The Effect of Congruent Tibial Inserts in Total Knee Arthroplasty: A Network Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Methods
2.1. Research Protocol and Search Question
2.2. Eligibility Criteria and Primary Outcome
2.3. Search Strategy and Study Selection
2.4. Data Collection and Quality Assessment
2.5. Statistical Analysis and Quantitative Data Synthesis
3. Results
3.1. Literature Search and Selection Process
3.2. Study Characteristics
3.3. Methodological Quality and Assessment of Risk of Bias
3.4. Revision Rate
- A.
- The Network Plot of Revision Rates. In a network plot, each node represents a specific insert type, with its size proportional to the number of RCTs in the node. Connections between nodes represent direct comparative studies between insert types.
- B.
- The SUCRA Plot of Revision Rates. The SUCRA plot illustrates the ranking probabilities of different interventions based on the surface under the cumulative ranking (SUCRA) curve. The x-axis represents the interventions or treatments being compared, while the y-axis represents the SUCRA values ranging from 0 to 100%. Higher SUCRA values indicate better treatment rankings. Each bar in the plot corresponds to a treatment, and its length represents the SUCRA value. The SUCRA plot provides a visual representation of the relative efficacy of different interventions, helping to identify the most effective treatment options in a given analysis.
3.5. Radiolucent Lines
- A.
- The Network Plot of Radiolucent Lines. In a network plot, each node represents a specific insert type, with its size proportional to the number of RCTs in the node. Connections between nodes represent direct comparative studies between insert types.
- B.
- The SUCRA Plot of Radiolucent Lines. The SUCRA plot illustrates the ranking probabilities of different interventions based on the surface under the cumulative ranking (SUCRA) curve. The x-axis represents the interventions or treatments being compared, while the y-axis represents the SUCRA values ranging from 0 to 100%. Higher SUCRA values indicate better treatment rankings. Each bar in the plot corresponds to a treatment, and its length represents the SUCRA value. The SUCRA plot provides a visual representation of the relative efficacy of different interventions, helping to identify the most effective treatment options in a given analysis.
3.6. Range of Motion (ROM)
- A.
- The Network Plot of Radiolucent Lines. In a network plot, each node represents a specific insert type, with its size proportional to the number of RCTs in the node. Connections between nodes represent direct comparative studies between insert types.
- B.
- The SUCRA Plot of Radiolucent Lines. The SUCRA plot illustrates the ranking probabilities of different interventions based on the surface under the cumulative ranking (SUCRA) curve. The x-axis represents the interventions or treatments being compared, while the y-axis represents the SUCRA values ranging from 0 to 100%. Higher SUCRA values indicate better treatment rankings. Each bar in the plot corresponds to a treatment, and its length represents the SUCRA value. The SUCRA plot provides a visual representation of the relative efficacy of different interventions, helping to identify the most effective treatment options in a given analysis.
3.7. Aseptic Loosening
3.8. The Knee Society Score (KSS)
3.9. The Knee Society Score—Function (KSS-F)
3.10. The Knee Society Score—Pain (KSS-P)
3.11. Oxford Knee Score (OKS)
3.12. WOMAC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Mean Rank and SUCRA
- A.
- Revision Rate
- B.
- Radiolucent Lines
- C.
- Range of Motion (ROM)
- D.
- The Knee Society Score (KSS)
- E.
- The Knee Society Score—Function (KSS-F)
- F.
- Oxford Knee Score (OKS)
- G.
- WOMAC
- H.
