | 59.74 (15.88) | 50.67 (13.03) | t = −2.94 | 0.004 |
Variety of offending | 6.57 (2.79) | 6.51 (3.08) | t = 0.10 | 0.92 | 7.24 (3.17) | 5.91 (2.53) | t = −2.18 | 0.03 |
Lack of premeditation | 1.78 (0.50) | 1.98 (0.46) | t = 2.01 | 0.05 | 1.83 (0.46) | 1.91 (0.51) | t = 0.71 | 0.48 |
Sensation-seeking | 2.92 (0.69) | 2.91 (0.67) | t = −0.08 | 0.94 | 2.95 (0.60) | 2.88 (0.75) | t = −0.50 | 0.62 |
Cognitive appraisal | 31.09 (5.79) | 31.93 (3.52) | t = 0.84 | 0.41 | 32.19 (4.96) | 30.83 (4.72) | t = −1.32 | 0.19 |
Expressive suppression | 17.30 (4.39) | 17.73 (4.57) | t = 0.45 | 0.65 | 18.31 (4.02) | 16.76 (4.74) | t = −1.65 | 0.10 |
Self-control | 41.43 (7.43) | 39.02 (8.07) | t = −1.45 | 0.15 | 40.67 (8.10) | 39.98 (7.56) | t = −0.41 | 0.68 |
Social adversity | 2.09 (1.63) | 1.90 (1.37) | t = −0.56 | 0.57 | 2.31 (1.57) | 1.72 (1.41) | t = −1.87 | 0.07 |
(a) | |||||||
Participant’s Guess, n | James’ BI b | Bang’s BI | 95% CI c | ||||
Intervention | tDCS | Sham | Do Not Know | Total | |||
tDCS | 22 | 10 | 15 | 47 | 0.26 | 0.07, 0.44 | |
Sham | 13 | 12 | 15 | 40 | −0.03 | −0.23, 0.18 | |
Total | 35 | 22 | 30 | 87 a | 0.62 | 0.53, 0.70 | |
Experimenter’s Guess, n | |||||||
Intervention | tDCS | Sham | Do not know | Total | |||
tDCS | 3 | 14 | 30 | 47 | −0.23 | −0.37, −0.10 | |
Sham | 3 | 10 | 28 | 41 | 0.17 | 0.03, 0.31 | |
Total | 6 | 24 | 58 | 88 | 0.84 | 0.78, 0.89 | |
(b) | |||||||
Participant’s Guess, n | James’ BI | Bang’s BI | 95% CI | ||||
Intervention | tDCS | Sham | Do not know | Total | |||
tDCS | 31 | 7 | 9 | 47 | 0.51 | 0.33, 0.69 | |
Sham | 21 | 9 | 11 | 41 | −0.29 | −0.50, −0.09 | |
Total | 52 | 16 | 20 | 88 | 0.57 | 0.49, 0.65 | |
Experimenter’s Guess, n | |||||||
Intervention | tDCS | Sham | Do not know | Total | |||
tDCS | 11 | 5 | 30 | 46 | 0.13 | −0.01, 0.27 | |
Sham | 5 | 8 | 26 | 39 | 0.08 | −0.07, 0.23 | |
Total | 16 | 13 | 56 | 85 a | 0.78 | 0.70, 0.85 | |
(c) | |||||||
Participant’s Guess, n | James’ BI | Bang’s BI | 95% CI | ||||
Intervention | tDCS | Sham | Do not know | Total | |||
tDCS | 25 | 12 | 10 | 47 | 0.28 | 0.07, 0.48 | |
Sham | 20 | 12 | 9 | 41 | −0.20 | −0.42, 0.03 | |
Total | 45 | 24 | 19 | 88 | 0.59 | 0.50, 0.67 | |
Experimenter’s Guess, n | |||||||
Intervention | tDCS | Sham | Do not know | Total | |||
tDCS | 8 | 14 | 25 | 47 | −0.13 | −0.29, 0.03 | |
Sham | 8 | 12 | 21 | 41 | 0.10 | −0.08, 0.28 | |
Total | 16 | 26 | 46 | 88 | 0.77 | 0.70, 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choy, O.; Tan, G.; Wong, Y.C. The Effect of Multi-Session Prefrontal Cortical Stimulation on Aggression: A Randomized, Double-Blind, Parallel-Group Trial. Life 2023, 13, 1729. https://doi.org/10.3390/life13081729
Choy O, Tan G, Wong YC. The Effect of Multi-Session Prefrontal Cortical Stimulation on Aggression: A Randomized, Double-Blind, Parallel-Group Trial. Life. 2023; 13(8):1729. https://doi.org/10.3390/life13081729
Chicago/Turabian StyleChoy, Olivia, Gary Tan, and Yen Cong Wong. 2023. "The Effect of Multi-Session Prefrontal Cortical Stimulation on Aggression: A Randomized, Double-Blind, Parallel-Group Trial" Life 13, no. 8: 1729. https://doi.org/10.3390/life13081729
APA StyleChoy, O., Tan, G., & Wong, Y. C. (2023). The Effect of Multi-Session Prefrontal Cortical Stimulation on Aggression: A Randomized, Double-Blind, Parallel-Group Trial. Life, 13(8), 1729. https://doi.org/10.3390/life13081729