Challenges towards the Sustainability and Enhancement of the Indian Sundarban Mangrove’s Blue Carbon Stock
Abstract
:1. Introduction
1.1. Indian Sundarban Mangrove Ecosystem—A Brief Overview
Ecosystem Services Furnished by the Mangrove Stands of Sundarban
2. Materials and Methods
2.1. Review and Search Strategy
2.2. Paper Selection Criteria
2.3. Data Extraction
3. Blue Carbon Stock—Knowledge Acquired So Far
4. Strong Physical Forcing Events—Tropical Cyclones
5. Salinization of Estuaries and Mangrove Sediments
6. Changes in Mangrove Species Assemblage
7. Erosion, Sediment Starvation, and Nutrient Deprivation
8. Anthropogenic Disturbances and Coastal Pollution
9. Fate of Blue Carbon Stock under the Changing Climate and Environment
10. Social–Ecological Challenges and Mangrove Restoration
11. Conclusions
- A comprehensive estimate of the total blue carbon stock of the Indian Sundarban through high spatial-resolution ground sampling is required. Eliminating the uncertainties by sampling throughout the spatial extent of the Indian Sundarban would enable us to derive the total carbon stock estimates and compute the social cost of carbon with higher confidence levels.
- To combat cyclone-induced damage to the mangrove floral stands, the state forest administration should strengthen its team to cater to the damaged trees by pruning them, covering exposed roots with soil, and clearing broken and malformed branches. Such care immediately after cyclonic storms would enhance the regeneration potential of the damaged trees.
- To alleviate the salinity stress in the Indian Sundarban, river rejuvenation in the upper reaches can always be a theoretical option that can solve many of these problems; however, in reality, it is challenging to execute, as these regions currently shelter thousands of inhabitants. Thus, planners and policy managers should explore avenues of channelizing freshwater into the central part of the Indian Sundarban through underground pipelines from the perennial flow of the Hooghly River.
- To combat the salinity-driven changes in the mangrove species assemblage, locating suitable areas and planting oligohaline species like Heritera fomes, Nypa fruticans, and Sonneratia sp. should be prioritized in the upcoming restoration programs. All mangrove restoration endeavors should focus on maintaining species diversity, as observed in the latest restoration effort after cyclone Amphan.
- Channeling freshwater from upper reaches through underground canals can alleviate nutrient and sediment deprivation. Arresting sea-level rise is beyond human control; however, illegal dredging activities should be controlled through strict law enforcement to combat sediment scarcity in this region.
- Overall, the local community has a considerable degree of awareness towards mangrove conservation as these mangroves protect them from natural hazards like tropical cyclones and storm surges. However, implementing payments against ecosystem services and carbon stock maintenance remains an alien concept in this region. The government should ensure that such initiatives see daylight and that the local stakeholders directly benefit from such programs, considering that conserving the Indian Sundarban can help India achieve 0.4% of its nationally determined contribution towards creating additional carbon sinks. Initiatives are also welcome to spread the significance of blue carbon sequestration among the commons, which can accentuate the need to conserve and protect this unique marine habitat.
- Law enforcement regarding the maintenance of estuarine water quality is virtually absent in this part of the world. This aspect needs immediate attention from the government to safeguard the mangroves and all biotic communities within this ecosystem. Integrating mangroves with aquaculture farming is another way out that needs the rigorous attention of the scientific community. Land conversion from mangroves to any other land-use class should be strictly prohibited, and the area coverage of the marine protected areas should be increased.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Ahmed, N.; Glaser, M. Coastal aquaculture, mangrove deforestation, and blue carbon emissions: Is REDD+ a solution? Mar. Pol. 2016, 66, 58–66. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration. Ambio 2018, 47, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Jiao, N.; Wang, H.; Xu, G.; Aricò, S. Blue carbon on the rise: Challenges and opportunities. Natl. Sci. Rev. 2018, 5, 464–468. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Costa, M.D.; Atwood, T.B.; Friess, D.A.; Kelleway, J.J.; Kennady, H.; Lovelock, C.E.; Serrano, O.; Duarte, C.M. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2021, 2, 826–839. [Google Scholar] [CrossRef]
