Rate of Involved Endocervical Margins According to High-Risk Human Papillomavirus Subtype and Transformation Zone Type in Specimens with Cone Length ≤ 10 mm versus > 10 mm—A Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bedell, S.L.; Goldstein, L.S.; Goldstein, A.R.; Goldstein, A.T. Cervical Cancer Screening: Past, Present, and Future. Sex. Med. Rev. 2020, 8, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; LanLan, Z.; Li, C.; Dan, Z. Pregnancy outcome following loop electrosurgical excision procedure (LEEP) a systematic review and meta-analysis. Arch. Gynecol. Obstet. 2014, 289, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Serrano, B.; Brotons, M.; Bosch, F.X.; Bruni, L. Epidemiology and burden of HPV-related disease. Best. Pract. Res. Clin. Obstet. Gynaecol. 2018, 47, 14–26. [Google Scholar] [CrossRef] [PubMed]
- de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef]
- Giannella, L.; Delli Carpini, G.; Di Giuseppe, J.; Prandi, S.; Tsiroglou, D.; Ciavattini, A. Age-Related Changes in the Fraction of Cervical Intraepithelial Neoplasia Grade 3 Related to HPV Genotypes Included in the Nonavalent Vaccine. J. Oncol. 2019, 2019, 7137891. [Google Scholar] [CrossRef]
- Stasinou, S.M.; Valasoulis, G.; Kyrgiou, M.; Malamou-Mitsi, V.; Bilirakis, E.; Pappa, L.; Deligeoroglou, E.; Nasioutziki, M.; Founta, C.; Daponte, A.; et al. Large loop excision of the transformation zone and cervical intraepithelial neoplasia: A 22-year experience. Anticancer. Res. 2012, 32, 4141–4145. [Google Scholar]
- Egemen, D.; Cheung, L.C.; Chen, X.; Demarco, M.; Perkins, R.B.; Kinney, W.; Poitras, N.; Befano, B.; Locke, A.; Guido, R.S.; et al. Risk Estimates Supporting the 2019 ASCCP Risk-Based Management Consensus Guidelines. J. Low. Genit. Tract. Dis. 2020, 24, 132–143. [Google Scholar] [CrossRef]
- Kyrgiou, M.; Athanasiou, A.; Arbyn, M.; Lax, S.F.; Raspollini, M.R.; Nieminen, P.; Carcopino, X.; Bornstein, J.; Gultekin, M.; Paraskevaidis, E. Terminology for cone dimensions after local conservative treatment for cervical intraepithelial neoplasia and early invasive cervical cancer: 2022 consensus recommendations from ESGO, EFC, IFCPC, and ESP. Lancet Oncol. 2022, 23, e385–e392. [Google Scholar] [CrossRef]
- Bornstein, J.; Bentley, J.; Bösze, P.; Girardi, F.; Haefner, H.; Menton, M.; Perrotta, M.; Prendiville, W.; Russell, P.; Sideri, M.; et al. 2011 colposcopic terminology of the International Federation for Cervical Pathology and Colposcopy. Obstet. Gynecol. 2012, 120, 166–172. [Google Scholar] [CrossRef]
- Quaas, J.; Reich, O.; Küppers, V. Explanation and Use of the Rio 2011 Colposcopy Nomenclature of the IFCPC (International Federation for Cervical Pathology and Colposcopy): Comments on the general colposcopic assessment of the uterine cervix: Adequate/inadequate; squamocolumnar junction; transformation zone. Geburtshilfe Frauenheilkd. 2014, 74, 1090–1092. [Google Scholar] [CrossRef]
- Colposcopy and Treatment—Clinical Guidelines Australia. Available online: https://www.cancer.org.au/clinical-guidelines/cervical-cancer-screening/colposcopy/treatment (accessed on 1 July 2022).