- Summary of the functional outcomes, time to aseptic loosening, radiolucent lines, and revision by implant type
Study | Group | ROM (Pre-op, Post-op, Change) | KSS (Pre-op, Post-op, Change) | KSS-F (Pre-op, Post-op, Change) | KSS-P (Pre-op, Post-op, Change) | OKS (Pre-op, Post-op, Change) | WOMAC (Pre-op, Post-op, Change) | Aseptic Loosening, Time | Radiolucency/Timing/Locations | Revision Rate/Time of Follow-Up/Reason |
Laskin 2000 [21] | Ultracongruent FB | 112, 116, 4 | 36, 92, 56 | 50, 65, 15 | 18, 46, 28 | N/A | N/A | N/A | N/A | 0 |
Standard PS FB | 115, 116, 1 | 32, 94, 62 | 45, 55, 10 | 14, 44, 30 | N/A | N/A | N/A | N/A | 0 | |
Lutzner 2017 [13] | Ultracongruent FB | N/A | 36.6, 86.1, 49.5 | 42.5, 65.3, 22.8 | N/A | 19.5, 38.1, 18.6 | N/A | N/A | N/A | 1/9th month/deep infection |
Standard PS FB | N/A | 81.6, 81.6, 0 | 47.3, 64.3, 17 | N/A | 20.8, 34.6, 13.8 | N/A | N/A | N/A | 1/3rd month/periprosthetic fracture after a fall | |
Kim 2016 [20] | Ultracongruent FB | 119.1, 91.6, −27.5 | 47.3, 89.2, 41.9 | 37.5, 14.9, −22.6 | N/A | N/A | 52.9, 2.9. −50 | 0 | 0 | N/A |
Standard PS FB | 117.4, 94.3, −23.1 | 52, 90.3, 38.3 | 39.4, 14.5, −24.9 | N/A | N/A | 48.3. 2.4. −45.9 | 0 | 0 | N/A | |
Lutzner 2021 [22] | Ultracongruent FB | N/A | N/A | N/A | N/A | 20, 42, 22 | N/A | 1, 29th month after surgery | N/A | 3/1 before 1-yr follow-up, and the other 2 before 3-yr follow-up/one of them had aseptic loosening (29th month), 22, 41, 19, the others had deep infection |
Standard PS FB | N/A | N/A | N/A | N/A | N/A | N/A | 0 | N/A | 1/3rd month/medial condyle fracture | |
Uvehammer 2001 [23] | Ultracongruent FB | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 0 | 1/ N/A |
Standard PS FB | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 0 | 1/ N/A | |
Song 2017 [24] | Ultracongruent FB | 116.3, 130.8, 14.5 | N/A, 92.3, N/A | N/A | N/A | N/A | 65.2, 25.2, −40 | N/A | N/A | N/A |
Standard CR FB | 116.1, 128.7, 12.6 | N/A, 89.6, N/A | N/A | N/A | N/A | 69.2, 24, −45.2 | N/A | N/A | N/A | |
Rajgopal 2017 [25] | Ultracongruent FB | N/A | 42.2, 72.8, 30.6 | N/A | N/A | N/A | N/A, 19.45, N/A | N/A | N/A | 0 |
Standard CR FB | N/A | 42.2, 79.7, 37.5 | N/A | N/A | N/A | N/A, 15.6, N/A | N/A | N/A | 0 | |
Indelli 2019 [26] | Medial Congruent FB | 112, 120, 8 | 64.4, 161.5, 97.1 | N/A | N/A | 19.6, 40.5, 20.9 | N/A | 0 | 2/2-yr follow-up/tibial | 0 |
Standard PS FB | 108, 123, 15 | 63.7, 165.7, 102 | N/A | N/A | 19, 41.1, 22.1 | N/A | 0 | 3/2-yr follow-up/tibial | 0 | |
Kim 2009 [27] | Medial Congruent FB | N/A, 87, N/A | 29, 87, 87 | 45, 80, 35 | 0, 35, 35 | N/A | N/A | N/A | 8/2.6-yr follow-up/2 in femoral, 6 in tibial (side) | 0 |
Standard RP | N/A, 94, N/A | 28, 94, 66 | 45, 86, 41 | 0, 45, 45 | N/A | N/A | N/A | 5/2.6-yr follow-up/1 in femoral, 4 in tibial (side) | 0 | |
Dowsey 2020 [28] | Medial Congruent FB | N/A | 29.1, 61, 31.9 | 29.4, 70.4, 41 | N/A | 16.2, 33.8, 17.6 | 59.6, 23, −36.6 | N/A | N/A | N/A |
Standard CR FB | N/A | 32.2, 60.8, 28.6 | 30.1, 64.7, 34.6 | N/A | 18.9, 33, 14.1 | 56.8, 28.3, −28.5 | N/A | N/A | N/A | |