- Nellemann, C.; Corcoran, E. Blue Carbon: The Role of Healthy Oceans in Binding Carbon: A Rapid Response Assessment; GRID-Arendal, UNEP/Earthprint: Birkeland, Norway, 2009; pp. 1–78. [Google Scholar]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marbà, N.; et al. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Duarte, C.M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 2019, 15, 20180781. [Google Scholar] [CrossRef]
- Boysen-Jensen, P. Studies concerning the organic matter of the sea bottom. Rep. Dan. Biol. Stn. 1915, 22, 1–39. [Google Scholar]
- Riley, G.A. The carbon metabolism and photosynthetic efficiency of the Earth as a whole. Am. Sci. 1944, 32, 129–134. [Google Scholar]
- Kuwae, T.; Hori, M. The Future of Blue Carbon: Addressing Global Environmental Issues. In Blue Carbon in Shallow Coastal Ecosystems; Kuwae, T., Hori, M., Eds.; Springer: Singapore, 2019; pp. 347–373. [Google Scholar]
- Duarte, C.M.; Middelburg, J.J.; Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2005, 2, 1–8. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 2017, 14, 301–310. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Nielsen, D.A.; Kelleway, J.J.; Atwood, T.B.; Seymour, J.R.; Petrou, K.; Connolly, R.M.; Thomson, A.C.G.; Trevathan-Tackett, S.M.; Ralph, P.J. Can we manage coastal ecosystems to sequester more blue carbon? Front. Ecol. Environ. 2017, 15, 206–213. [Google Scholar] [CrossRef]
- Siikamäki, J.; Sanchirico, J.N.; Jardine, S.; McLaughlin, D.; Morris, D. Blue carbon: Coastal ecosystems, their carbon storage, and potential for reducing emissions. Environ. Sci. Pol. Sustain. Dev. 2013, 55, 14–29. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Atwood, T.; Baldock, J.; Duarte, C.M.; Hickey, S.; Lavery, P.S.; Masque, P.; Macreadie, P.I.; Ricart, A.M.; Serrano, O.; et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 2017, 15, 257–265. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon balance in salt marsh and mangrove ecosystems: A global synthesis. J. Mar. Sci. Eng. 2020, 8, 767. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- de Jong Cleyndert, G.; Cuni-Sanchez, A.; Seki, H.A.; Shirima, D.D.; Munishi, P.K.; Burgess, N.; Calders, K.; Marchant, R. The effects of seaward distance on above and below ground carbon stocks in estuarine mangrove ecosystems. Carbon Balance Manag. 2020, 15, 27. [Google Scholar] [CrossRef]
- Lamont, K.; Saintilan, N.; Kelleway, J.J.; Mazumder, D.; Zawadzki, A. Thirty-year repeat measures of mangrove above-and belowground biomass reveal unexpectedly high carbon sequestration. Ecosystems 2020, 23, 370–382. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef] [PubMed]
- Kida, M.; Fujitake, N. Organic carbon stabilization mechanisms in mangrove soils: A review. Forests 2020, 11, 981. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Komiyama, A.; Ong, J.E.; Poungparn, S. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 2008, 89, 128–137. [Google Scholar] [CrossRef]
- Kathiresan, K.; Bingham, B.L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 2001, 40, 81–251. [Google Scholar]
- Islam, M.; Haque, M. The mangrove-based coastal and nearshore fisheries of Bangladesh: Ecology, exploitation and management. Rev. Fish Biol. Fish. 2004, 14, 153–180. [Google Scholar] [CrossRef]
- Bosma, R.H.; Nguyen, T.H.; Siahainenia, A.J.; Tran, H.T.; Tran, H.N. Shrimp-based livelihoods in mangrove silvo-aquaculture farming systems. Rev. Aquac. 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Marois, D.E.; Mitsch, W.J. Coastal protection from tsunamis and cyclones provided by mangrove wetlands—A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 71–83. [Google Scholar] [CrossRef]
- Pennings, S.C.; Glazner, R.M.; Hughes, Z.J.; Kominoski, J.S.; Armitage, A.R. Effects of mangrove cover on coastal erosion during a hurricane in Texas, USA. Ecology 2021, 102, e03309. [Google Scholar] [CrossRef]
- Friess, D.A.; Thompson, B.S.; Brown, B.; Amir, A.A.; Cameron, C.; Koldewey, H.J.; Sasmito, S.D.; Sidik, F. Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia. Conserv. Biol. 2016, 30, 933–949. [Google Scholar] [CrossRef]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E. The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, C.E.; Cahoon, D.R.; Friess, D.A.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.; Saunders, M.L.; Sidik, F.; Swales, A.; et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- Asbridge, E.; Lucas, R.; Rogers, K.; Accad, A. The extent of mangrove change and potential for recovery following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia. Ecol. Evol. 2018, 8, 10416–10434. [Google Scholar] [CrossRef]
- Buitre, M.J.C.; Zhang, H.; Lin, H. The mangrove forests change and impacts from tropical cyclones in the Philippines using time series satellite imagery. Remote Sens. 2019, 11, 688. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M.H.; Ho, Y.S. A historical review and bibliometric analysis of research on estuary pollution. Mar. Pollut. Bull. 2012, 64, 13–21. [Google Scholar] [CrossRef]
