Effects of Acute Long- versus Short-Interval High-Intensity Interval Training on Attention and Psychological States in a Sample of Male and Female Adolescents: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. The 20 m Multistage Fitness Test
2.4. Attention Assessment
2.5. Rating of Perceived Exertion (RPE)
2.6. Mood
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Sousa, F.M.A.; Medeiros, A.R.; del Rosso, S.; Stults-Kolehmainen, M.; Boullosa, D.A. The influence of exercise and physical fitness status on attention: A systematic review. Int. Rev. Sport Exerc. Psychol. 2018, 12, 202–234. [Google Scholar] [CrossRef]
- Tanaka, K.; de Quadros, A.C.; Santo, R.F.; Stella, F.; Gobbi, L.T.B.; Gobbi, S. Benefits of physical exercise on executive functions in older people with Parkinson’s disease. Brain Cogn. 2009, 69, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Lubans, D.; Richards, J.; Hillman, C.; Faulkner, G.; Beauchamp, M.; Nilsson, M.; Kelly, P.; Smith, J.; Raine, L.; Biddle, S. Physical activity for cognitive and mental health in youth: A systematic review of mechanisms. Pediatrics 2016, 138, e20161642. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Labban, J.; Gapin, J.; Etnier, J. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Budde, H.; Voelcker-Rehage, C.; Pietraßyk-Kendziorra, S.; Ribeiro, P.; Tidow, G. Acute coordinative exercise improves attentional performance in adolescents. Neurosci. Lett. 2008, 441, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Hogan, M.J.; Kiefer, M.; Kubesch, S.; Collins, P.; Kilmartin, L.; Brosnan, M. The interactive effects of physical fitness and acute aerobic exercise on electrophysiological coherence and cognitive performance in adolescents. Exp. Brain Res. 2013, 229, 85–96. [Google Scholar] [CrossRef]
- Hogan, M.J.; O’Hora, D.; Kiefer, M.; Kubesch, S.; Kilmartin, L.; Collins, P.; Dimitrova, J. The effects of cardiorespiratory fitness and acute aerobic exercise on executive functioning and EEG entropy in adolescents. Front. Hum. Neurosci. 2015, 9, 538. [Google Scholar] [CrossRef]
- Stroth, S.; Kubesch, S.; Dieterle, K.; Ruchsow, M.; Heim, R.; Kiefer, M. Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Res. 2009, 1269, 114–124. [Google Scholar] [CrossRef]
- Altermann, W.; Gropel, P. Effects of acute endurance, strength, and coordination exercise interventions on attention in adolescents: A randomized controlled study. Psychol. Sport. Exerc. 2023, 64, 102300. [Google Scholar] [CrossRef]
- Hillman, C.H.; Pontifex, M.B.; Raine, L.B.; Castelli, D.M.; Hall, E.E.; Kramer, A.F. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 2009, 159, 1044–1054. [Google Scholar] [CrossRef]
- Kao, S.C.; Drollette, E.S.; Ritondale, J.P.; Khan, N.; Hillman, C.H. The acute effects of high-intensity interval training and moderate-intensity continuous exercise on declarative memory and inhibitory control. Psychol. Sport. Exerc. 2018, 38, 90–99. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P. High-intensity interval training, solutions to the programming puzzle. Sport. Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Weston, K.S.; Wisløff, U.; Coombes, J.S. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. Br. J. Sport. Med. 2013, 48, 1227–1234. [Google Scholar] [CrossRef]