Standard PS FB | N/A | 33.5, 62.4, 28.9 | 29.3, 65.7, 36.4 | N/A | 17.8, 32.4, 14.6 | 57, 19.2, −37.8 | N/A | N/A | N/A | |
Kulshrestha 2020 [29] | Medial Congruent FB | 113.9, 107.8, −6.1 | 16.9, 44.5, 27.6 | N/A | N/A | N/A | N/A | 0 | N/A | N/A |
Standard PS FB | 108.8, 118.1, 9.3 | 17, 67.5, 50.5 | N/A | N/A | N/A | N/A | 0 | N/A | N/A | |
Lee 2020 [30] | Medial Congruent FB | 97, 108, 11 | N/A, 91, N/A | 57, 58, 1 | 21, 46, 27 | N/A | 49, 19, −30 | N/A | N/A | N/A |
Standard PS FB | 100, 110, 10 | N/A, 90, N/A | 49, 60, 11 | 17, 47, 30 | N/A | 49, 16, −33 | N/A | N/A | N/A | |
French 2020 [31] | Standard CR FB | 104.9, 114.3, 9.4 | N/A | N/A | N/A | 20.2, 41, 20.8 | 50.5, 11.4, −39.1 | N/A | N/A | N/A |
Medial Congruent FB | 102.7, 115.1, 12.4 | N/A | N/A | N/A | 20.5, 42.2, 21.7 | 50.5, 8.6, −41.9 | N/A | N/A | N/A | |
Edelstein 2020 [32] | Medial Congruent FB | N/A | N/A, 86, N/A | N/A, 77.4, N/A | N/A | 19.88, 38.28, 8.4 | N/A | N/A | N/A | 0 |
Standard PS FB | N/A | N/A, 88.1, N/A | N/A, 81.4, N/A | N/A | 16.31, 40.41, 24.1 | N/A | N/A | N/A | 0 | |
Nishitani 2018 [33] | Medial Congruent FB | 98.8, 106.4, 7.6 | 39.1, 76.5, 37.4 | 44.2, 51.9, 7.7 | N/A | N/A | N/A | N/A | N/A | 0 |
Ultracongruent FB (DH) | 98.1, 103.2, 5.1 | 37.4, 70.5, 33.1 | 42.5, 51.2, 8.7 | N/A | N/A | N/A | N/A | N/A | 0 | |
Ishida 2012 [34] | Medial Congruent FB | 110, 110, 0 | 34, 89, 55 | 40, 65, 25 | 10, 45, 35 | N/A | N/A | N/A | 0 | 0 |
Ultracongruent FB (DH) | 110, 115, 5 | 36, 85, 49 | 45, 65, 20 | 10, 45, 35 | N/A | N/A | N/A | 0 | 0 | |
Pritchett 2011 [16] | Medial Congruent FB | N/A | N/A, 93, N/A, | N/A, 80.4, N/A | N/A | N/A | N/A | N/A | 0 | N/A |
Standard CR FB | N/A | N/A, 90, N/A | N/A, 71.3, N/A | N/A | N/A | N/A | N/A | 0 | N/A | |
Standard PS FB | N/A | N/A, 92, N/A | N/A, 74.1, N/A | N/A | N/A | N/A | N/A | 0 | N/A | |
Standard RP | N/A | N/A, 90, N/A, | N/A, 81.1, N/A | N/A | N/A | N/A | N/A | 0 | N/A | |
Hossain 2010 [45] | Standard PS FB | 93.9, 100.1, 6.2 | 48.4, 68.6, 20.2 | 47.9, 68, 20.1 | N/A | 41.7, 29.1, −12.6 | 53.8, 32.9. −20.9 | N/A | 0 | 0 |
Medial Congruent FB | 97.3, 114.9, 17.6 | 43, 76.3, 33.3 | 44.6, 71.4, 26.8 | N/A | 41.6, 26.2, −15.4 | 56. 17.3. −28.9 | N/A | 0 | 0 |
References
- van der Voort, P.; Pijls, B.G.; Nouta, K.A.; Valstar, E.R.; Jacobs, W.C.H.; Nelissen, R. A Systematic Review and Meta-Regression of Mobile-Bearing versus Fixed-Bearing Total Knee Replacement in 41 Studies. Bone Jt. J. 2013, 95B, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- D’Lima, D.D.; Trice, M.; Urquhart, A.G.; Colwell, C.W., Jr. Tibiofemoral Conformity and Kinematics of Rotating-Bearing Knee Prostheses. Clin. Orthop. Relat. Res. 2001, 386, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.; McEwen, H.; Tipper, J.; Jennings, L.; Farrar, R.; Stone, M.; Ingham, E. Wear-Simulation Analysis of Rotating-Platform Mobile-Bearing Knees. Orthopedics 2006, 29, S36–S41. [Google Scholar] [PubMed]