- Yan, Z.; Sun, X.; Xu, Y.; Zhang, Q.; Li, X. Accumulation and tolerance of mangroves to heavy metals: A review. Curr. Pollut. Rep 2017, 3, 302–317. [Google Scholar] [CrossRef]
- Kulkarni, R.; Deobagkar, D.; Zinjarde, S. Metals in mangrove ecosystems and associated biota: A global perspective. Ecotoxicol. Environ. Saf. 2018, 153, 215–228. [Google Scholar] [CrossRef]
- Girones, L.; Oliva, A.L.; Negrin, V.L.; Marcovecchio, J.E.; Arias, A.H. Persistent organic pollutants (POPs) in coastal wetlands: A review of their occurrences, toxic effects, and biogeochemical cycling. Mar. Pollut. Bull. 2021, 172, 112864. [Google Scholar] [CrossRef]
- Maghsodian, Z.; Sanati, A.M.; Tahmasebi, S.; Shahriari, M.H.; Ramavandi, B. Study of microplastics pollution in sediments and organisms in mangrove forests: A review. Environ. Res. 2022, 208, 112725. [Google Scholar] [CrossRef]
- Osorio, J.A.; Wingfield, M.J.; Roux, J. A review of factors associated with decline and death of mangroves, with particular reference to fungal pathogens. S. Afr. J. Bot. 2016, 103, 295–301. [Google Scholar] [CrossRef]
- Sidik, F.; Lawrence, A.; Wagey, T.; Zamzani, F.; Lovelock, C.E. Blue carbon: A new paradigm of mangrove conservation and management in Indonesia. Mar. Pol. 2023, 147, 105388. [Google Scholar] [CrossRef]
- Gopal, B.; Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 2006, 68, 338–354. [Google Scholar] [CrossRef]
- Naha, D.; Jhala, Y.V.; Qureshi, Q.; Roy, M.; Sankar, K.; Gopal, R. Ranging, activity and habitat use by tigers in the mangrove forests of the Sundarban. PLoS ONE 2016, 11, e0152119. [Google Scholar] [CrossRef]
- Selvam, V. An assessment of mangrove management during the colonial and post-colonial periods. Curr. Sci. 2021, 120, 766. [Google Scholar] [CrossRef]
- Rahman, L.M.; Laskar, M. Development initiatives of the Sundarban of Bangladesh. Malays. For. 2016, 79, 77–88. [Google Scholar]
- Marcinko, C.L.; Nicholls, R.J.; Daw, T.M.; Hazra, S.; Hutton, C.W.; Hill, C.T.; Clarke, D.; Harfoot, A.; Basu, O.; Das, I.; et al. The development of a framework for the integrated assessment of SDG trade-offs in the Sundarban Biosphere Reserve. Water 2021, 13, 528. [Google Scholar] [CrossRef]
- Sen, A.; Pattanaik, S. The political agenda of implementing Forest Rights Act 2006: Evidences from Indian Sundarban. Environ. Dev. Sustain. 2019, 21, 2355–2376. [Google Scholar] [CrossRef]
- Banerjee, S.; Chanda, A.; Ghosh, T.; Cremin, E.; Renaud, F.G. A Qualitative Assessment of Natural and Anthropogenic Drivers of Risk to Sustainable Livelihoods in the Indian Sundarban. Sustainability 2023, 15, 6146. [Google Scholar] [CrossRef]
- Rodda, S.R.; Thumaty, K.C.; Fararoda, R.; Jha, C.S.; Dadhwal, V.K. Unique characteristics of ecosystem CO2 exchange in Sundarban mangrove forest and their relationship with environmental factors. Estuar. Coast Shelf Sci. 2022, 267, 107764. [Google Scholar] [CrossRef]
- Das, I.; Chanda, A.; Akhand, A.; Hazra, S. Carbon Biogeochemistry of the Estuaries Adjoining the Indian Sundarbans Mangrove Ecosystem: A Review. Life 2023, 13, 863. [Google Scholar] [CrossRef] [PubMed]
- Bera, R.; Maiti, R. Mangrove dependency and livelihood challenges—A study on Sundarbans, India. Reg. Stud. Mar. Sci. 2022, 50, 102135. [Google Scholar] [CrossRef]
- Sahana, M.; Rehman, S.; Ahmed, R.; Sajjad, H. Analyzing climate variability and its effects in Sundarban Biosphere Reserve, India: Reaffirmation from local communities. Environ. Dev. Sustain. 2021, 23, 2465–2492. [Google Scholar] [CrossRef]
- Chatterjee, M.; Shankar, D.; Sen, G.K.; Sanyal, P.; Sundar, D.; Michael, G.S.; Chatterjee, A.; Amol, P.; Mukherjee, D.; Suprit, K.; et al. Tidal variations in the Sundarbans estuarine system, India. J. Earth Syst. Sci. 2013, 122, 899–933. [Google Scholar] [CrossRef]
- Pitchaikani, J.S. Vertical current structure in a macro-tidal, well mixed Sundarban ecosystem, India. J. Coast Conserv. 2020, 24, 63. [Google Scholar] [CrossRef]
- Ghosh, P. Conservation and conflicts in the Sundarban biosphere reserve, India. Geogr. Rev. 2015, 105, 429–440. [Google Scholar] [CrossRef]
- Ghosh, P.; Ghosh, A. Is ecotourism a panacea? Political ecology perspectives from the Sundarban Biosphere Reserve, India. GeoJournal 2019, 84, 345–366. [Google Scholar] [CrossRef]
- Hajra, R.; Ghosh, T. Agricultural productivity, household poverty and migration in the Indian Sundarban Delta. Elem. Sci. Anthr. 2018, 6, 3. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chaudhuri, A.; Kundu, N.; Mitra, S.; Homechaudhuri, S. Comprehensive analysis of fish assemblages in relation to seasonal environmental variables in an estuarine river of Indian Sundarbans. Estuar. Coast 2013, 36, 192–202. [Google Scholar] [CrossRef]