- Alves, A.R.; Dias, R.; Neiva, H.P.; Marinho, D.A.; Marques, M.C.; Sousa, A.C.; Loureiro, V.; Loureiro, N. High-intensity interval training upon cognitive and psychological outcomes in youth: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 5344. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Chueh, T.Y.; Huang, C.J.; Kao, S.C.; Hillman, C.H.; Chang, Y.K.; Hung, T.M. Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. J. Sport. Sci. 2021, 39, 10–22. [Google Scholar] [CrossRef]
- Ai, J.Y.; Chen, F.T.; Hsieh, S.S.; Kao, S.C.; Chen, A.G.; Hung, T.M.; Chang, Y.K. The effect of acute high-intensity interval training on executive function: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 3593. [Google Scholar] [CrossRef] [PubMed]
- Leahy, A.A.; Mavilidi, M.F.; Smith, J.J.; Hillman, C.H.; Eather, N.; Barker, D.; Lubans, D.R. Review of high-intensity interval training for cognitive and mental health in youth. Med. Sci. Sport. Exerc. 2020, 52, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Moreau, D.; Chou, E. The acute effect of high-intensity exercise on executive function: A meta-analysis. Perspect. Psychol. Sci. 2019, 14, 734–764. [Google Scholar] [CrossRef]
- Chang, Y.K.; Chen, F.T.; Kuan, G.; Wei, G.X.; Chu, C.H.; Yan, J.; Chen, A.G.; Hung, T.M. Effects of acute exercise duration on the inhibition aspect of executive function in late middle-aged adults. Front. Aging Neurosci. 2019, 11, 227. [Google Scholar] [CrossRef]
- Chang, Y.K.; Etnier, J.L. Exploring the dose-response relationship between resistance exercise intensity and cognitive function. J. Sport Exerc. Psychol. 2009, 31, 640–656. [Google Scholar] [CrossRef]
- Seo, M.W.; Lee, J.M.; Jung, H.C.; Jung, S.W.; Song, J.K. Effects of various work-to-rest ratios during high-intensity interval training on athletic performance in adolescents. Int. J. Sport. Med. 2019, 40, 503–510. [Google Scholar] [CrossRef]
- Léger, L.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage20 metre shuttle run test for aerobic fitness. J. Sport. Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Chung, J.W.; Lee, O.; Lee, K.H. Estimation of maximal oxygen consumption using the 20 m shuttle run test in Korean adults aged 19–64 years. Sci. Sport. 2023, 38, 68–74. [Google Scholar] [CrossRef]
- Brickenkamp, R.; Oosterveld, P. D2 Aandachts-En Concentratie Test: Handleiding (D2 Test of Attention: User Manual); Hogrefe: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Terry, P.; Lane, A.; Fogarty, G. Construct validity of the Profile of Mood States—Adolescents for use with adults. Psychol. Sport Exerc. 2003, 4, 125–139. [Google Scholar] [CrossRef]
- Lovakov, A.; Agadullina, E.R. Empirically derived guidelines for effect size interpretation in social psychology. Eur. J. Soc. Psychol. 2021, 51, 485–504. [Google Scholar] [CrossRef]
- Kujach, S.; Byun, K.; Hyodo, K.; Suwabe, K.; Fukuie, T.; Laskowski, R.; Soya, H. A transferable high-intensity intermittent exercise improves executive performance in association with dorsolateral prefrontal activation in young adults. Neuroimage 2018, 169, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Browne, S.E.; Flynn, M.J.; O’Neill, B.V.; Howatson, G.; Bell, P.G.; Haskell-Ramsay, C.F. Effects of acute high-intensity exercise on cognitive performance in trained individuals: A systematic review. Prog. Brain Res. 2017, 234, 161–187. [Google Scholar]
- McMorris, T.; Hale, B.J. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain Cogn. 2012, 80, 338–351. [Google Scholar] [CrossRef]