- Bae, J.-H.; Kim, J.G.; Lee, S.-Y.; Lim, H.C.; In, Y. MUKA Study group Epidemiology of Bearing Dislocations After Mobile-Bearing Unicompartmental Knee Arthroplasty: Multicenter Analysis of 67 Bearing Dislocations. J. Arthroplast. 2020, 35, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Hantouly, A.T.; Ahmed, A.F.; Alzobi, O.; Toubasi, A.; Salameh, M.; Elmhiregh, A.; Hameed, S.; Ahmed, G.O.; Alvand, A.; Al Dosari, M.A.A. Mobile-Bearing versus Fixed-Bearing Total Knee Arthroplasty: A Meta-Analysis of Randomized Controlled Trials. Eur. J. Orthop. Surg. Traumatol. 2022, 32, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Fransen, B.L.; Hoozemans, M.J.M.; Keijser, L.C.M.; van Lent, M.E.T.; Verheyen, C.C.P.M.; Burger, B.J. Does Insert Type Affect Clinical and Functional Outcome in Total Knee Arthroplasty? A Randomised Controlled Clinical Trial with 5-Year Follow-Up. J. Arthroplast. 2015, 30, 1931–1937. [Google Scholar] [CrossRef]
- Abdel, M.P.; Tibbo, M.E.; Stuart, M.J.; Trousdale, R.T.; Hanssen, A.D.; Pagnano, M.W. A Randomized Controlled Trial of Fixed- versus Mobile-Bearing Total Knee Arthroplasty: A Follow-up at a Mean of Ten Years. Bone Jt. J. 2018, 100-B, 925–929. [Google Scholar] [CrossRef]
- Amaro, J.T.; Arliani, G.G.; Astur, D.C.; Debieux, P.; Kaleka, C.C.; Cohen, M. No Difference between Fixed- and Mobile-Bearing Total Knee Arthroplasty in Activities of Daily Living and Pain: A Randomized Clinical Trial. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1692–1696. [Google Scholar] [CrossRef]
- Hofmann, A.A.; Tkach, T.K.; Evanich, C.J.; Camargo, M.P. Posterior Stabilization in Total Knee Arthroplasty with Use of an Ultracongruent Polyethylene Insert. J. Arthroplast. 2000, 15, 576–583. [Google Scholar] [CrossRef]
- Macheras, G.A.; Galanakos, S.P.; Lepetsos, P.; Anastasopoulos, P.P.; Papadakis, S.A. A Long Term Clinical Outcome of the Medial Pivot Knee Arthroplasty System. Knee 2017, 24, 447–453. [Google Scholar] [CrossRef]
- Fitch, D.A.; Sedacki, K.; Yang, Y. Mid- to Long-Term Outcomes of a Medial-Pivot System for Primary Total Knee Replacement: A Systematic Review and Meta-Analysis. Bone Jt. Res. 2014, 3, 297–304. [Google Scholar] [CrossRef]
- Scott, D.F.; Gray, C.G. Outcomes Are Better with a Medial-Stabilized vs. a Posterior-Stabilized Total Knee Implanted with Kinematic Alignment. J. Arthroplast. 2022, 37, S852–S858. [Google Scholar] [CrossRef]
- Lützner, J.; Beyer, F.; Dexel, J.; Fritzsche, H.; Lützner, C.; Kirschner, S. No Difference in Range of Motion between Ultracongruent and Posterior Stabilized Design in Total Knee Arthroplasty: A Randomized Controlled Trial. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3515–3521. [Google Scholar] [CrossRef]
- Wajsfisz, A.; Biau, D.; Boisrenoult, P.; Beaufils, P. Comparative Study of Intraoperative Knee Flexion with Three Different TKR Designs. Orthop. Traumatol. Surg. Res. 2010, 96, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Machhindra, M.V.; Kang, J.Y.; Kang, Y.G.; Chowdhry, M.; Kim, T.K. Functional Outcomes of a New Mobile-Bearing Ultra-Congruent TKA System: Comparison with the Posterior Stabilized System. J. Arthroplast. 2015, 30, 2137–2142. [Google Scholar] [CrossRef]