- Dutta, S.; Chakraborty, K.; Hazra, S. Ecosystem structure and trophic dynamics of an exploited ecosystem of Bay of Bengal, Sundarban Estuary, India. Fish. Sci. 2017, 83, 145–159. [Google Scholar] [CrossRef]
- Lalramchhani, C.; Balasubramanian, C.P.; Shyne Anand, P.S.; Ghosal, T.K.; Kumar, P.; Vijayan, K.K. Mud crab farming: An alternative livelihood in the Indian Sundarban. Aquaculture 2019, 23, 20–29. [Google Scholar]
- Das, P.; Das, A.; Roy, S. Shrimp fry (meen) farmers of Sundarban Mangrove Forest (India): A tale of ecological damage and economic hardship. Int. J. Agric. Food Res. 2016, 5, 28–41. [Google Scholar] [CrossRef]
- Thakur, S.; Ghosh, S.; Ghosh, T. Scope and constraint of beekeeping in Satjalia Island within Indian Sundarban delta. Int. J. Agric. Environ. Res. 2016, 2, 109–114. [Google Scholar]
- Sahu, S.C.; Suresh, H.S.; Murthy, I.K.; Ravindranath, N.H. Mangrove area assessment in India: Implications of loss of mangroves. J. Earth Sci. Clim. Chang. 2015, 6, 280. [Google Scholar]
- Chowdhury, A.; Naz, A.; Bhattacharyya, S.; Sanyal, P. Cost–benefit analysis of ‘Blue Carbon’ sequestration by plantation of few key mangrove species at Sundarban Biosphere Reserve, India. Carbon Manag. 2018, 9, 575–586. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Ray, R.; Ganguly, D.; Chowdhury, C.; Dey, M.; Das, S.; Dutta, M.K.; Mandal, S.K.; Majumder, N.; De, T.K.; Mukhopadhyay, S.K.; et al. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 2011, 45, 5016–5024. [Google Scholar] [CrossRef]
- Banerjee, K.; Roy Chowdhury, M.; Sengupta, K.; Sett, S.; Mitra, A. Influence of anthropogenic and natural factors on the mangrove soil of Indian Sundarbans wetland. Arch. Environ. Sci. 2012, 6, 80–91. [Google Scholar]
- Mitra, A.; Banerjee, K.; Sett, S. Spatial variation in organic carbon density of mangrove soil in Indian Sundarbans. Natl. Acad. Sci. Lett. 2012, 35, 147–154. [Google Scholar] [CrossRef]
- Joshi, H.G.; Ghose, M. Community structure, species diversity, and aboveground biomass of the Sundarbans mangrove swamps. Trop. Ecol. 2014, 55, 283–303. [Google Scholar]
- Barik, J.; Sanyal, P.; Ghosh, T.; Mukhopadhyay, S.K. Carbon stock and storage pattern in the Sundarbans mangrove forest, NE coast of India. Trop. Ecol. 2021, 62, 95–106. [Google Scholar] [CrossRef]
- Banerjee, K.; Sengupta, K.; Raha, A.; Mitra, A. Salinity based allometric equations for biomass estimation of Sundarban mangroves. Biomass Bioenerg. 2013, 56, 382–391. [Google Scholar] [CrossRef]
- Saha, A.; Gobato, R.; Zaman, S.; Mitra, A. Biomass study of mangroves in Indian Sundarbans: A case study from Satjelia Island. Parana J. Sci. Educ. 2019, 5, 1–5. [Google Scholar]
- Raha, A.K.; Bhattacharyya, S.B.; Zaman, S.; Banerjee, K.; Sengupta, K.; Sinha, S.; Sett, S.; Chakraborty, S.; Datta, S.; Dasgupta, S.; et al. Carbon census in dominant mangroves of Indian Sundarbans. J. Energy Environ. Sci. Photon 2013, 127, 345–354. [Google Scholar]
- Banerjee, K.; Sahoo, C.K.; Bal, G.; Mallik, K.; Paul, R.; Mitra, A. High blue carbon stock in mangrove forests of Eastern India. Trop. Ecol. 2020, 61, 150–167. [Google Scholar] [CrossRef]
- Akhand, A.; Chanda, A.; Jameel, Y.; Dasgupta, R. The present state-of-the-art of blue carbon repository in India: A meta-analysis. Sustain. Sci. 2023, 18, 1031–1042. [Google Scholar] [CrossRef]
- Mandal, M.S.H.; Hosaka, T. Assessing cyclone disturbances (1988–2016) in the Sundarbans mangrove forests using Landsat and Google Earth Engine. Nat. Hazard. 2020, 102, 133–150. [Google Scholar] [CrossRef]
- Sharma, S.; Suwa, R.; Ray, R.; Mandal, M.S.H. Successive cyclones attacked the world’s largest mangrove forest located in the Bay of Bengal under pandemic. Sustainability 2022, 14, 5130. [Google Scholar] [CrossRef]
- Krauss, K.W.; Osland, M.J. Tropical cyclones and the organization of mangrove forests: A review. Ann. Bot. 2020, 125, 213–234. [Google Scholar] [CrossRef]
- Singh, O.P. Long-term trends in the frequency of severe cyclones of Bay of Bengal: Observations and simulations. Mausam 2007, 58, 59–66. [Google Scholar] [CrossRef]
- Balaguru, K.; Taraphdar, S.; Leung, L.R.; Foltz, G.R. Increase in the intensity of post-monsoon Bay of Bengal tropical cyclones. Geophys. Res. Lett. 2014, 41, 3594–3601. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. Assessment on historical cyclone tracks in the Bay of Bengal, east coast of India. Int. J. Climatol. 2016, 36, 95–109. [Google Scholar] [CrossRef]
- Das, D. Tropical cyclones and coastal communities: The dialectics of social and environmental change in the Sundarban delta. J. Indian Ocean Reg. 2017, 13, 257–275. [Google Scholar] [CrossRef]
- Mahmood, H.; Ahmed, M.; Islam, T.; Uddin, M.Z.; Ahmed, Z.U.; Saha, C. Paradigm shift in the management of the Sundarbans mangrove forest of Bangladesh: Issues and challenges. Trees For. People 2021, 5, 100094. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Begum, M. Vegetation of Sunderban mangrove forest after the devastating cyclone Sidr in Bangladesh. Soc. Chang. 2011, 5, 72–78. [Google Scholar]
