Formulation of Mentha piperita-Based Nanobiopesticides and Assessment of the Pesticidal and Antimicrobial Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Mentha piperita Extract
2.2. Nanosuspension Formulation and Characterization
2.3. Optimization of Nanosuspension
2.4. Determination of Pesticidal Activity
2.5. Determination of Antimicrobial Activity
2.5.1. Antibacterial Activity
2.5.2. Antifungal Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Screening of Stabilizers for Nanosuspension Formulation
3.2. Optimization of Process Parameters of Nanosuspension by RSM
3.3. Polynomial Equation in Terms of Coded Factors
3.4. Biological Activities of Mentha piperita Nanosuspension
Pesticidal Activity
3.5. Antibacterial Activity
3.6. Antifungal Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mfarrej, M.F.B.; Rara, F.M. Competitive, sustainable natural pesticides. Acta Ecol. Sin. 2019, 39, 145–151. [Google Scholar] [CrossRef]
- Rodríguez, A.; Castrejón-Godínez, M.L.; Salazar-Bustamante, E.; Gama-Martínez, Y.; Sánchez-Salinas, E.; Mussali-Galante, P.; Tovar-Sánchez, E.; Ortiz-Hernández, M.L. Omics approaches to pesticide biodegradation. Curr. Microbiol. 2020, 77, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Luo, X.; Tang, L.; Yu, W. The power of habit: Does production experience lead to pesticide overuse? Environ. Sci. Pollut. Res. 2020, 27, 25287–25296. [Google Scholar] [CrossRef] [PubMed]
- Foong, S.Y.; Ma, N.L.; Lam, S.S.; Peng, W.; Low, F.; Lee, B.H.; Alstrup, A.K.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef] [PubMed]
- Fogel, M.N.; Schneider, M.I.; Rimoldi, F.; Ladux, L.S.; Desneux, N.; Ronco, A.E. Toxicity assessment of four insecticides with different modes of action on pupae and adults of Eriopis connexa (Coleoptera: Coccinellidae), a relevant predator of the Neotropical Region. Environ. Sci. Pollut. Res. 2016, 23, 14918–14926. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Barua, A.; McDonald-Howard, K.L.; Mc Donnell, R.J.; Rae, R.; Williams, C.D. Toxicity of essential oils to slug parasitic and entomopathogenic nematodes. J. Pest Sci. 2020, 93, 1411–1419. [Google Scholar] [CrossRef]
- Mehrotra, S.; Kumar, S.; Zahid, M.; Garg, M. Biopesticides. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2017; pp. 273–292. [Google Scholar]
- Xie, Y.; Huang, Q.; Rao, Y.; Hong, L.; Zhang, D. Efficacy of Origanum vulgare essential oil and carvacrol against the housefly, Musca domestica L.(Diptera: Muscidae). Environ. Sci. Pollut. Res. 2019, 26, 23824–23831. [Google Scholar] [CrossRef]
- Gong, X.; Ren, Y. Larvicidal and ovicidal activity of carvacrol, p-cymene, and γ-terpinene from Origanum vulgare essential oil against the cotton bollworm, Helicoverpa armigera (Hübner). Environ. Sci. Pollut. Res. 2020, 27, 18708–18716. [Google Scholar] [CrossRef]
- Berhe, M.; Dugassa, S.; Shimelis, S.; Tekie, H. Repellence and larvicidal effects of some selected plant extracts against adult Anopheles arabiensis and Aedes aegypti larvae under laboratory conditions. Int. J. Trop. Insect Sci. 2021, 41, 2649–2656. [Google Scholar] [CrossRef]