- Pritchett, J.W. Patients Prefer a Bicruciate-Retaining or the Medial Pivot Total Knee Prosthesis. J. Arthroplast. 2011, 26, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Hilding, M.B.; Lanshammar, H.; Ryd, L. Knee Joint Loading and Tibial Component Loosening. RSA and Gait Analysis in 45 Osteoarthritic Patients before and after TKA. J. Bone Jt. Surg. Br. 1996, 78, 66–73. [Google Scholar] [CrossRef]
- Dennis, D.A.; Komistek, R.D.; Mahfouz, M.R.; Outten, J.T.; Sharma, A. Mobile-Bearing Total Knee Arthroplasty: Do the Polyethylene Bearings Rotate? Clin. Orthop. Relat. Res. 2005, 440, 88–95. [Google Scholar] [CrossRef]
- Blunn, G.W.; Joshi, A.B.; Minns, R.J.; Lidgren, L.; Lilley, P.; Ryd, L.; Engelbrecht, E.; Walker, P.S. Wear in Retrieved Condylar Knee Arthroplasties. A Comparison of Wear in Different Designs of 280 Retrieved Condylar Knee Prostheses. J. Arthroplast. 1997, 12, 281–290. [Google Scholar] [CrossRef]
- Kim, T.W.; Lee, S.M.; Seong, S.C.; Lee, S.; Jang, J.; Lee, M.C. Different Intraoperative Kinematics with Comparable Clinical Outcomes of Ultracongruent and Posterior Stabilized Mobile-Bearing Total Knee Arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3036–3043. [Google Scholar] [CrossRef]
- Laskin, R.S.; Maruyama, Y.; Villaneuva, M.; Bourne, R. Deep-Dish Congruent Tibial Component Use in Total Knee Arthroplasty: A Randomized Prospective Study. Clin. Orthop. Relat. Res. 2000, 380, 36–44. [Google Scholar] [CrossRef]
- Lutzner, J.; Beyer, F.; Lutzner, C.; Riedel, R.; Tille, E. Ultracongruent Insert Design Is a Safe Alternative to Posterior Cruciate-Substituting Total Knee Arthroplasty: 5-Year Results of a Randomized Controlled Trial. Knee Surg. Sports Traumatol. Arthrosc. 2021, 30, 3000–3006. [Google Scholar] [CrossRef]
- Uvehammer, J.; Regnér, L.; Kärrholm, J. Flat vs. Concave Tibial Joint Surface in Total Knee Arthroplasty: Randomized Evaluation of 39 Cases Using Radiostereometry. Acta Orthop. Scand. 2001, 72, 257–265. [Google Scholar] [CrossRef]
- Song, E.-K.; Lim, H.-A.; Joo, S.-D.; Kim, S.-K.; Lee, K.-B.; Seon, J.-K. Total Knee Arthroplasty Using Ultra-Congruent Inserts Can Provide Similar Stability and Function Compared with Cruciate-Retaining Total Knee Arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3530–3535. [Google Scholar] [CrossRef]
- Rajgopal, A.; Aggarwal, K.; Khurana, A.; Rao, A.; Vasdev, A.; Pandit, H. Gait Parameters and Functional Outcomes After Total Knee Arthroplasty Using Persona Knee System with Cruciate Retaining and Ultracongruent Knee Inserts. J. Arthroplast. 2017, 32, 87–91. [Google Scholar] [CrossRef]
- Indelli, P.F.; Risitano, S.; Hall, K.E.; Leonardi, E.; Migliore, E. Effect of Polyethylene Conformity on Total Knee Arthroplasty Early Clinical Outcomes. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1028–1034. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, S.H.; Kim, J.S. Early Outcome of TKA with a Medial Pivot Fixed-Bearing Prosthesis Is Worse than with a PFC Mobile-Bearing Prosthesis. Clin. Orthop. Relat. Res. 2009, 467, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Dowsey, M.M.; Gould, D.J.; Spelman, T.; Pandy, M.G.; Choong, P.F. A Randomized Controlled Trial Comparing a Medial Stabilized Total Knee Prosthesis to a Cruciate Retaining and Posterior Stabilized Design: A Report of the Clinical and Functional Outcomes Following Total Knee Replacement. J. Arthroplast. 