- Dutta, D.; Das, P.K.; Paul, S.; Sharma, J.R.; Dadhwal, V.K. Assessment of ecological disturbance in the mangrove forest of Sundarbans caused by cyclones using MODIS time-series data (2001–2011). Nat. Hazard 2015, 79, 775–790. [Google Scholar] [CrossRef]
- Das, N.; Mondal, A.; Saha, N.C.; Ghosh, S.; Mandal, S. Decadal loss of aboveground biomass and subsequent potential CO2 emission from the Sundarbans mangrove ecosystem, India. Acta Ecol. Sin. 2023, 43, 452–458. [Google Scholar] [CrossRef]
- Samanta, S.; Hazra, S.; Mondal, P.P.; Chanda, A.; Giri, S.; French, J.R.; Nicholls, R.J. Assessment and attribution of mangrove Forest changes in the Indian Sundarbans from 2000 to 2020. Remote Sens. 2021, 13, 4957. [Google Scholar] [CrossRef]
- Mishra, M.; Acharyya, T.; Santos, C.A.G.; da Silva, R.M.; Kar, D.; Kamal, A.H.M.; Raulo, S. Geo-ecological impact assessment of severe cyclonic storm Amphan on Sundarban mangrove forest using geospatial technology. Estuar. Coast. Shelf Sci. 2021, 260, 107486. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J. Monitoring the tropical cyclone ‘Yass’ and ‘Amphan’ affected flood inundation using Sentinel-1/2 data and Google Earth Engine. Model Earth Syst. Environ. 2022, 8, 4317–4332. [Google Scholar] [CrossRef]
- Parida, A.K.; Jha, B. Salt tolerance mechanisms in mangroves: A review. Trees 2010, 24, 199–217. [Google Scholar] [CrossRef]
- Zaman, S.; Bhattacharyya, S.B.; Pramanick, P.; Raha, A.K.; Chakraborty, S.; Mitra, A. Rising water salinity: A threat to mangroves of Indian Sundarbans. In Water Insecurity: A Social Dilemma (Community, Environment and Disaster Risk Management); Abedin, M.A., Habiba, U., Shaw, R., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2014; pp. 167–183. [Google Scholar]
- Banerjee, K.; Gatti, R.C.; Mitra, A. Climate change-induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans. Ambio 2017, 46, 492–499. [Google Scholar] [CrossRef]
- Mitra, S.; Chanda, A.; Das, S.; Ghosh, T.; Hazra, S. Salinity Dynamics in the Hooghly-Matla Estuarine System and Its Impact on the Mangrove Plants of Indian Sundarbans. In Sundarbans Mangrove Systems: A Geo-Informatics Approach; Mukhopadhyay, A., Mitra, D., Hazra, S., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2021; pp. 305–328. [Google Scholar]
- Akhand, A.; Chanda, A.; Dutta, S.; Hazra, S. Air–water carbon dioxide exchange dynamics along the outer estuarine transition zone of Sundarban, northern Bay of Bengal, India. Indian J. Geo-Mar. Sci. 2012, 41, 111–116. [Google Scholar]
- Mitra, A.; Gangopadhyay, A.; Dube, A.; Schmidt, A.C.; Banerjee, K. Observed changes in water mass properties in the Indian Sundarbans (northwestern Bay of Bengal) during 1980–2007. Curr. Sci. 2009, 97, 1445–1452. [Google Scholar]
- Chowdhury, A.; Sanyal, P.; Maiti, S.K. Dynamics of mangrove diversity influenced by climate change and consequent accelerated sea level rise at Indian Sundarbans. Int. J. Glob. Warm. 2016, 9, 486–506. [Google Scholar] [CrossRef]
- Mondal, I.; Thakur, S.; Ghosh, P.; De, T.K. Assessing the impacts of global sea level rise (SLR) on the mangrove forests of Indian Sundarbans using geospatial technology. In Geographic Information Science for Land Resource Management; Singh, S.K., Kanga, S., Meraj, G., Farooq, M., Sudhanshu, S., Eds.; Scrivener Publishing: Beverly, MA, USA, 2021; pp. 209–227. [Google Scholar]
- Bompy, F.; Lequeue, G.; Imbert, D.; Dulormne, M. Increasing fluctuations of soil salinity affect seedling growth performances and physiology in three Neotropical mangrove species. Plant Soil 2014, 380, 399–413. [Google Scholar] [CrossRef]
- Chowdhury, R.; Sutradhar, T.; Begam, M.; Mukherjee, C.; Chatterjee, K.; Basak, S.K.; Ray, K. Effects of nutrient limitation, salinity increase, and associated stressors on mangrove forest cover, structure, and zonation across Indian Sundarbans. Hydrobiologia 2019, 842, 191–217. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Dalal, R.C.; Greene, R.S.B. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. Appl. Soil Ecol. 2009, 41, 29–40. [Google Scholar] [CrossRef]
- Dasgupta, N.; Nandy, P.; Sengupta, C.; Das, S. Protein and enzymes regulations towards salt tolerance of some Indian mangroves in relation to adaptation. Trees 2012, 26, 377–391. [Google Scholar] [CrossRef]
