Hemoadsorption in Organ Preservation and Transplantation: A Narrative Review
Abstract
:1. Introduction
2. Development of Therapeutical Cytokine Adsorption Approaches
2.1. Experimental Studies
2.2. Clinical Studies
3. Therapeutic Applications of Cytokine Adsorption in Transplantations
3.1. Therapeutic Applications in Lung Transplantation
3.1.1. Experimental Studies
3.1.2. Clinical Studies
Organ Targeted | Model and Treatment | Effects of CA Therapy | References |
---|---|---|---|
Lung | Porcine EVLP + CA, then LuTx. | ↓ cytokines, ↑ oxygenation, ↑ compliance, ↓ pharmacotherapy. | [18,19,20] |
Porcine EVLP + CA, then LuTx. | ↓ coagulation and complement pathways, ↓ humoral immune response pathways. | [22] | |
Porcine EVLP + CA. | ↓ pulmonary oedema, ↓ electrolytes imbalance. | [17] | |
Porcine EVLP + CA, then LuTx + CA. | ↓ cytokines, ↓ immune cells, ↓ PGD. | [24] | |
Porcine post LuTx and CA. | ↓ cytokines, ↑ CO2 removal. | [25] | |
Human LuTx and CA. | ↓ neutrophil and monocyte activation markers. | [26] | |
Human EVLP + CA, then LuTx. | ↓ cytokines, ↓ in-hospital mortality. | [27] | |
Human intraoperative LuTx and CA. | ↓ neutrophil extracellular traps, ↓ AR and PGD. | [15] | |
Heart | Human CPB + CA. | ↓ hemodynamic and metabolic and organ instability. | [29,30] |
Human CPB + CA. | ↓ plasma-free hemoglobin and complement C3a and C5a. | [31] | |
Human CPB + CA. | ↑ IL-10 anti-inflammatory long-lasting effects. | [32] | |
Human CPB for infective endocarditis + CA. | ↓ cytokines but without resolution of hemodynamic instability and in-hospital mortality. | [33] | |
Human CBP for acute endocarditis + CA. | ↓ in vasopressor use but not significant. | [34] | |
Human intraoperative HTx and CA. | ↓ CRRT frequency. | [35] | |
Human donor heart resuscitation for HTx and CA. | Donor heart implantation after 7 h cold ischemia. | [36] | |
Human HTx and CPB and CA. | Control of heparin-induced thrombocytopenia in HTx. | [37] | |
Human VA-ECMO for giant-cell myocarditis and CA. | ↓ hemodynamic and metabolic and organ instability. | [38] | |
Human VA-ECMO for cardiogenic shock and CA. | ↓ lactate, ↑ urine output, ↓ in-hospital mortality. | [39] | |
Porcine DCD heart ex vivo perfusion and CA. | ↓ cytokines, ↓ markers of endothelial injury. | [40] | |
Kidney | Porcine kidney ex vivo perfusion and CA, then KTx. | ↑ IL-6 and IL-8 at reperfusion, ↑ mean renal blood flow, ↓ prostaglandin E2 and prostacyclin and thromboxane. | [41] |
Human FSGS + CA. | ↓ soluble urokinase plasminogen activator receptor. | [42] | |
Human FSGS + lipoprotein apheresis. | ↑ complete or partial remission of proteinuria, ↑ response rates to steroid or immunosuppressive therapy. | [43] | |
Human kidney ex vivo perfusion and CA, then KTx. | ↑ oxidative phosphorylation (OXPHOS), ↓ inflammatory pathway genes. | [44] | |
Human FSGS + CA. | ↓ proteinuria. | [45] | |
Liver | Human ALF + CA. | ↓ TNFα and CRP and procalcitonin and α1-fetoprotein. | [46] |
Human ACLF + CA. | ↓ TNFα, ↑ IL-6. | [47] | |
Human LF + CA. | ↓ TNFα, ↓ IL-6, ↓ IL-1, ↓ IL-10. | [48] | |
Human LF + CA. | ↓ bilirubin, ↓ ammonia, ↓ LDH, ↓ platelets. | [49] | |
Human LF + CA. | ↓ bilirubin. | [50] | |
Human hyperbilirubinemia + CA. | ↓ bilirubin. | [51] | |
Human ALF + CA. | ↓ bilirubin. | [52] | |
Human septic shock after LiTx + CA. | ↓ procalcitonin, ↓ endoxins, ↓ IL-6, ↓ IL-10. | [53] | |
Human hyperbilirubinemia + CA. | ↓ bilirubin. | [54] | |
Human ACLF + CA. | ↓ bilirubin. | [55] | |
Human ACLF + CA. | ↓ bilirubin. | [56] | |
Human hyperbilirubinemia + CA. | No change in 30-day hospital mortality. | [57] | |
Human pediatric hyperbilirubinemia + CA. | ↓ bilirubin. | [58] | |