2020, 35, 1583–1590.e2. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, V.; Sood, M.; Kanade, S.; Kumar, S.; Datta, B.; Mittal, G. Early Outcomes of Medial Pivot Total Knee Arthroplasty Compared to Posterior-Stabilized Design: A Randomized Controlled Trial. Clin. Orthop. Surg. 2020, 12, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-S.; Yeom, J.; Lee, D.-H.; Moon, Y.-W. Similar Outcomes between Ultracongruent and Posterior-Stabilized Insert in Total Knee Arthroplasty: A Propensity Score-Matched Analysis. J. Orthop. Surg. 2020, 28, 2309499019893515. [Google Scholar] [CrossRef]
- French, S.R.; Munir, S.; Brighton, R. A Single Surgeon Series Comparing the Outcomes of a Cruciate Retaining and Medially Stabilized Total Knee Arthroplasty Using Kinematic Alignment Principles. J. Arthroplast. 2020, 35, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, A.I.; Bhatt, S.; Wright-Chisem, J.; Sullivan, R.; Beal, M.; Manning, D.W. The Effect of Implant Design on Sagittal Plane Stability: A Randomized Trial of Medial- versus Posterior-Stabilized Total Knee Arthroplasty. J. Knee Surg. 2020, 33, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, K.; Furu, M.; Nakamura, S.; Kuriyama, S.; Ishikawa, M.; Ito, H.; Matsuda, S. No Differences in Patient-Reported Outcomes between Medial Pivot Insert and Symmetrical Insert in Total Knee Arthroplasty: A Randomized Analysis. Knee 2018, 25, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Matsumoto, T.; Tsumura, N.; Chinzei, N.; Kitagawa, A.; Kubo, S.; Chin, T.; Iguchi, T.; Akisue, T.; Nishida, K.; et al. In Vivo Comparisons of Patellofemoral Kinematics before and after ADVANCE Medial-Pivot Total Knee Arthroplasty. Int. Orthop. 2012, 36, 2073–2077. [Google Scholar] [CrossRef] [PubMed]
- Hossain, F.; Patel, S.; Rhee, S.-J.; Haddad, F.S. Knee Arthroplasty with a Medially Conforming Ball-and-Socket Tibiofemoral Articulation Provides Better Function. Clin. Orthop. Relat. Res. 2011, 469, 55–63. [Google Scholar] [CrossRef]
- Argenson, J.-N.; Boisgard, S.; Parratte, S.; Descamps, S.; Bercovy, M.; Bonnevialle, P.; Briard, J.-L.; Brilhault, J.; Chouteau, J.; Nizard, R.; et al. Survival Analysis of Total Knee Arthroplasty at a Minimum 10 Years’ Follow-up: A Multicenter French Nationwide Study Including 846 Cases. Orthop. Traumatol. Surg. Res. 2013, 99, 385–390. [Google Scholar] [CrossRef]
- Christensson, A.; Tveit, M.; Kesteris, U.; Flivik, G. Similar Migration for Medial Congruent and Cruciate-Retaining Tibial Components in an Anatomic TKA System: A Randomized Controlled Trial of 60 Patients Followed with RSA for 2 Years. Acta Orthop. 2022, 93, 68–74. [Google Scholar] [CrossRef]
- Carlson, B.J.; Jones, B.K.; Scott, D.F. A Prospective Comparison of Total Knee Arthroplasty Using Ultra-Congruent, Condylar-Stabilizing, and Posterior-Stabilized Devices Implanted with Kinematic Alignment: Better 2-Year Outcomes with Ultra-Congruent. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1026–1033. [Google Scholar] [CrossRef]