- Kao, S.C.; Wang, C.H.; Kamijo, K.; Khan, N.; Hillman, C. Acute effects of highly intense interval and moderate continuous exercise on the modulation of neural oscillation during working memory. Int. J. Psychophysiol. 2021, 160, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Díaz, I.C.; Escobar-Muñoz, M.C.; Carrasco, L. Acute effects of high-intensity interval training on brain-derived neurotrophic factor, cortisol and working memory in physical education college students. Int. J. Environ. Res. Public Health 2020, 17, 8216. [Google Scholar] [CrossRef]
- McMorris, T. History of research into the acute exercise–cognition interaction: A cognitive psychology approach. In Exercise Cognition Interaction: Neuroscience Perspectives; Elsevier Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- McMorris, T.; Tallon, M.; Williams, C.; Sproule, J.; Draper, S.; Swain, J.; Potter, J.; Clayton, N. Incremental exercise, plasma concentrations of catecholamines, reaction time, and motor time during performance of a noncompatible choice response time task. Percept. Mot. Ski. 2003, 97, 590–604. [Google Scholar] [CrossRef] [PubMed]
- Marquez, C.M.S.; Vanaudenaerde, B.; Troosters, T.; Wenderoth, N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. 2015, 119, 1363–1373. [Google Scholar] [CrossRef]
- Slusher, A.L.; Patterson, V.T.; Schwartz, C.S.; Acevedo, E.O. Impact of high intensity interval exercise on executive function and brain derived neurotrophic factor in healthy college aged males. Physiol. Behav. 2018, 191, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.L.; Lin, Y.T.; Chuang, P.C.; Bohr, V.A.; Mattson, M.P. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1. Neuromolecular Med. 2014, 16, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Winter, B.; Breitenstein, C.; Mooren, F.C.; Voelker, K.; Fobker, M.; Lechtermann, A.; Knecht, S. High impact running improves learning. Neurobiol. Learn. Mem. 2007, 87, 597–609. [Google Scholar] [CrossRef]
- Kao, S.C.; Westfall, D.R.; Soneson, J.; Gurd, B.; Hillman, C.H. Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology 2017, 54, 1335–1345. [Google Scholar] [CrossRef]
- Lambrick, D.; Stoner, L.; Grigg, R.; Faulkner, J. Effects of continuous and intermittent exercise on executive function in children aged 8–10 years. Psychophysiology 2016, 53, 1335–1342. [Google Scholar] [CrossRef]
- Ludyga, S.; Pühse, U.; Lucchi, S.; Marti, J.; Gerber, M. Immediate and sustained effects of intermittent exercise on inhibitory control and task-related heart rate variability in adolescents. J. Sci. Med. Sport 2018, 22, 96–100. [Google Scholar] [CrossRef]
- Cooper, S.B.; Bandelow, S.; Nute, M.L.; Dring, K.J.; Stannard, R.L.; Morris, J.G.; Nevill, M.E. Sprint-based exercise and cognitive function in adolescents. Prev. Med. Rep. 2016, 4, 155–161. [Google Scholar] [CrossRef]
- Sun, S.; Loprinzi, P.D.; Guan, H.; Zou, L.; Kong, Z.; Hu, Y.; Shi, Q.; Nie, J. The effects of high-intensity interval exercise and hypoxia on cognition in sedentary young adults. Medicina 2019, 55, 43. [Google Scholar] [CrossRef]
- Wilke, J. Functional high-intensity exercise is more effective in acutely increasing working memory than aerobic walking: An exploratory randomized, controlled trial. Sci. Rep. 2020, 10, 12335. [Google Scholar] [CrossRef]