- Chauhan, N.; Kumar, P.; Mishra, S.; Verma, S.; Malik, A.; Sharma, S. Insecticidal activity of Jatropha curcas extracts against housefly, Musca domestica. Environ. Sci. Pollut. Res. 2015, 22, 14793–14800. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Seo, S.M.; Huh, M.J.; Lee, S.C.; Park, I.K. Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi. Pestic. Biochem. Physiol. 2020, 168, 104–644. [Google Scholar] [CrossRef] [PubMed]
- Walia, S.; Saha, S.; Tripathi, V.; Sharma, K. Phytochemical biopesticides: Some recent developments. Phytochem. Rev. 2017, 16, 989–1007. [Google Scholar] [CrossRef]
- Mali, S.C.; Raj, S.; Trivedi, R. Nanotechnology a novel approach to enhance crop productivity. Biochem. Biophys. Rep. 2020, 24, 100–821. [Google Scholar]
- Medarević, D.; Djuriš, J.; Ibrić, S.; Mitrić, M.; Kachrimanis, K. Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int. J. Pharm. 2018, 540, 150–161. [Google Scholar] [CrossRef]
- AbuHazafa; Jahan, N.; Zia, M.A.; Khalil-Ur-Rahman; Sagheer, M.; Naeemd, M. Evaluation and optimization of nanosuspensions of Chrysanthemum coronarium and Azadirachta indica using Response Surface Methodology for pest management. Chemosphere 2022, 13, 3–11. [Google Scholar]
- Iqbal, H.; Jahan, N.; Khalil-ur-Rahman; Jamil, S. Formulation and characterisation of Azadirachta indica nanobiopesticides for ecofriendly control of wheat pest Tribolium castaneum and Rhyzopertha dominica. J. Microencapsul. 2022, 23, 67–89. [Google Scholar] [CrossRef]
- Mossa, A.T.H.; Afia, S.I.; Mohafrash, S.M.; Abou-Awad, B.A. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). Environ. Sci. Pollut. Res. 2018, 25, 10526–10537. [Google Scholar] [CrossRef]
- Hassanshahian, M.; Saadatfar, A.; Masoumipour, F. Formulation and characterization of nanoemulsion from Alhagi maurorum essential oil and study of its antimicrobial, antibiofilm, and plasmid curing activity against antibiotic-resistant pathogenic bacteria. J. Environ. Health Sci. Eng. 2020, 18, 1015–1027. [Google Scholar] [CrossRef]
- Ali, E.O.M.; Shakil, N.A.; Rana, V.S.; Sarkar, D.J.; Majumder, S.; Kaushik, P.; Singh, B.B.; Kumar, J. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind. Crops Prod. 2017, 108, 379–387. [Google Scholar]
- Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ. Sci. Pollut. Res. 2017, 24, 17347–17357. [Google Scholar] [CrossRef]
- Trivedi, S.; Alshehri, M.A.; Panneerselvam, C.; Al-Aoh, H.A.; Maggi, F.; Sut, S.; Dall’Acqua, S. Insecticidal, antibacterial and dye adsorbent properties of Sargassum muticum decorated nano-silver particles. S. Afr. J. Bot. 2021, 139, 432–441. [Google Scholar] [CrossRef]
- Roshanpour, S.; Tavakoli, J.; Beigmohammadi, F.; Alaei, S. Improving antioxidant effect of phenolic extract of Mentha piperita using nanoencapsulation process. J. Food Meas. Charact. 2020, 15, 23–32. [Google Scholar] [CrossRef]
- Modarresi, M.; Farahpour, M.R.; Baradaran, B. Topical application of Mentha piperita essential oil accelerates wound healing in infected mice model. Inflammopharmacology 2019, 27, 531–537. [Google Scholar] [CrossRef]
- Rajkumar, V.; Gunasekaran, C.; Christy, I.K.; Dharmaraj, J.; Chinnaraj, P.; Paul, C.A. Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. Pestic. Biochem. Physiol. 2019, 156, 138–144. [Google Scholar] [CrossRef]