- Han, H.S.; Kang, S.B. Anterior-Stabilized TKA Is Inferior to Posterior-Stabilized TKA in Terms of Postoperative Posterior Stability and Knee Flexion in Osteoarthritic Knees: A Prospective Randomized Controlled Trial with Bilateral TKA. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3217–3225. [Google Scholar] [CrossRef]
- Dalton, P.; Holder, C.; Rainbird, S.; Lewis, P.L. Survivorship Comparisons of Ultracongruent, Cruciate-Retaining and Posterior-Stabilized Tibial Inserts Using a Single Knee System Design: Results from the Australian Orthopedic Association National Joint Replacement Registry. J. Arthroplast. 2022, 37, 468–475. [Google Scholar] [CrossRef]
- Akti, S.; Karakus, D.; Sezgin, E.A.; Cankaya, D. No Differences in Clinical Outcomes or Isokinetic Performance between Cruciate-Substituting Ultra-Congruent and Posterior Stabilized Total Knee Arthroplasties: A Randomized Controlled Trial. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3443–3449. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Koh, I.J.; Kim, C.K.; Choi, K.Y.; Jeon, J.H.; In, Y. Comparison of Joint Perception Between Posterior-Stabilized and Ultracongruent Total Knee Arthroplasty in the Same Patient. J. Bone Jt. Surg. Am. 2021, 103, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, K.; Kambhampati, S.B.S.; Vaishya, R. Equivalent Outcomes of Ultra-Congruent and Standard Cruciate-Retaining Inserts in Total Knee Arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3076–3091. [Google Scholar] [CrossRef]
- Wenzel, A.N.; Hasan, S.A.; Chaudhry, Y.P.; Mekkawy, K.L.; Oni, J.K.; Khanuja, H.S. Ultracongruent Designs Compared to Posterior-Stabilized and Cruciate-Retaining Tibial Inserts—What Does the Evidence Tell Us? A Systematic Review and Meta-Analysis. J. Arthroplast. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Hossain, F.; Patel, S.; Haddad, F.S. Midterm Assessment of Causes and Results of Revision Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 2010, 468, 1221–1228. [Google Scholar] [CrossRef]
Study | Group | Country | Implant Type | Patients | Patellar Resurfacing | Mean Age (SD/Range) | Sex (M/F) | Follow-Up (yrs) |
---|---|---|---|---|---|---|---|---|
Kim 2016 [20] | Ultracongruent FB | Korea | E-motion, Aesculap, B.Braun | 82 | Y | 69.2 | 95% (4/78) | 3 |
Standard PS FB | E-motion, Aesculap, B.Braun | |||||||
Laskin 2000 [21] | Ultracongruent FB | USA | Genesis II, Smith and Nephew | 128 | Y | 72.5 | 128 (NA) | 2 |
Standard PS FB | Genesis II, Smith and Nephew | |||||||
Lutzner 2016 [13] | Ultracongruent FB | Germany | Columbus, Aesculap, B.Braun | 122 | N | 70.7 | 67% (85/42) | 1 |
Standard PS FB | Columbus, Aesculap, B.Braun | 122 | ||||||
Lutzner 2021 [22] | Ultracongruent FB | Germany | Columbus, Aesculap, B.Braun | 122 | N | 71.5 | 68.2% (34/73) | 5 |
Standard PS FB | Columbus, Aesculap, B.Braun | 122 | ||||||
Uvehammer 2001 [23] | Ultracongruent FB | Sweden | AMK, DePuy, Johnson & Johnson | 22 | N | 70.5 | 55% (22/27) | 2 |
Standard PS FB | AMK, DePuy, Johnson & Johnson | |||||||
Song 2017 [24] | Ultracongruent FB | Korea | E-motion, Aesculap, B.Braun | 76 | N | 68.3 | 84% (12/64) | 3.7 |