- Nandy, P.; Dasgupta, N.; Das, S. Differential expression of physiological and biochemical characters of some Indian mangroves towards salt tolerance. Physiol. Mol. Biol. Plant 2009, 15, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Payo, A.; Mukhopadhyay, A.; Hazra, S.; Ghosh, T.; Ghosh, S.; Brown, S.; Nicholls, R.J.; Bricheno, L.; Wolf, L.; Kay, S.; et al. Projected changes in area of the Sundarban mangrove forest in Bangladesh due to SLR by 2100. Clim. Chang. 2016, 139, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Ahmed, S.; Osawa, A. Biomass and net primary productivity of mangrove communities along the Oligohaline zone of Sundarbans, Bangladesh. For. Ecosyst. 2017, 4, 16. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, G.; Wang, W.; Chen, L.; Lin, G. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 2012, 93, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Barik, J.; Mukhopadhyay, A.; Ghosh, T.; Mukhopadhyay, S.K.; Chowdhury, S.M.; Hazra, S. Mangrove species distribution and water salinity: An indicator species approach to Sundarban. J. Coast. Conserv. 2018, 22, 361–368. [Google Scholar] [CrossRef]
- Joshi, H.; Ghose, M. Forest structure and species distribution along soil salinity and pH gradient in mangrove swamps of the Sundarbans. Trop. Ecol. 2003, 44, 197–206. [Google Scholar]
- Mukhopadhyay, A.; Wheeler, D.; Dasgupta, S.; Dey, A.; Sobhan, I. Mangrove spatial distribution in the Indian Sundarbans: Predicting salinity-induced migration in a changing climate. J. Manag. Sustain. 2019, 9, 1. [Google Scholar] [CrossRef]
- Nandy, P.; Ghose, M. Photosynthesis and water-use efficiency of some mangroves from Sundarbans, India. J. Plant Biol. 2001, 44, 213–219. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Mondal, P.; Barik, J.; Chowdhury, S.M.; Ghosh, T.; Hazra, S. Changes in mangrove species assemblages and future prediction of the Bangladesh Sundarbans using Markov chain model and cellular automata. Environ. Sci. Process Impact 2015, 17, 1111–1117. [Google Scholar] [CrossRef]
- Chanda, A.; Mukhopadhyay, A.; Ghosh, T.; Akhand, A.; Mondal, P.; Ghosh, S.; Mukherjee, S.; Wolf, J.; Lázár, A.N.; Rahman, M.M.; et al. Blue carbon stock of the Bangladesh Sundarban mangroves: What could be the scenario after a century? Wetlands 2016, 36, 1033–1045. [Google Scholar] [CrossRef]
- Paszkowski, A.; Goodbred, S.; Borgomeo, E.; Khan, M.; Hall, J.W. Geomorphic change in the Ganges–Brahmaputra–Meghna delta. Nat. Rev. Earth Environ. 2021, 2, 763–780. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Akhand, A.; Mukhopadhyay, A.; Chanda, A.; Mukherjee, S.; Das, A.; Das, S.; Hazra, S.; Mitra, D.; Choudhury, S.B.; Rao, K.H. Potential CO2 emission due to loss of aboveground biomass from the Indian Sundarban mangroves during the last four decades. J. Indian Soc. Remote Sens. 2017, 45, 147–154. [Google Scholar] [CrossRef]
- Bhargava, R.; Sarkar, D.; Friess, D.A. A cloud computing-based approach to mapping mangrove erosion and progradation: Case studies from the Sundarbans and French Guiana. Estuar. Coast. Shelf Sci. 2021, 248, 106798. [Google Scholar] [CrossRef]
- Othman, M.A. Value of mangroves in coastal protection. Hydrobiologia 1994, 285, 277–282. [Google Scholar] [CrossRef]
- Samanta, K.; Hazra, S. Mangrove Forest Cover Changes in Indian Sundarban (1986–2012) Using Remote Sensing and GIS. In Environment and Earth Observation: Case Studies in India; Hazra, S., Mukhopadhyay, A., Ghosh, A., Mitra, D., Dadhwal, V., Eds.; Springer Remote Sensing/Photogrammetry; Springer: Cham, Switzerland, 2017; pp. 97–108. [Google Scholar]
- Thakur, S.; Maity, D.; Mondal, I.; Basumatary, G.; Ghosh, P.B.; Das, P.; De, T.K. Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environ. Dev. Sustain. 2021, 23, 1917–1943. [Google Scholar] [CrossRef]
- López-Hoffman, L.; Anten, N.P.R.; Martinez-Ramos, M.; Ackerly, D.D. Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. Oecologia 2007, 150, 545–556. [Google Scholar] [CrossRef]
- Reef, R.; Feller, I.C.; Lovelock, C.E. Nutrition of mangroves. Tree Physiol. 2010, 30, 1148–1160. [Google Scholar] [CrossRef]
- Cannicci, S.; Burrows, D.; Fratini, S.; Smith, T.J., III; Offenberg, J.; Dahdouh-Guebas, F. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquat. Bot. 2008, 89, 186–200. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, S. Climate change, ecological stress and livelihood choices in Indian Sundarban. In Climate Change and Community Resilience; Enamul Haque, A.K., Mukhopadhyay, P., Nepal, M., Shammin, M.R., Eds.; Springer: Singapore, 2022; pp. 399–413. [Google Scholar]
- Datta, D.; Deb, S. Analysis of coastal land use/land cover changes in the Indian Sunderbans using remotely sensed data. Geospat. Inf. Sci. 2012, 15, 241–250. [Google Scholar] [CrossRef]
- DasGupta, R.; Shaw, R. Changing perspectives of mangrove management in India—An analytical overview. Ocean Coast. Manag. 2013, 80, 107–118. [Google Scholar] [CrossRef]
- Ghosh, A.; Schmidt, S.; Fickert, T.; Nüsser, M. The Indian Sundarban mangrove forests: History, utilization, conservation strategies and local perception. Diversity 2015, 7, 149–169. [Google Scholar] [CrossRef]