- Robles-Martínez, M.; Patiño-Herrera, R.; Pérez-Vázquez, F.J.; Montejano-Carrizales, J.M.; González, J.F.C.; Pérez, E. Mentha piperita as a natural support for silver nanoparticles: A new Anti-candida albicans treatment. Colloids Interface Sci. Commun. 2020, 35, 100–253. [Google Scholar] [CrossRef]
- Aslam, S.; Jahan, N.; Rehman, K.U. Development of sodium lauryl sulphate stabilized nanosuspension of Coriandrum sativum to enhance its oral bioavailability. J. Drug Deliv. Sci. Technol. 2020, 60, 101957. [Google Scholar] [CrossRef]
- Aslam, S.; Jahan, N.; Khalil-Ur-Rehman; Ali, S. Formulation, optimisation and in-vitro, in-vivo evaluation of surfactant stabilised nanosuspension of Ginkgo biloba. J. Microencapsul. 2019, 36, 576–590. [Google Scholar]
- Mou, L.; Du, X.; Lu, X.; Lu, Y.; Li, G.; Li, J. Study on component analysis and antifungal activity of three Chinese herbal essential oils and its application of postharvest preservation of peach fruit. LWT 2021, 1, 11–89. [Google Scholar]
- Baliyarsingh, B.; Mishra, A.; Rath, S. Evaluation of insecticidal and repellency activity of leaf extracts of Andrographis paniculata against Tribolium castaneum (red flour beetle). Int. J. Trop. Insect Sci. 2021, 41, 765–773. [Google Scholar] [CrossRef]
- Da Silva, A.S.; de Lira Pimentel, C.S.; dos Santos, F.H.G.; de Araújo, H.D.A.; Paiva, P.M.G.; da Silva, N.H.; Pereira, E.C.; Martins, M.C.B.; Buril, M.d.L.L.; Napoleão, T.H. Insecticidal activity of the ether extract from the lichen Ramalina complanata and an isolated metabolite (divaricatic acid) against Sitophilus zeamais (Coleoptera, Curculionidae). Biocatal. Agric. Biotechnol. 2021, 35, 102049. [Google Scholar] [CrossRef]
- Aisida, S.O.; Ugwu, K.; Nwanya, A.C.; Bashir, A.; Nwankwo, N.U.; Ahmed, I.; Ezema, F.I. Biosynthesis of silver oxide nanoparticles using leave extract of Telfairia Occidentalis and its antibacterial activity. Mater. Today Proc. 2021, 36, 208–213. [Google Scholar] [CrossRef]
- Dawoud, T.M.; Yassin, M.A.; El-Samawaty, A.R.M.; Elgorban, A.M. Silver nanoparticles synthesized by Nigrospora oryzae showed antifungal activity. Saudi J. Biol. Sci. 2021, 28, 1847–1852. [Google Scholar] [CrossRef]
- Singare, D.S.; Marella, S.; Gowthamrajan, K.; Kulkarni, G.T.; Vooturi, R.; Rao, P.S. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int. J. Pharm. 2010, 402, 213–220. [Google Scholar] [CrossRef]
- Fu, T.T.; Cong, Z.Q.; Zhao, Y.; Chen, W.-Y.; Liu, C.Y.; Zheng, Y.; Yang, F.-F.; Liao, Y.H. Fluticasone propionate nanosuspensions for sustained nebulization delivery: An in vitro and in vivo evaluation. Int. J. Pharm. 2019, 572, 118–839. [Google Scholar] [CrossRef]
- Hegde, N.; Juvale, K.; Prabhakar, B. Formulation and optimization of gefitinib-loaded nanosuspension prepared using a newly developed dendritic lipopeptide oligomer material. Chem. Pap. 2021, 75, 2007–2022. [Google Scholar] [CrossRef]
- Heydari, M.; Amirjani, A.; Bagheri, M.; Sharifian, I.; Sabahi, Q. Eco-friendly pesticide based on peppermint oil nanoemulsion: Preparation, physicochemical properties, and its aphicidal activity against cotton aphid. Environ. Sci. Pollut. Res. 2020, 27, 6667–6679. [Google Scholar] [CrossRef]
- Mohafrash, S.M.; Fallatah, S.A.; Farag, S.M.; Mossa, A.T.H. Mentha spicata essential oil nanoformulation and its larvicidal application against Culex pipiens and Musca domestica. Ind. Crops Prod. 2020, 157, 112–944. [Google Scholar] [CrossRef]