Standard CR FB | E-motion, Aesculap, B.Braun | |||||||
Rajgopal 2017 [25] | Ultracongruent FB | India | Persona, Zimmer Biomet | 105 | N | NA | 62% (39/66) | 2 |
Standard CR FB | Persona, Zimmer Biomet | |||||||
Indelli 2019 [26] | Medial Congruent FB | USA | Persona, Zimmer Biomet | 100 | Y | 67.5 | 7% (93/7) | 2 |
Standard PS FB | Persona, Zimmer Biomet | |||||||
Kim 2009 [27] | Medial Congruent FB | KOREA | Wright Medical | 92 | Y | 69.5 | 92% (7/85) | 2.6 |
Standard RP | PFC Sigma, DePuy, Johnson & Johnson | |||||||
Dowsey 2020 [28] | Medial Congruent FB | Australia | GMK, Medacta | 75 | Y | 67.2 | 44% (46/36) | 1 |
Standard CR FB | GMK, Medacta | |||||||
Standard PS FB | GMK, Medacta | |||||||
Kulshrestha 2020 [29] | Medial Congruent FB | India | ADVANCE, Wright | 73 | N | 64.9 | 65% (28/52) | 2 |
Standard PS FB | NexGen Legacy, Zimmer | |||||||
Lee 2020 [30] | Medial Congruent FB | China | N/A | 46 | N | 70 | 70% (14/32) | 1 |
Standard PS FB | N/A | |||||||
French 2020 [31] | Standard CR FB | Australia | Vanguard, Zimmer Biomet | 90 | N | 67.8 | 58% (38/52) | 1 |
Medial Congruent FB | SAIPH, MatOrtho | |||||||
Edelstein 2020 [32] | Medial Congruent FB | United States | GMK, Medacta | 50 | Y | 65.5 | 66% (17/33) | 2 |
Standard PS FB | GMK, Medacta | |||||||
Nishitani 2018 [33] | Medial Congruent FB | Japan | Bi-Surface, Kyocera | 65 | Y | 74.1 | 74% (17/48) | 2 |
Ultracongruent FB (DH) | Bi-Surface, Kyocera | |||||||
Ishida 2012 [34] | Medial Congruent FB | Japan | ADVANCE, Wright | 40 | N | 71.5 | 95% (2/38) | 4.75 |
Ultracongruent FB (DH) | ADVANCE, Wright | |||||||
Pritchett 2011 [16] | Medial Congruent FB | United States | Wright | 440 | Y | 68 | N/A | 7.6 |
Standard CR FB | Biomet/BioPro/DePuy/Stryker/WMT/Zimmer | |||||||
Standard PS FB | Biomet/BioPro/DePuy/Stryker/WMT/Zimmer | |||||||
Standard RP | DePuy, Johnson & Johnson | |||||||
Hossain 2011 [35] | Standard PS FB | UK | PFC DePuy, Johnson & Johnson | 80 | Y | 70.7 | 66% (27/53) | 2 |
Medial Congruent FB | MRK; Finsbury Orthopaedics | |||||||
1793 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, Y.-L.; Tsai, S.H.L.; Lin, C.-H.; Lin, C.-R.; Hu, C.-C. The Effect of Congruent Tibial Inserts in Total Knee Arthroplasty: A Network Meta-Analysis of Randomized Controlled Trials. Life 2023, 13, 1942. https://doi.org/10.3390/life13091942
Tsai Y-L, Tsai SHL, Lin C-H, Lin C-R, Hu C-C. The Effect of Congruent Tibial Inserts in Total Knee Arthroplasty: A Network Meta-Analysis of Randomized Controlled Trials. Life. 2023; 13(9):1942. https://doi.org/10.3390/life13091942
Chicago/Turabian StyleTsai, Yen-Lin, Sung Huang Laurent Tsai, Chia-Han Lin, Chun-Ru Lin, and Chih-Chien Hu. 2023. "The Effect of Congruent Tibial Inserts in Total Knee Arthroplasty: A Network Meta-Analysis of Randomized Controlled Trials" Life 13, no. 9: 1942. https://doi.org/10.3390/life13091942
APA StyleTsai, Y. -L., Tsai, S. H. L., Lin, C. -H., Lin, C. -R., & Hu, C. -C. (2023). The Effect of Congruent Tibial Inserts in Total Knee Arthroplasty: A Network Meta-Analysis of Randomized Controlled Trials. Life, 13(9), 1942. https://doi.org/10.3390/life13091942