- Chowdhury, R.; Favas, P.J.; Pratas, J.; Jonathan, M.P.; Ganesh, P.S.; Sarkar, S.K. Accumulation of trace metals by mangrove plants in Indian Sundarban Wetland: Prospects for phytoremediation. Int. J. Phytoremediat. 2015, 17, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Pramanick, P.; Zaman, S.; Mitra, A. Phytoremediation of heavy metals by the dominant mangrove associate species of Indian Sundarbans. J. Environ. Eng. Landsc. Manag. 2021, 29, 391–402. [Google Scholar] [CrossRef]
- Kumar, S.; Karmoker, J.; Pal, B.K.; Luo, C.; Zhao, M. Trace metals contamination in different compartments of the Sundarbans mangrove: A review. Mar. Pollut. Bull. 2019, 148, 47–60. [Google Scholar] [CrossRef]
- Swain, S.; Das, D.K.; Seal, A.; Chanda, A.; Das, S. Characterizing the Human Health Risk Along with the Bioaccumulation of Heavy Metals in the Aquatic Biota in the East Coastal Waters of the Indian Peninsula. In Estuarine Biogeochemical Dynamics of the East Coast of India; Das, S., Ghosh, T., Eds.; Springer: Cham, Switzerland, 2021; pp. 111–128. [Google Scholar]
- Sandilyan, S.; Kathiresan, K. Decline of mangroves—A threat of heavy metal poisoning in Asia. Ocean. Coast. Manag. 2014, 102, 161–168. [Google Scholar] [CrossRef]
- Maiti, S.K.; Chowdhury, A. Effects of anthropogenic pollution on mangrove biodiversity: A review. J. Environ. Prot. 2013, 4, 40795. [Google Scholar] [CrossRef]
- Gupta, S.; Chakrabarti, S.K. Effect of heavy metals on different anatomical structures of Bruguiera sexangula. Int. J. Bioresour. Stress Manag. 2013, 4, 605–609. [Google Scholar]
- Basu, S.; Chanda, A.; Das, S.; Bhattacharyya, S. Persistent Organic Pollutants in the Coastal and Estuarine Regions Adjoining the Indian Periphery of the Bay of Bengal. In Estuarine Biogeochemical Dynamics of the East Coast of India; Das, S., Ghosh, T., Eds.; Springer: Cham, Switzerland, 2021; pp. 103–110. [Google Scholar]
- Goldstein, E.; Erinjery, J.J.; Martin, G.; Kasturiratne, A.; Ediriweera, D.S.; Somaweera, R.; de Silva, H.J.; Diggle, P.; Lalloo, D.G.; Murray, K.A.; et al. Climate change maladaptation for health: Agricultural practice against shifting seasonal rainfall affects snakebite risk for farmers in the Tropics. iScience 2023, 26, 105946. [Google Scholar] [CrossRef]
- Rehman, A.; Alam, M.M.; Ozturk, I.; Alvarado, R.; Murshed, M.; Işik, C.; Ma, H. Globalization and renewable energy use: How are they contributing to upsurge the CO2 emissions? A global perspective. Environ. Sci. Pollut. Res. 2023, 30, 9699–9712. [Google Scholar] [CrossRef]
- Macedo, P.; Madaleno, M. Global Temperature and Carbon Dioxide Nexus: Evidence from a Maximum Entropy Approach. Energies 2023, 16, 277. [Google Scholar] [CrossRef]
- Ray, R.; Chowdhury, C.; Majumder, N.; Dutta, M.K.; Mukhopadhyay, S.K.; Jana, T.K. Improved model calculation of atmospheric CO2 increment in affecting carbon stock of tropical mangrove forest. Tellus B Chem. Phys. Meteorol. 2013, 65, 18981. [Google Scholar] [CrossRef]
- Ray, R.; Jana, T.K. Carbon sequestration by mangrove forest: One approach for managing carbon dioxide emission from coal-based power plant. Atmos. Environ. 2017, 171, 149–154. [Google Scholar] [CrossRef]
- Chatting, M.; Al-Maslamani, I.; Walton, M.; Skov, M.W.; Kennedy, H.; Husrevoglu, Y.S.; Vay, L.L. Future mangrove carbon storage under climate change and deforestation. Front. Mar. Sci. 2022, 9, 781876. [Google Scholar] [CrossRef]
- Akhand, A.; Chanda, A.; Manna, S.; Das, S.; Hazra, S.; Roy, R.; Choudhury, S.B.; Rao, K.H.; Dadhwal, V.K.; Chakraborty, K.; et al. A comparison of CO2 dynamics and air-water fluxes in a river-dominated estuary and a mangrove-dominated marine estuary. Geophys. Res. Lett. 2016, 43, 11726–11735. [Google Scholar] [CrossRef]
- Chanda, A.; Akhand, A.; Manna, S.; Dutta, S.; Das, I.; Hazra, S.; Rao, K.H.; Dadhwal, V.K. Measuring daytime CO2 fluxes from the inter-tidal mangrove soils of Indian Sundarbans. Environ. Earth. Sci. 2014, 72, 417–427. [Google Scholar] [CrossRef]
- Ray, R.; Baum, A.; Rixen, T.; Gleixner, G.; Jana, T.K. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Sci. Total Environ. 2018, 621, 535–547. [Google Scholar] [CrossRef]
- Maher, D.T.; Call, M.; Santos, I.R.; Sanders, C.J. Beyond burial: Lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biol. Lett. 2018, 14, 20180200. [Google Scholar] [CrossRef]
- Santos, I.R.; Burdige, D.J.; Jennerjahn, T.C.; Bouillon, S.; Cabral, A.; Serrano, O.; Wernberg, T.; Filbee-Dexter, K.; Guimond, J.A.; Tamborski, J.J. The renaissance of Odum’s outwelling hypothesis in ‘Blue Carbon’ science. Estuar. Coast. Shelf Sci. 2021, 255, 107361. [Google Scholar] [CrossRef]
- Chanda, A.; Das, S.; Bhattacharyya, S.; Akhand, A.; Das, I.; Samanta, S.; Choudhury, S.B.; Hazra, S. CO2 effluxes from an urban tidal river flowing through two of the most populated and polluted cities of India. Environ. Sci. Pollut. Res. 2020, 27, 30093–30107. [Google Scholar] [CrossRef]