- Quintero, A.P.; Bonilla-Vargas, K.J.; Correa-Bautista, J.E.; Domínguez-Sanchéz, M.A.; Triana-Reina, H.R.; Velasco-Orjuela, G.P.; García-Hermoso, A.; Villa-González, E.; Esteban-Cornejo, I.; Correa-Rodríguez, M.; et al. Acute effect of three different exercise training modalities on executive function in overweight inactive men: A secondary analysis of the BrainFit study. Physiol. Behav. 2018, 197, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Díaz, I.C.; Carrasco, L. Neurophysiological stress response and mood changes induced by high-intensity interval training: A pilot study. Int. J. Environ. Res. Public Health 2021, 18, 7320. [Google Scholar] [CrossRef] [PubMed]
- Selmi, O.; Haddad, M.; Majed, L.; Khalifa, B.; Hamza, M.; Chamari, K. Soccer training: High-intensity interval training is mood disturbing while small sided games ensure mood balance. J. Sport. Med. Phys. Fit. 2019, 58, 1163–1170. [Google Scholar] [CrossRef]
- Martinez, N.; Kilpatrick, M.W.; Salomon, K.; Jung, M.E.; Little, J.P. Affective and enjoyment responses to high-intensity interval training in overweight-to-obese and insufficiently active adults. J. Sport Exerc. Psychol. 2015, 37, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.R.; Slama, F.A.; Deslandes, A.C.; Furtado, E.S.; Santos, T.M. Continuous and high-intensity interval training: Which promotes higher pleasure? PLoS ONE 2013, 8, e79965. [Google Scholar] [CrossRef] [PubMed]
Variable | LIHIIT (Mean ± SD) | SIHIIT (Mean ± SD) | CC (Mean ± SD) | Statistical Significance (Time × Intervention) | |
---|---|---|---|---|---|
Concentration performance | Before | 218.13 ± 15.31 | 215.13 ± 15.49 | 214.59 ± 16.93 | p < 0.001 |
After | 244.53 ± 16.03 | 274.73 ± 17.01 | 218.00 ± 17.15 | ||
Total number of errors | Before | 79.86 ± 13.74 | 82.86 ± 14.36 | 83.26 ± 16.87 | p < 0.001 |
After | 53.46 ± 14.41 | 23.26 ± 14.59 | 81.46 ± 17.28 | ||
RPE | Before | 0.86 ± 0.51 | 0.80 ± 0.56 | 0.73 ± 0.59 | p < 0.001 |
After | 8.66 ± 1.44 | 8.13 ± 1.30 | 1.60 ± 0.73 |
Variable | LIHIIT | SIHIIT | CC | Statistical Significance |
---|---|---|---|---|
Anger subscale | 6.06 ± 1.75 | 5.73 ± 1.86 | 5.46 ± 1.92 | p = 0.6 |
Confusion subscale | 8.13 ± 2.85 | 7.20 ± 2.17 | 6.13 ± 1.59 | p = 0.4 |
Depression subscale | 5.20 ± 1.93 | 4.93 ± 1.38 | 4.60 ± 1.35 | p = 0.6 |
Fatigue subscale | 13.06 ± 2.40 | 11.46 ± 2.02 | 6.20 ± 1.42 | p < 0.001 |
Tension subscale | 6.60 ± 2.44 | 6.26 ± 2.25 | 5.66 ± 2.02 | p = 0.7 |
Vigor subscale | 10.73 ± 2.01 | 12.26 ± 2.34 | 8.26 ± 1.70 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slimani, M.; Issaoui, M.; Znazen, H.; Hammami, A.; Bragazzi, N.L. Effects of Acute Long- versus Short-Interval High-Intensity Interval Training on Attention and Psychological States in a Sample of Male and Female Adolescents: A Pilot Study. Life 2023, 13, 1846. https://doi.org/10.3390/life13091846
Slimani M, Issaoui M, Znazen H, Hammami A, Bragazzi NL. Effects of Acute Long- versus Short-Interval High-Intensity Interval Training on Attention and Psychological States in a Sample of Male and Female Adolescents: A Pilot Study. Life. 2023; 13(9):1846. https://doi.org/10.3390/life13091846
Chicago/Turabian StyleSlimani, Maamer, Mahdi Issaoui, Hela Znazen, Amri Hammami, and Nicola Luigi Bragazzi. 2023. "Effects of Acute Long- versus Short-Interval High-Intensity Interval Training on Attention and Psychological States in a Sample of Male and Female Adolescents: A Pilot Study" Life 13, no. 9: 1846. https://doi.org/10.3390/life13091846
APA StyleSlimani, M., Issaoui, M., Znazen, H., Hammami, A., & Bragazzi, N. L. (2023). Effects of Acute Long- versus Short-Interval High-Intensity Interval Training on Attention and Psychological States in a Sample of Male and Female Adolescents: A Pilot Study. Life, 13(9), 1846. https://doi.org/10.3390/life13091846