- Gertrudes, L.N.; Yoneda, J.Y.; Mirandez, C.C.; Carvalho, C.F.; Derchain, S.; Teixeira, J.C.; Vale, D.B. Endocervical Margins Status in Excision for Preventing Cervical Cancer According to the Transformation Zone Type. J. Low. Genit. Tract. Dis. 2022, 26, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Lara-Peñaranda, R.; Rodríguez-López, P.M.; Plitt-Stevens, J.; Gómez-Leal, P.; Remezal-Solano, M.; Martínez-Cendán, J.P. Is large loop excision of the transformation zone depth a risk factor for affected endocervical margins? J. Obstet. Gynaecol. Res. 2020, 46, 2100–2107. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, J.; Ma, X.; Yu, H.; Guan, X.; Li, J.; Yang, J. Evaluation of cervical length and optimal timing for pregnancy after cervical conization in patients with cervical intraepithelial neoplasia: A retrospective study. Medicine 2020, 99, e23411. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Dimitriou, E.; Conroy, R.; Paraskevaidis, E.; Kyrgiou, M.; Harrity, C.; Arbyn, M.; Prendiville, W. The thickness and volume of LLETZ specimens can predict the relative risk of pregnancy-related morbidity. Bjog 2012, 119, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Kyrgiou, M.; Athanasiou, A.; Paraskevaidi, M.; Mitra, A.; Kalliala, I.; Martin-Hirsch, P.; Arbyn, M.; Bennett, P.; Paraskevaidis, E. Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth: Systematic review and meta-analysis. Bmj 2016, 354, i3633. [Google Scholar] [CrossRef]
- Noehr, B.; Jensen, A.; Frederiksen, K.; Tabor, A.; Kjaer, S.K. Depth of cervical cone removed by loop electrosurgical excision procedure and subsequent risk of spontaneous preterm delivery. Obstet. Gynecol. 2009, 114, 1232–1238. [Google Scholar] [CrossRef]
- Lara-Peñaranda, R.; Rodríguez-López, P.M.; Plitt-Stevens, J.; Ortiz-González, A.; Remezal-Solano, M.; Martínez-Cendán, J.P. Does the trend toward less deep excisions in LLETZ to minimize obstetric risk lead to less favorable oncological outcomes? Int. J. Gynaecol. Obstet. 2020, 148, 316–324. [Google Scholar] [CrossRef]
- Arbyn, M.; Redman, C.W.E.; Verdoodt, F.; Kyrgiou, M.; Tzafetas, M.; Ghaem-Maghami, S.; Petry, K.U.; Leeson, S.; Bergeron, C.; Nieminen, P.; et al. Incomplete excision of cervical precancer as a predictor of treatment failure: A systematic review and meta-analysis. Lancet Oncol. 2017, 18, 1665–1679. [Google Scholar] [CrossRef]
- Kong, T.W.; Son, J.H.; Chang, S.J.; Paek, J.; Lee, Y.; Ryu, H.S. Value of endocervical margin and high-risk human papillomavirus status after conization for high-grade cervical intraepithelial neoplasia, adenocarcinoma in situ, and microinvasive carcinoma of the uterine cervix. Gynecol. Oncol. 2014, 135, 468–473. [Google Scholar] [CrossRef]
- Giannella, L.; Mfuta, K.; Gardini, G.; Rubino, T.; Fodero, C.; Prandi, S. High-grade CIN on cervical biopsy and predictors of the subsequent cone histology results in women undergoing immediate conization. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 186, 68–74. [Google Scholar] [CrossRef]
- Giannini, A.; Di Donato, V.; Sopracordevole, F.; Ciavattini, A.; Ghelardi, A.; Vizza, E.; D’Oria, O.; Simoncini, T.; Plotti, F.; Casarin, J.; et al. Outcomes of High-Grade Cervical Dysplasia with Positive Margins and HPV Persistence after Cervical Conization. Vaccines 2023, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Del Mistro, A.; Adcock, R.; Carozzi, F.; Gillio-Tos, A.; De Marco, L.; Girlando, S.; Rizzolo, R.; Frayle, H.; Trevisan, M.; Sani, C.; et al. Human papilloma virus genotyping for the cross-sectional and longitudinal probability of developing cervical intraepithelial neoplasia grade 2 or more. Int. J. Cancer 2018, 143, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.A.; Gheit, T.; Franceschi, S.; Tommasino, M.; Clifford, G.M. Human Papillomavirus 18 Genetic Variation and Cervical Cancer Risk Worldwide. J. Virol. 2015, 89, 10680–10687. [Google Scholar] [CrossRef]