Porcine DCD liver ex vivo perfusion and CA. | ↓ cytokines. | [59] |
3.2. Therapeutic Applications in Heart Transplantation
3.2.1. Experimental Studies
3.2.2. Clinical Studies
3.3. Therapeutic Applications in Kidney Transplantation
3.3.1. Experimental Studies
3.3.2. Clinical Studies
3.4. Therapeutic Applications in Liver Transplantation
3.4.1. Experimental Studies
3.4.2. Clinical Studies
3.5. Therapeutic Applications in Lymphome and Allogeneic Transplantation
Clinical Studies
4. Therapeutic Applications of Cytokine Adsorption in Organ Transplantation Complications
4.1. Therapeutic Plasmapheresis
Clinical Studies
4.2. Endotoxic Septic Shock Complications
4.2.1. Experimental Studies
4.2.2. Clinical Studies
4.3. Poisoning Complications and Removal of Pharmaceuticals
4.3.1. Experimental Studies
4.3.2. Clinical Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARDS | acute respiratory distress syndrome |
AKI | acute kidney injury |
ALF | acute liver failure |
ALI | acute lung injury |
ACLF | acute-on-chronic liver failure |
APACHE | acute physiology and chronic health evaluation |
BP | blood perfusion |
CA | cytokine adsorption |
CRS | cytokine release syndrome |
CPB | cardiopulmonary bypass |
CTA | cellulose triacetate |
CRRT | continuous renal replacement therapy |
CVVH | continuous veno-venous hemofiltration |
CPFA | coupled plasma filtration and adsorption |
CRP | C-reactive protein |
DCD | donation after circulatory death |
DPMAS | Double Plasma Molecular Adsorption System |
EAA | Endotoxin Activity Assay |
ECMO | extracorporeal membrane oxygenation |
EBP | extracorporeal blood purification therapies |
EVLP | ex vivo lung perfusion |
FSGS | focal segmental glomerulosclerosis |
HTx | heart transplantation |
HD | hemodialysis |
HP | hemoperfusion |
HA | hemoadsorption |
IL | interleukins |
ICU | intensive care unit |
IRI | ischemia reperfusion injury |
KTx | kidney transplantation |
LiTx | liver transplantation |
LuTx | lung transplantation |
MARS® | Molecular Adsorbent Recycling System |
MAP | mean arterial pressure |
MCO | medium cut-off |
MOF | multiple organ failure |
NMP | normothermic machine perfusion |
PE | plasma exchange |
PMMA | polymethyl methacrylate |
PMX-HA | polymyxin B hemadsorption |
PAES: PVP | polyvinylpyrrolidone: polyarylethersulfone |
PGD | primary graft dysfunction |
SA-AKI | sepsis-associated AKI |
SIRS | severe inflammatory response syndrome |
SOFA | Sequential Organ Failure Assessment |
SMT | standard medical therapy |
TNF-α | tumor necrosis factor alpha |
VA-ECMO | veno-arterial extracorporeal membrane oxygenation |
References
- Ronco, C.; Clark, W.R. Haemodialysis membranes. Nat. Rev. Nephrol. 2018, 14, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Ankawi, G.; Fan, W.; Pomare Montin, D.; Lorenzin, A.; Neri, M.; Caprara, C.; de Cal, M.; Ronco, C. A New Series of Sorbent Devices for Multiple Clinical Purposes: Current Evidence and Future Directions. Blood Purif. 2019, 47, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.; Bellomo, R.; Davenport, P.; Tipping, P.; Uchino, S.; Tetta, C.; Ronco, C. The effect of coupled haemofiltration and adsorption on inflammatory cytokines in an ex vivo model. Nephrol. Dial. Transpl. 2002, 17, 1950–1956. [Google Scholar] [CrossRef] [PubMed]