- Murugesan, R.; Vasuki, K.; Kaleeswaran, B.; Santhanam, P.; Ravikumar, S.; Alwahibi, M.S.; Soliman, D.A.; Almunqedhi, B.M.A.; Alkahtani, J. Insecticidal and repellent activities of Solanum torvum (Sw.) leaf extract against stored grain Pest, Callosobruchus maculatus (F.)(Coleoptera: Bruchidae). J. King Saud Univ. Sci. 2021, 33, 101–390. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Efficacy of Mentha × piperita and Mentha citrata essential oils against housefly, Musca domestica L. Ind. Crops Prod. 2012, 39, 106–112. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Insecticidal properties of Mentha species: A review. Ind. Crops Prod. 2011, 34, 802–817. [Google Scholar] [CrossRef]
- Saeed, Q.; Iqbal, N.; Ahmed, F.; Rehman, S.; Alvi, A.M. Screening of different plant extracts against Tribolium castaneum (herbst.) Under laboratory conditions. Sci. Int. 2016, 28, 1219. [Google Scholar]
- Esmaile, F.; Koohestani, H.; Abdollah-Pour, H. Characterization and antibacterial activity of silver nanoparticles green synthesized using Ziziphora clinopodioides extract. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100–303. [Google Scholar] [CrossRef]
- Rodríguez-Félix, F.; López-Cota, A.G.; Moreno-Vásquez, M.J.; Graciano-Verdugo, A.Z.; Quintero-Reyes, I.E.; Del-Toro-Sánchez, C.L.; Tapia-Hernández, J.A. Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon 2021, 7, e06923. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.S.; Al-Daihan, S. Phytochemical constituents and antibacterial activity of some green leafy vegetables. Asian. Pac. J. Trop. Biomed. 2014, 4, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, E.; Lawrence, R.; Pal, T. Comparative evaluation in the efficacy of peppermint (Mentha piperita) oil with standards antibiotics against selected bacterial pathogens. Asian. Pac. J. Trop. Biomed. 2011, 1, S253–S257. [Google Scholar] [CrossRef]
- Mattazi, N.; Farah, A.; Fadil, M.; Chraibi, M.; Benbrahim, K. Essential oils analysis and antibacterial activity of the leaves of Rosmarinus officinalis, Salvia officinalis and Mentha piperita cultivated in Agadir (Morocco). Int. J. Pharm. Pharm. Sci. 2015, 7, 73–79. [Google Scholar]
- Singh, R.; Shushni, M.A.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef]
- Nisar, P.; Ali, N.; Rahman, L.; Ali, M.; Shinwari, Z.K. Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. J. Biol. Inorg. Chem. 2019, 24, 929–941. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kumar, N.; Kumar, R.; Salar, R.K. Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract. SN Appl. Sci. 2019, 1, 136. [Google Scholar] [CrossRef]
- Mathur, A.; Prasad, G.; Rao, N.; Babu, P.; Dua, V. Isolation and identification of antimicribial compound from Mentha pipirita. Rasayan. J. 2011, 4, 36–42. [Google Scholar]
- Pham, N.D.; Duong, M.M.; Le, M.V.; Hoang, H.A. Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsici. Comptes Rendus Chim. 2019, 22, 786–793. [Google Scholar] [CrossRef]
Sr No. | Amount of Plant Extract (g) | Concentration of Stabilizer (%) | Particle Size (nm) | Polydispersity Index (PDI) |
---|---|---|---|---|
1 | 0.60 | 0.78 | 309.2 | 0.378 |
2 | 1.17 | 0.78 | 285.2 | 0.493 |