- Stuebs, F.A.; Beckmann, M.W.; Fehm, T.; Dannecker, C.; Follmann, M.; Langer, T.; Wesselmann, S. Implementation and update of guideline-derived quality indicators for cervical cancer in gynecological cancer centers certified by the German Cancer Society (DKG). J. Cancer Res. Clin. Oncol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Luyten, A.; Hagemann, I.; Scherbring, S.; Boehmer, G.; Gieseking, F.; Woelber, L.; Glasenapp, F.; Hampl, M.; Kuehler-Obbarius, C.; van den Bergh, M.; et al. Utility of EFC quality indicators for colposcopy in daily practice: Results from an independent, prospective multicenter trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 191, 43–47. [Google Scholar] [CrossRef]
- Manley, K.; Patel, A.; Pawade, J.; Glew, S.; Hunt, K.; Villeneuve, N.; Mukonoweshuro, P.; Thompson, S.; Hoskins, H.; López-Bernal, A.; et al. The use of biomarkers and HPV genotyping to improve diagnostic accuracy in women with a transformation zone type 3. Br. J. Cancer 2022, 126, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Kietpeerakool, C.; Suprasert, P.; Khunamornpong, S.; Sukpan, K.; Settakorn, J.; Srisomboon, J. "Top hat" versus conventional loop electrosurgical excision procedure in women with a type 3 transformation zone. Int. J. Gynaecol. Obstet. 2010, 109, 59–62. [Google Scholar] [CrossRef]
- Giannella, L.; Delli Carpini, G.; Di Giuseppe, J.; Gardella, B.; Bogani, G.; Monti, E.; Liverani, C.A.; Roncella, E.; Raspagliesi, F.; Spinillo, A.; et al. Should attention be paid to the cone depth in the fully visible transformation zone? Retrospective analysis of 517 patients with cervical intraepithelial neoplasia grade 3. Int. J. Gynaecol. Obstet. 2022, 16, 137–143. [Google Scholar] [CrossRef]
- Papoutsis, D.; Rodolakis, A.; Mesogitis, S.; Sotiropoulou, M.; Antsaklis, A. Appropriate cone dimensions to achieve negative excision margins after large loop excision of transformation zone in the uterine cervix for cervical intraepithelial neoplasia. Gynecol. Obstet. Investig. 2013, 75, 163–168. [Google Scholar] [CrossRef]
- Bae, H.S.; Chung, Y.W.; Kim, T.; Lee, K.W.; Song, J.Y. The appropriate cone depth to avoid endocervical margin involvement is dependent on age and disease severity. Acta Obstet. Gynecol. Scand. 2013, 92, 185–192. [Google Scholar] [CrossRef]
- Ang, C.; Mukhopadhyay, A.; Burnley, C.; Faulkner, K.; Cross, P.; Martin-Hirsch, P.; Naik, R. Histological recurrence and depth of loop treatment of the cervix in women of reproductive age: Incomplete excision versus adverse pregnancy outcome. Bjog 2011, 118, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Sykes, P.H.; Simcock, B.J.; Innes, C.R.; Harker, D.; Williman, J.A.; Whitehead, M.; van der Griend, R.A.; Lawton, B.A.; Hibma, M.; Fitzgerald, P.; et al. Predicting regression of cervical intraepithelial neoplasia grade 2 in women under 25 years. Am. J. Obstet. Gynecol. 2022, 226, e221–e222. [Google Scholar] [CrossRef] [PubMed]
- Teoh, D.; Musa, F.; Salani, R.; Huh, W.; Jimenez, E. Diagnosis and Management of Adenocarcinoma in Situ: A Society of Gynecologic Oncology Evidence-Based Review and Recommendations. Obstet. Gynecol. 2020, 135, 869–878. [Google Scholar] [CrossRef]
- Tough, S.C.; Newburn-Cook, C.; Johnston, D.W.; Svenson, L.W.; Rose, S.; Belik, J. Delayed childbearing and its impact on population rate changes in lower birth weight, multiple birth, and preterm delivery. Pediatrics 2002, 109, 399–403. [Google Scholar] [CrossRef]
- Li, H.; Nawsherwan; Fan, C.; Mubarik, S.; Nabi, G.; Ping, Y.X. The trend in delayed childbearing and its potential consequences on pregnancy outcomes: A single center 9-years retrospective cohort study in Hubei, China. BMC Pregnancy Childbirth 2022, 22, 514. [Google Scholar] [CrossRef]
- Mills, M.; Rindfuss, R.R.; McDonald, P.; te Velde, E. Why do people postpone parenthood? Reasons and social policy incentives. Hum. Reprod. Update 2011, 17, 848–860. [Google Scholar] [CrossRef]