- Kakishita, T.; Oto, T.; Hori, S.; Miyoshi, K.; Otani, S.; Yamamoto, S.; Waki, N.; Yoshida, O.; Okazaki, M.; Yamane, M.; et al. Suppression of inflammatory cytokines during ex vivo lung perfusion with an adsorbent membrane. Ann. Thorac. Surg. 2010, 89, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Pomare Montin, D.; Ankawi, G.; Lorenzin, A.; Neri, M.; Caprara, C.; Ronco, C. Biocompatibility and Cytotoxic Evaluation of New Sorbent Cartridges for Blood Hemoperfusion. Blood Purif. 2018, 46, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, M.O.; Muellenbach, R.M.; Rolfes, C.; Lotz, C.; Nickel, F.; Muller-Stich, B.P.; Supady, A.; Lepper, P.M.; Weigand, M.A.; Meybohm, P.; et al. Pumpless Extracorporeal Hemadsorption Technique (pEHAT): A Proof-of-Concept Animal Study. J. Clin. Med. 2022, 11, 6815. [Google Scholar] [CrossRef] [PubMed]
- Butt, Y.; Kurdowska, A.; Allen, T.C. Acute Lung Injury: A Clinical and Molecular Review. Arch. Pathol. Lab. Med. 2016, 140, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Rieder, M.; Duerschmied, D.; Zahn, T.; Lang, C.; Benk, C.; Lother, A.; Biever, P.; Bode, C.; Wengenmayer, T.; Staudacher, D.; et al. Cytokine Adsorption in Severe Acute Respiratory Failure Requiring Veno-Venous Extracorporeal Membrane Oxygenation. ASAIO J. 2021, 67, 332–338. [Google Scholar] [CrossRef]
- Masakane, I.; Sakurai, K. Current approaches to middle molecule removal: Room for innovation. Nephrol. Dial. Transpl. 2018, 33, iii12–iii21. [Google Scholar] [CrossRef]
- Calabro, M.G.; Febres, D.; Recca, G.; Lembo, R.; Fominskiy, E.; Scandroglio, A.M.; Zangrillo, A.; Pappalardo, F. Blood Purification with CytoSorb in Critically Ill Patients: Single-Center Preliminary Experience. Artif. Organs 2019, 43, 189–194. [Google Scholar] [CrossRef]
- Lewis, T.C.; Merchan, C.; Toy, B.; Goldenberg, R.M.; Geraci, T.C.; Chang, S.H.; Galloway, A.C.; Smith, D.E., 3rd; Moazami, N. Impact of CytoSorb Hemoadsorption on Sedation Requirements in Patients with Severe COVID-19 on Venovenous Extracorporeal Membrane Oxygenation. ASAIO J. 2021, 67, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Supady, A.; Brodie, D.; Wengenmayer, T. Extracorporeal haemoadsorption: Does the evidence support its routine use in critical care? Lancet Respir. Med. 2022, 10, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Hawchar, F.; Tomescu, D.; Trager, K.; Joskowiak, D.; Kogelmann, K.; Soukup, J.; Friesecke, S.; Jacob, D.; Gummert, J.; Faltlhauser, A.; et al. Hemoadsorption in the critically ill-Final results of the International CytoSorb Registry. PLoS ONE 2022, 17, e0274315. [Google Scholar] [CrossRef] [PubMed]
- Alexandra, G.; Alexandru, M.; Stefan, C.F.; Petruta-Maria, D.; Gabriel, B.M.; Dragos-Eugen, G.; Teodor, G.M. Blood Group Type Association with Head and Neck Cancer. Hematol. Rep. 2022, 14, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, S.; Niroomand, A.; Mittendorfer, M.; Hirdman, G.; Hyllen, S.; Pierre, L.; Olm, F. Nothing but NETs: Cytokine adsorption correlates with lower circulating nucleosomes and is associated with decreased primary graft dysfunction. J. Heart Lung Transpl. 2023, 42, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Venkataraman, R.; Powner, D.; Elder, M.; Hergenroeder, G.; Carter, M. Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Crit. Care Med. 2008, 36, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Iskender, I.; Cosgun, T.; Arni, S.; Trinkwitz, M.; Fehlings, S.; Yamada, Y.; Cesarovic, N.; Yu, K.; Frauenfelder, T.; Jungraithmayr, W.; et al. Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion. J. Heart Lung Transpl. 2017, 37, 283–291. [Google Scholar] [CrossRef]
- Iskender, I.; Arni, S.; Maeyashiki, T.; Citak, N.; Sauer, M.; Rodriguez, J.M.; Frauenfelder, T.; Opitz, I.; Weder, W.; Inci, I. Perfusate adsorption during ex vivo lung perfusion improves early post-transplant lung function. J. Thorac. Cardiovasc. Surg. 2021, 161, e109–e121. [Google Scholar] [CrossRef]
- Rodriguez, D.; D’Cunha, J. Commentary: Double, double, toil, and trouble: Removing evil humours during ex vivo lung perfusion. J. Thorac. Cardiovasc. Surg. 2021, 161, e125–e126. [Google Scholar] [CrossRef]