- Akhand, A.; Chanda, A.; Watanabe, K.; Das, S.; Tokoro, T.; Chakraborty, K.; Hazra, S.; Kuwae, T. Low CO2 evasion rate from the mangrove-surrounding waters of the Sundarbans. Biogeochemistry 2021, 153, 95–114. [Google Scholar] [CrossRef]
- Akhand, A.; Chanda, A.; Watanabe, K.; Das, S.; Tokoro, T.; Hazra, S.; Kuwae, T. Reduction in Riverine Freshwater Supply Changes Inorganic and Organic Carbon Dynamics and Air-Water CO2 Fluxes in a Tropical Mangrove Dominated Estuary. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006144. [Google Scholar] [CrossRef]
- Sahu, S.K.; Kathiresan, K. The age and species composition of mangrove forest directly influence the net primary productivity and carbon sequestration potential. Biocatal. Agric. Biotechnol. 2019, 20, 101235. [Google Scholar] [CrossRef]
- Cornforth, W.A.; Fatoyinbo, T.E.; Freemantle, T.P.; Pettorelli, N. Advanced land observing satellite phased array type L-Band SAR (ALOS PALSAR) to inform the conservation of mangroves: Sundarbans as a case study. Remote Sens. 2013, 5, 224–237. [Google Scholar] [CrossRef]
- Banerjee, S.; Ladd, C.J.; Chanda, A.; Shil, S.; Ghosh, T.; Large, A.; Balke, T. Securing the sustainable future of tropical deltas through mangrove restoration: Lessons from the Indian Sundarban. One Earth 2023, 6, 190–194. [Google Scholar] [CrossRef]
- Dey, A.; Kar, A. Scaling of mangrove afforestation with carbon finance to create significant impact on the biodiversity—A new paradigm in biodiversity conservation models. Field Actions Sci. Rep. 2013. Special Issue 7. [Google Scholar]
- Vyas, P.; Sengupta, K. Mangrove conservation and restoration in the Indian Sundarbans. In Sharing Lessons on Mangrove Restoration, Mangroves for the Future: Investing in Coastal Ecosystems; Macintosh, D.J., Mahindapala, R., Markopoulos, M., Eds.; IUCN: Gland, Switzerland, 2012; pp. 93–101. [Google Scholar]
Name of the Cyclone | Landfall Date | Landfall Speed (km h−1) | Observations | References |
---|---|---|---|---|
Sidr | November 2007 | 215 | 1291 km2 forested area was severely affected. | [80] |
Tall plants like Sonneratia were most affected. | [88] | |||
Rashmi | October 2008 | 85 | 258 km2 forested area was severely affected. | [80] |
The impact was much less than that of Sidr. | [89] | |||
Aila | May 2009 | 110 | 53 km2 forested area was severely affected. | [80] |
The Indian Sundarban lost 21.6 km2 of forest cover. | [82] | |||
Komen | July 2015 | 85 | 137 km2 forested area was severely affected. | [80] |
Roanu | May 2016 | 85 | 152 km2 forested area was severely affected. | [80] |
Bulbul | November 2019 | 137 | The canopy density of almost 780 km2 area changed from very high (80–100%) to high (60–80%). | [91] |
Amphan | May 2020 | 155 | Dense mangrove cover shrank from 77% to 34%. | [92] |
Yaas | May 2021 | 120 | Widespread inundation in Sundarban. | [93] |
Duration of the Study | Observations | References |
---|---|---|
1973 to 2000 | Indian and Bangladesh Sundarban combined witnessed an increase in 81.5 km2 of mangrove area between 1973 and 1990 and a loss of 152 km2 between 1990 and 2000, leading to a net loss of 70.5 km2 mangrove area between 1973 and 2000 | [117] |
1975 to 2013 | A net mangrove area loss of 107 km2 occurred in the Indian Sundarban that led to a potential CO2 emission of 1567.98 ± 551.69 Gg | [118] |
1984 to 2018 | Indian and Bangladesh Sundarban combined witnessed a mangrove area loss of 136.77 km2 and an accretion of 62.17 km2, leading to a net loss of 74.6 km2 | [119] |
1986 to 2012 | A net mangrove area loss of 124 km2 occurred in the Indian Sundarban due to erosion and submergence of southern sea-facing mangrove islands | [121] |
2000 to 2017 | A net mangrove area loss of 374 km2 occurred in the Indian Sundarban | [122] |
2000 to 2020 | 110 km2 of mangrove loss due to erosion and 81 km2 gained through plantation and regeneration, leading to a net mangrove area loss of 29 km2 in the Indian Sundarban | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanda, A.; Akhand, A. Challenges towards the Sustainability and Enhancement of the Indian Sundarban Mangrove’s Blue Carbon Stock. Life 2023, 13, 1787. https://doi.org/10.3390/life13081787
Chanda A, Akhand A. Challenges towards the Sustainability and Enhancement of the Indian Sundarban Mangrove’s Blue Carbon Stock. Life. 2023; 13(8):1787. https://doi.org/10.3390/life13081787
Chicago/Turabian StyleChanda, Abhra, and Anirban Akhand. 2023. "Challenges towards the Sustainability and Enhancement of the Indian Sundarban Mangrove’s Blue Carbon Stock" Life 13, no. 8: 1787. https://doi.org/10.3390/life13081787
APA StyleChanda, A., & Akhand, A. (2023). Challenges towards the Sustainability and Enhancement of the Indian Sundarban Mangrove’s Blue Carbon Stock. Life, 13(8), 1787. https://doi.org/10.3390/life13081787