- Kyrgiou, M.; Athanasiou, A.; Kalliala, I.E.J.; Paraskevaidi, M.; Mitra, A.; Martin-Hirsch, P.P.; Arbyn, M.; Bennett, P.; Paraskevaidis, E. Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease. Cochrane Database Syst. Rev. 2017, 11, Cd012847. [Google Scholar] [CrossRef]
- Niyibizi, J.; Mayrand, M.H.; Audibert, F.; Monnier, P.; Brassard, P.; Laporte, L.; Lacaille, J.; Zahreddine, M.; Bédard, M.J.; Girard, I.; et al. Association Between Human Papillomavirus Infection Among Pregnant Women and Preterm Birth. JAMA Netw. Open. 2021, 4, e2125308. [Google Scholar] [CrossRef] [PubMed]
- Ambühl, L.M.; Baandrup, U.; Dybkær, K.; Blaakær, J.; Uldbjerg, N.; Sørensen, S. Human Papillomavirus Infection as a Possible Cause of Spontaneous Abortion and Spontaneous Preterm Delivery. Infect. Dis. Obstet. Gynecol. 2016, 2016, 3086036. [Google Scholar] [CrossRef]
LLETZ (n = 854) | Excision Length ≤ 10 mm (n = 441) | Excision Length > 10 mm (n = 413) | p-Value | ||
---|---|---|---|---|---|
Age, years a | 36 (31–44) | 34 (30–41) | 38 (32–46) | <0.001 | |
Involved endocervical margin ᵇ | 147 (17.2) | 85 (19.3) | 62 (15.0) | 0.099 | |
Clear endocervical margin ᵇ | 707 (82.8) | 356 (80.7) | 351 (85.0) | ||
Excision length, mm a | 10 (7–15) | 8 (7–9) | 15 (13–18) | <0.001 | |
HPV 16/hr ᵇ | 763 (89.3) | 400 (90.7) | 363 (87.9) | 0.184 | |
HPV 18 ᵇ | 91 (10.7) | 41 (9.3) | 50 (12.2) | ||
Visible TZ ᵇ | 701 (82.1) | 375 (85.0) | 326 (78.9) | 0.020 | |
Non-visible TZ ᵇ | 153 (17.9) | 66 (15.0) | 87 (21.1) | ||
Histological diagnosis of LLETZ ᵇ | LSIL | 124 (14.5) | 74 (16.8) | 50 (12.1) | 0.053 |
HSIL | 673 (78.8) | 339 (76.9) | 334 (80.9) | 0.153 | |
AIS | 24 (2.8) | 14 (3.2) | 10 (2.4) | 0.506 | |
SCC | 31 (3.6) | 14 (3.2) | 17 (4.1) | 0.562 | |
AC | 2 (0.2) | 0 | 2 (0.5) | 0.143 |
Endocervical Margin Status | Involved | Clear | OR | CI | p Value | |
---|---|---|---|---|---|---|
visible TZ | HPV 16/hr | |||||
Excision length ≤ 10 mm ᵇ | 59 (17.3) | 282 (82.7) | Ref. | - | 0.027 | |
Excision length > 10 mm ᵇ | 32 (11.1) | 257 (88.9) | 1.68 | 1.06–2.67 | ||
HPV 18 | ||||||
Excision length ≤ 10 mm ᵇ | 9 (26.5) | 25 (73.5) | Ref. | - | 0.170 | |
Excision length > 10 mm ᵇ | 5 (13.5) | 32 (86.5) | 2.30 | 0.69–7.74 | ||
non-visible TZ | HPV 16/hr | |||||
Excision length ≤ 10 mm ᵇ | 18 (30.5) | 41 (69.5) | Ref. | - | 0.582 | |
Excision length > 10 mm ᵇ | 19 (25.7) | 55 (74.3) | 1.24 | 0.58–2.68 | ||
HPV 18 | ||||||
Excision length ≤ 10 mm ᵇ | 2 (28.6) | 5 (71.4) | Ref. | - | 0.787 | |
Excision length > 10 mm ᵇ | 3 (23.1) | 10 (76.9) | 1.33 | 0.17–10.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paternostro, C.; Joura, E.A.; Ranftl, C.; Langthaler, E.-M.; Ristl, R.; Dorittke, T.; Pils, S. Rate of Involved Endocervical Margins According to High-Risk Human Papillomavirus Subtype and Transformation Zone Type in Specimens with Cone Length ≤ 10 mm versus > 10 mm—A Retrospective Analysis. Life 2023, 13, 1775. https://doi.org/10.3390/life13081775
Paternostro C, Joura EA, Ranftl C, Langthaler E-M, Ristl R, Dorittke T, Pils S. Rate of Involved Endocervical Margins According to High-Risk Human Papillomavirus Subtype and Transformation Zone Type in Specimens with Cone Length ≤ 10 mm versus > 10 mm—A Retrospective Analysis. Life. 2023; 13(8):1775. https://doi.org/10.3390/life13081775
Chicago/Turabian StylePaternostro, Chiara, Elmar A. Joura, Christina Ranftl, Eva-Maria Langthaler, Robin Ristl, Tim Dorittke, and Sophie Pils. 2023. "Rate of Involved Endocervical Margins According to High-Risk Human Papillomavirus Subtype and Transformation Zone Type in Specimens with Cone Length ≤ 10 mm versus > 10 mm—A Retrospective Analysis" Life 13, no. 8: 1775. https://doi.org/10.3390/life13081775
APA StylePaternostro, C., Joura, E. A., Ranftl, C., Langthaler, E. -M., Ristl, R., Dorittke, T., & Pils, S. (2023). Rate of Involved Endocervical Margins According to High-Risk Human Papillomavirus Subtype and Transformation Zone Type in Specimens with Cone Length ≤ 10 mm versus > 10 mm—A Retrospective Analysis. Life, 13(8), 1775. https://doi.org/10.3390/life13081775