- Glenn, I.C.; Raja, S. Commentary: Ex vivo lung perfusion plus solute adsorption: An exorcism of evil humors? J. Thorac. Cardiovasc. Surg. 2021, 161, e123–e124. [Google Scholar] [CrossRef]
- Frick, A.E.; Orlitova, M.; Bleeser, T.; Vanstapel, A.; Claes, S.; Schols, D.; Mathyssen, C.; Ceulemans, L.J.; Vos, R.; Verleden, G.M.; et al. Can we attenuate ischaemia-reperfusion injury of allografts in a porcine left lung transplant models by adsorption of cytokines? Eur. J. Cardiothorac. Surg. 2022, 63, ezac483. [Google Scholar] [CrossRef] [PubMed]
- Niroomand, A.; Hirdman, G.; Pierre, L.; Ghaidan, H.; Kjellström, S.; Stenlo, M.; Hyllén, S.; Olm, F.; Lindstedt, S. Proteomic changes to immune and inflammatory processes underlie lung preservation using ex vivo cytokine adsorption. Front. Cardiovasc. Med. 2023, 10, 1274444. [Google Scholar] [CrossRef] [PubMed]
- Niroomand, A.; Hirdman, G.; Olm, F.; Lindstedt, S. Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells 2021, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Ghaidan, H.; Stenlo, M.; Niroomand, A.; Mittendorfer, M.; Hirdman, G.; Gvazava, N.; Edstrom, D.; Silva, I.A.N.; Broberg, E.; Hallgren, O.; et al. Reduction of primary graft dysfunction using cytokine adsorption during organ preservation and after lung transplantation. Nat. Commun. 2022, 13, 4173. [Google Scholar] [CrossRef] [PubMed]
- Ehrsam, J.P.; Arni, S.; Weisskopf, M.; Nowack, M.; Inci, I. Extracorporeal cytokine adsorption reduces systemic cytokine storm and improves graft function in lung transplantation. JTCVS Open 2023, in press. [Google Scholar] [CrossRef]
- Peyneau, M.; de Chaisemartin, L.; Faille, D.; Messika, J.; Mal, H.; Castier, Y.; Mordant, P.; Carrasco, J.L.; Tanaka, S.; Lortat Jacob, B.; et al. First Experience with Extracorporeal Cytokine Adsorption Therapy After Lung Transplantation. Transpl. Int. 2022, 35, 10319. [Google Scholar] [CrossRef] [PubMed]
- Boffini, M.; Marro, M.; Simonato, E.; Scalini, F.; Costamagna, A.; Fanelli, V.; Barbero, C.; Solidoro, P.; Brazzi, L.; Rinaldi, M. Cytokines Removal During Ex-Vivo Lung Perfusion: Initial Clinical Experience. Transpl. Int. 2023, 36, 10777. [Google Scholar] [CrossRef]
- Lindstedt, S.; Silverborn, M.; Lannemyr, L.; Pierre, L.; Larsson, H.; Grins, E.; Hyllen, S.; Dellgren, G.; Magnusson, J. Design and Rationale of Cytokine filtration in lung transplantation—A randomised, controlled, multicentre clinical trial (GLUSorb). JMIR Res. Protoc. 2023, 12, e52553. [Google Scholar] [CrossRef]
- Trager, K.; Fritzler, D.; Fischer, G.; Schroder, J.; Skrabal, C.; Liebold, A.; Reinelt, H. Treatment of post-cardiopulmonary bypass SIRS by hemoadsorption: A case series. Int. J. Artif. Organs 2016, 39, 141–146. [Google Scholar] [CrossRef]
- Trager, K.; Skrabal, C.; Fischer, G.; Datzmann, T.; Schroeder, J.; Fritzler, D.; Hartmann, J.; Liebold, A.; Reinelt, H. Hemoadsorption treatment of patients with acute infective endocarditis during surgery with cardiopulmonary bypass—A case series. Int. J. Artif. Organs 2017, 40, 240–249. [Google Scholar] [CrossRef]
- Gleason, T.G.; Argenziano, M.; Bavaria, J.E.; Kane, L.C.; Coselli, J.S.; Engelman, R.M.; Tanaka, K.A.; Awad, A.; Sekela, M.E.; Zwischenberger, J.B. Hemoadsorption to Reduce Plasma-Free Hemoglobin During Cardiac Surgery: Results of REFRESH I Pilot Study. Semin. Thorac. Cardiovasc. Surg. 2019, 31, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.H.; Rinoesl, H.; Dragosits, K.; Ristl, R.; Hoffelner, F.; Opfermann, P.; Lamm, C.; Preissing, F.; Wiedemann, D.; Hiesmayr, M.J.; et al. Effect of hemoadsorption during cardiopulmonary bypass surgery—A blinded, randomized, controlled pilot study using a novel adsorbent. Crit. Care 2016, 20, 96. [Google Scholar] [CrossRef] [PubMed]