3 | 0.60 | 0.78 | 261.2 | 0.478 |
4 | 0.60 | 0.78 | 302.2 | 0.548 |
5 | 1 | 1.35 | 414.9 | 0.614 |
6 | 0.20 | 0.20 | 431 | 0.637 |
7 | 0.60 | −0.04 | 305 | 0.43 |
8 | 0.60 | 0.78 | 260.2 | 0.398 |
9 | 0.03 | 0.78 | 399.4 | 0.534 |
10 | 1 | 0.20 | 259.8 | 0.626 |
11 | 0.60 | 1.59 | 282.9 | 0.608 |
12 | 0.20 | 1.35 | 419.7 | 0.512 |
13 | 0.60 | 0.78 | 261.5 | 0.518 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Probe > F | |
---|---|---|---|---|---|---|
Model | 40,539.13 | 5 | 8107.83 | 3.97 | 0.0499 | Significant |
A—Amount of plant extract | 14,238.55 | 1 | 14,238.55 | 6.98 | 0.0333 | |
B—Stabilizer concentration | 1583.32 | 1 | 1583.32 | 0.78 | 0.4075 | |
AB | 6922.24 | 1 | 6922.24 | 3.39 | 0.1080 | |
A2 | 15,713 | 1 | 15,713.00 | 7.70 | 0.0275 | |
B2 | 3793.26 | 1 | 3793.26 | 1.86 | 0.2149 | |
Residual | 14,278.28 | 7 | 2039.75 | |||
Lack of fit | 11,851.56 | 3 | 3950.52 | 6.51 | 0.0510 | Non-significant |
Pure error | 2426.71 | 4 | 606.68 | |||
Total | 54,817.4 | 12 |
Antibacterial Activity | Concentration µg/mL | Zones of Inhibition (mm) | |
---|---|---|---|
P. syringae | C. michiganesis | ||
M. piperita extract | 0.60 | 10.1 ± 0.95 Cc | 12 ± 1.45 Cc |
1 | 12.06 ± 0.95 Bc | 14.41 ± 0.28 Bc | |
1.17 | 13.9 ± 0.602 Ac | 16.27 ± 0.86 Ac | |
Nanosuspension | 0.60 | 12.1 ± 0.88 Cb | 14.33 ± 0.83 Cb |
1 | 13.76 ± 1.1 Bb | 18.2 ± 0.9 Bb | |
1.17 | 16.18 ± 1.06 Ab | 20.17 ± 1.07 Ab | |
Ciprofloxacin (C) | 0.60 | 15.3 ± 0.26 Ca | 20.2 ± 0.2 Ca |
1 | 17.01 ± 0.46 Ba | 22.37 ± 0.29 Ba | |
1.17 | 22.4 ± 0.24 Aa | 25.3 ± 0.33 Aa |
Antifungal Activity | Concentration µg/mL | Zones of Inhibition (mm) | |
---|---|---|---|
F. oxysporum | A. niger | ||
M. piperita extract | 0.60 | 12.4 ± 1.96 Cc | 11.24 ± 0.77 Cc |
1 | 16.26 ± 0.86 Bc | 12.86 ± 0.99 Bc | |
1.17 | 20.3 ± 1.06 Ac | 15.5 ± 0.71 Ac | |
Nanosuspension | 0.60 | 15.4 ± 1.25 Cb | 13.3 ± 1.05 Cb |
1 | 20.5 ± 2.25 Bb | 16.4 ± 0.75 Bb | |
1.17 | 25.5 ± 1.35 Ab | 19.7 ± 1.15 Ab | |
Voriconazole(C) | 0.6 | 20.24 ± 0.22 Ca | 16.2 ± 0.17 Ca |
1 | 30.4 ± 0.27 Ba | 25.23 ± 0.86 Ba | |
1.17 | 35.4 ± 0.39 Aa | 30.3 ± 0.2 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahan, N.; Hussain, N.; Touqeer, S.I.; Khalil-Ur-Rahman; Shamshad, H.; Abbas, N. Formulation of Mentha piperita-Based Nanobiopesticides and Assessment of the Pesticidal and Antimicrobial Potential. Life 2024, 14, 144. https://doi.org/10.3390/life14010144
Jahan N, Hussain N, Touqeer SI, Khalil-Ur-Rahman, Shamshad H, Abbas N. Formulation of Mentha piperita-Based Nanobiopesticides and Assessment of the Pesticidal and Antimicrobial Potential. Life. 2024; 14(1):144. https://doi.org/10.3390/life14010144
Chicago/Turabian StyleJahan, Nazish, Nida Hussain, Syeeda Iram Touqeer, Khalil-Ur-Rahman, Huma Shamshad, and Naseem Abbas. 2024. "Formulation of Mentha piperita-Based Nanobiopesticides and Assessment of the Pesticidal and Antimicrobial Potential" Life 14, no. 1: 144. https://doi.org/10.3390/life14010144
APA StyleJahan, N., Hussain, N., Touqeer, S. I., Khalil-Ur-Rahman, Shamshad, H., & Abbas, N. (2024). Formulation of Mentha piperita-Based Nanobiopesticides and Assessment of the Pesticidal and Antimicrobial Potential. Life, 14(1), 144. https://doi.org/10.3390/life14010144