- Diab, M.; Lehmann, T.; Bothe, W.; Akhyari, P.; Platzer, S.; Wendt, D.; Deppe, A.C.; Strauch, J.; Hagel, S.; Gunther, A.; et al. Cytokine Hemoadsorption During Cardiac Surgery Versus Standard Surgical Care for Infective Endocarditis (REMOVE): Results from a Multicenter Randomized Controlled Trial. Circulation 2022, 145, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Holmen, A.; Corderfeldt, A.; Lannemyr, L.; Dellgren, G.; Hansson, E.C. Whole Blood Adsorber During CPB and Need for Vasoactive Treatment After Valve Surgery in Acute Endocarditis: A Randomized Controlled Study. J. Cardiothorac. Vasc. Anesth. 2022, 36, 3015–3020. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Kovacs, E.; Racz, K.; Soltesz, A.; Szigeti, S.; Kiss, N.; Csikos, G.; Koritsanszky, K.B.; Berzsenyi, V.; Trembickij, G.; et al. Impact of intraoperative cytokine adsorption on outcome of patients undergoing orthotopic heart transplantation-an observational study. Clin. Transpl. 2018, 32, e13211. [Google Scholar] [CrossRef] [PubMed]
- Kaliyev, R.; Lesbekov, T.; Bekbossynova, M.; Nurmykhametova, Z.; Medressova, A.; Kuanyshbek, A.; Faizov, L.; Samalavicius, R.; Pya, Y. Successful Heart Transplantation After 7 h of Cold Storage and Paracorporeal Donor Heart Resuscitation. Transpl. Int. 2022, 35, 10740. [Google Scholar] [CrossRef] [PubMed]
- Koster, A.; Warkentin, H.; von Dossow, V.; Morshuis, M. Use of the CytoSorb®filter for elimination of residual therapeutic argatroban concentrations during heparinized cardiopulmonary bypass for heart transplantation. Perfusion 2023, 38, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Dogan, G.; Hanke, J.; Puntigam, J.; Haverich, A.; Schmitto, J.D. Hemoadsorption in cardiac shock with bi ventricular failure and giant-cell myocarditis: A case report. Int. J. Artif. Organs 2018, 41, 474–479. [Google Scholar] [CrossRef]
- Lovrić, D.; Pašalić, M.; Križanac, S.; Kovačić, K.; Skorić, B.; Jurin, H.; Miličić, D.; Premužić, V. The addition of Cytosorb in patients on VA-ECMO improves urinary output and ICU survival. Ther. Apher. Dial. 2023. [Google Scholar] [CrossRef]
- Saemann, L.; Hoorn, F.; Georgevici, A.I.; Pohl, S.; Korkmaz-Icoz, S.; Veres, G.; Guo, Y.; Karck, M.; Simm, A.; Wenzel, F.; et al. Cytokine Adsorber Use during DCD Heart Perfusion Counteracts Coronary Microvascular Dysfunction. Antioxidants 2022, 11, 2280. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Moore, T.; Kleverlaan, T.; Adams, T.; Nicholson, M.L. Haemoadsorption reduces the inflammatory response and improves blood flow during ex vivo renal perfusion in an experimental model. J. Transl. Med. 2017, 15, 216. [Google Scholar] [CrossRef] [PubMed]
- Schenk, H.; Muller-Deile, J.; Schmitt, R.; Brasen, J.H.; Haller, H.; Schiffer, M. Removal of focal segmental glomerulosclerosis (FSGS) factor suPAR using CytoSorb. J. Clin. Apher. 2017, 32, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Krishnappa, V.; Sanchez-Kazi, C.; Quiroga, A.; Twombley, K.E.; Mathias, R.; Lo, M.; Chakraborty, R.; Mahesh, S.; Steinke, J.; et al. Dextran-Sulfate Plasma Adsorption Lipoprotein Apheresis in Drug Resistant Primary Focal Segmental Glomerulosclerosis Patients: Results from a Prospective, Multicenter, Single-Arm Intervention Study. Front. Pediatr. 2019, 7, 454. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, J.R.; Hosgood, S.A.; Moore, T.; Ferro, A.; Ward, C.J.; Castro-Dopico, T.; Nicholson, M.L.; Clatworthy, M.R. Cytokine absorption during human kidney perfusion reduces delayed graft function-associated inflammatory gene signature. Am. J. Transpl. 2021, 21, 2188–2199. [Google Scholar] [CrossRef] [PubMed]
- Muller-Deile, J.; Sarau, G.; Kotb, A.M.; Jaremenko, C.; Rolle-Kampczyk, U.E.; Daniel, C.; Kalkhof, S.; Christiansen, S.H.; Schiffer, M. Novel diagnostic and therapeutic techniques reveal changed metabolic profiles in recurrent focal segmental glomerulosclerosis. Sci. Rep. 2021, 11, 4577. [Google Scholar] [CrossRef] [PubMed]
- Rocen, M.; Kieslichova, E.; Merta, D.; Uchytilova, E.; Pavlova, Y.; Cap, J.; Trunecka, P. The effect of Prometheus device on laboratory markers of inflammation and tissue regeneration in acute liver failure management. Transpl. Proc. 2010, 42, 3606–3611. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, G.; Naso, A.; Feltracco, P.; Carraro, P.; Basso, S.M.; Varotto, S.; Cillo, U.; Zanus, G.; Boccagni, P.; Brolese, A.; et al. Cytokines and liver failure: Modification of TNF- and IL-6 in patients with acute on chronic liver decompensation treated with Molecular Adsorbent Recycling System (MARS). Acta Biomed. 2003, 74 (Suppl. S2), 7–9. [Google Scholar]
- Novelli, G.; Annesini, M.C.; Morabito, V.; Cinti, P.; Pugliese, F.; Novelli, S.; Piemonte, V.; Turchetti, L.; Rossi, M.; Berloco, P.B. Cytokine level modifications: Molecular adsorbent recirculating system versus standard medical therapy. Transpl. Proc. 2009, 41, 1243–1248. [Google Scholar] [CrossRef]
- Popescu, M.; David, C.; Marcu, A.; Olita, M.R.; Mihaila, M.; Tomescu, D. Artificial Liver Support with CytoSorb and MARS in Liver Failure: A Retrospective Propensity Matched Analysis. J. Clin. Med. 2023, 12, 2258. [Google Scholar] [CrossRef]
- Acar, U.; Gokkaya, Z.; Akbulut, A.; Ferah, O.; Yenidunya, O.; Acik, M.E.; Tokat, Y.; Yentur, E. Impact of Cytokine Adsorption Treatment in Liver Failure. Transpl. Proc. 2019, 51, 2420–2424. [Google Scholar] [CrossRef]
- Rachunek, K.; Krause, M.; Thiel, J.T.; Kolbenschlag, J.; Daigeler, A.; Bury, A. Technical Note: Novel Use of CytoSorb Haemadsorption to Provide Wound Healing Support in Case of Severe Burn Trauma via Reduction of Hyperbilirubinaemia. Front. Surg. 2021, 8, 743571. [Google Scholar] [CrossRef] [PubMed]
- Frimmel, S.; Schipper, J.; Henschel, J.; Yu, T.T.; Mitzner, S.R.; Koball, S. First description of single-pass albumin dialysis combined with cytokine adsorption in fulminant liver failure and hemophagocytic syndrome resulting from generalized herpes simplex virus 1 infection. Liver Transpl. 2014, 20, 1523–1524. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, L.; Yang, L.; Yuan, F. Septic shock after liver transplantation successfully treated with endotoxin and cytokine adsorption continuous renal replacement therapy: A case report and literature review. J. Int. Med. Res. 2020, 48, 300060520940439. [Google Scholar] [CrossRef] [PubMed]
- Maggi, U.; Nita, G.; Gatti, S.; Antonelli, B.; Paolo, R.; Como, G.; Messa, P.; Rossi, G. Hyperbilirubinemia after liver transplantation: The role of coupled plasma filtration adsorption. Transpl. Proc. 2013, 45, 2715–2717. [Google Scholar] [CrossRef] [PubMed]
- Donati, G.; Angeletti, A.; Gasperoni, L.; Piscaglia, F.; Croci Chiocchini, A.L.; Scrivo, A.; Natali, T.; Ullo, I.; Guglielmo, C.; Simoni, P.; et al. Detoxification of bilirubin and bile acids with intermittent coupled plasmafiltration and adsorption in liver failure (HERCOLE study). J. Nephrol. 2021, 34, 77–88. [Google Scholar] [CrossRef]
- Marcello, M.; Lorenzin, A.; De Cal, M.; Zorzi, M.; La Malfa, M.S.; Fin, V.; Sandini, A.; Fiorin, F.; Bellomo, R.; De Rosa, S.; et al. Bilirubin Removal by Plasmafiltration-Adsorption: Ex vivo Adsorption Kinetics Model and Single Case Report. Blood Purif. 2023, 52, 345–351. [Google Scholar] [CrossRef]
- Gräfe, C.; Paal, M.; Winkels, M.; Irlbeck, M.; Liebchen, U.; Scharf, C. Correlation between Bilirubin Elimination with the Cytokine Adsorber CytoSorb® and Mortality in Critically Ill Patients with Hyperbilirubinemia. Blood Purif. 2023, 52, 849–856. [Google Scholar] [CrossRef]
- Hui, W.F.; Cheung, W.L.; Hon, K.L.; Ku, S.W. The application of hemoadsorption for hyperbilirubinemia and its impact on bilirubin removal kinetics in critically ill children. Int. J. Artif. Organs 2023, 46, 241–247. [Google Scholar] [CrossRef]
- Ghinolfi, D.; Melandro, F.; Patrono, D.; Lai, Q.; De Carlis, R.; Camagni, S.; Gambella, A.; Ruberto, F.; De Simone, P. A new ex-situ machine perfusion device. A preliminary evaluation using a model of donors after circulatory death pig livers. Artif. Organs 2022, 46, 2493–2499. [Google Scholar] [CrossRef]
- Poli, E.C.; Alberio, L.; Bauer-Doerries, A.; Marcucci, C.; Roumy, A.; Kirsch, M.; De Stefano, E.; Liaudet, L.; Schneider, A.G. Cytokine clearance with CytoSorb® during cardiac surgery: A pilot randomized controlled trial. Crit. Care 2019, 23, 108. [Google Scholar] [CrossRef]
- Karkar, A.; Ronco, C. Prescription of CRRT: A pathway to optimize therapy. Ann. Intensive Care 2020, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Rybalko, A.; Pytal, A.; Kaabak, M.; Rappoport, N.; Bidzhiev, A.; Lastovka, V. Case Report: Successful Use of Extracorporeal Therapies After ECMO Resuscitation in a Pediatric Kidney Transplant Recipient. Front. Pediatr. 2020, 8, 593123. [Google Scholar] [CrossRef] [PubMed]
- Reis, T.; Anwar, S.; Neves, F.; Ronco, C. Disruptive technologies for hemodialysis: Medium and high cutoff membranes. Is the future now? J. Bras. Nefrol. 2021, 43, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Moresco, E.; Rugg, C.; Strohle, M.; Thoma, M. Rapid reduction of substantially increased myoglobin and creatine kinase levels using a hemoadsorption device (CytoSorb®)-A case report. Clin. Case Rep. 2022, 10, e05272. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Faenza, S.; Mancini, E.; Ferramosca, E.; Grammatico, F.; Zucchelli, A.; Facchini, M.G.; Pinna, A.D. Prometheus system: A technological support in liver failure. Transpl. Proc. 2006, 38, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Trautman, C.L.; Khan, M.; Baker, L.W.; Aslam, N.; Fitzpatrick, P.; Porter, I.; Mao, M.; Wadei, H.; Ball, C.T.; Hickson, L.J. Kidney Outcomes Following Utilization of Molecular Adsorbent Recirculating System. Kidney Int. Rep. 2023, 8, 2100–2106. [Google Scholar] [CrossRef] [PubMed]
- Ocskay, K.; Kanjo, A.; Gede, N.; Szakacs, Z.; Par, G.; Eross, B.; Stange, J.; Mitzner, S.; Hegyi, P.; Molnar, Z. Uncertainty in the impact of liver support systems in acute-on-chronic liver failure: A systematic review and network meta-analysis. Ann. Intensive Care 2021, 11, 10. [Google Scholar] [CrossRef]
- Wu, S.; Yue, P.; Ma, Y.; Zou, Y.; Liang, W.; Ye, Q. Progress in Hemoperfusion Adsorbents of Common Toxins in Liver and Kidney Failure. Adv. Mater. 2023, e2305152. [Google Scholar] [CrossRef]
- Rosa-Diez, G.J.; Joannes-Boyau, O. The Use of Adsorption in Extracorporeal Liver Support: The Double Plasma Molecular Adsorption System (DPMAS). Contrib. Nephrol. 2023, 200, 210–217. [Google Scholar] [CrossRef]
- Marcello, M.; Ronco, C. Bilirubin Adsorption with DPMAS: Mechanism of Action and Efficacy of Anion Exchange Resin. Contrib. Nephrol. 2023, 200, 201–209. [Google Scholar] [CrossRef]
- Tomescu, D.; Popescu, M.; David, C.; Sima, R.; Dima, S. Haemoadsorption by CytoSorb® in patients with acute liver failure: A case series. Int. J. Artif. Organs 2021, 44, 560–564. [Google Scholar] [CrossRef]
- Ocskay, K.; Tomescu, D.; Faltlhauser, A.; Jacob, D.; Friesecke, S.; Malbrain, M.; Kogelmann, K.; Bogdanski, R.; Bach, F.; Fritz, H.; et al. Hemoadsorption in ‘Liver Indication’-Analysis of 109 Patients’ Data from the CytoSorb International Registry. J. Clin. Med. 2021, 10, 5182. [Google Scholar] [CrossRef] [PubMed]
- Stahl, K.; Schmidt, B.M.W.; Hoeper, M.M.; Skripuletz, T.; Mohn, N.; Beutel, G.; Eder, M.; Welte, T.; Ganser, A.; Falk, C.S.; et al. Extracorporeal cytokine removal in severe CAR-T cell associated cytokine release syndrome. J. Crit. Care 2020, 57, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, J.G.; Wulf, G.; Koziolek, M.J.; Zeisberg, M.; Wallbach, M. Cytokine adsorption therapy in lymphoma-associated hemophagocytic lymphohistiocytosis and allogeneic stem cell transplantation. J. Artif. Organs 2021, 24, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Tomescu, D.R.; Dima, S.O.; Ungureanu, D.; Popescu, M.; Tulbure, D.; Popescu, I. First report of cytokine removal using CytoSorb® in severe noninfectious inflammatory syndrome after liver transplantation. Int. J. Artif. Organs 2016, 39, 136–140. [Google Scholar] [CrossRef]
- Nakanishi, T.; Suzuki, N.; Kuragano, T.; Nagasawa, Y.; Hasuike, Y. Current topics in therapeutic plasmapheresis. Clin. Exp. Nephrol. 2014, 18, 41–49. [Google Scholar] [CrossRef]
- Salvadori, M.; Tsalouchos, A. Therapeutic apheresis in kidney transplantation: An updated review. World J. Transpl. 2019, 9, 103–122. [Google Scholar] [CrossRef]
- Wallet, F.; Bachy, E.; Vassal, O.; Friggeri, A.; Bohe, J.; Garnier, L.; Salles, G.; Allaouchiche, B. Extracorporeal cytokine adsorption for treating severe refractory cytokine release syndrome (CRS). Bone Marrow Transpl. 2020, 55, 2052–2055. [Google Scholar] [CrossRef]
- Kellum, J.A.; Ronco, C. The role of endotoxin in septic shock. Crit. Care 2023, 27, 400. [Google Scholar] [CrossRef]
- Tetta, C.; Cavaillon, J.M.; Schulze, M.; Ronco, C.; Ghezzi, P.M.; Camussi, G.; Serra, A.M.; Curti, F.; Lonnemann, G. Removal of cytokines and activated complement components in an experimental model of continuous plasma filtration coupled with sorbent adsorption. Nephrol. Dial. Transpl. 1998, 13, 1458–1464. [Google Scholar] [CrossRef]
- Song, M.; Winchester, J.; Albright, R.L.; Capponi, V.J.; Choquette, M.D.; Kellum, J.A. Cytokine removal with a novel adsorbent polymer. Blood Purif. 2004, 22, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Rimmele, T.; Assadi, A.; Cattenoz, M.; Desebbe, O.; Lambert, C.; Boselli, E.; Goudable, J.; Etienne, J.; Chassard, D.; Bricca, G.; et al. High-volume haemofiltration with a new haemofiltration membrane having enhanced adsorption properties in septic pigs. Nephrol. Dial. Transpl. 2009, 24, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, A.; Gaiao, S.; Cruz, D.N. Extracorporeal therapies in sepsis. J. Intensive Care Med. 2013, 28, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Lees, N.J.; Rosenberg, A.; Hurtado-Doce, A.I.; Jones, J.; Marczin, N.; Zeriouh, M.; Weymann, A.; Sabashnikov, A.; Simon, A.R.; Popov, A.F. Combination of ECMO and cytokine adsorption therapy for severe sepsis with cardiogenic shock and ARDS due to Panton-Valentine leukocidin-positive Staphylococcus aureus pneumonia and H1N1. J. Artif. Organs 2016, 19, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Schadler, D.; Pausch, C.; Heise, D.; Meier-Hellmann, A.; Brederlau, J.; Weiler, N.; Marx, G.; Putensen, C.; Spies, C.; Jorres, A.; et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PLoS ONE 2017, 12, e0187015. [Google Scholar] [CrossRef] [PubMed]
- Zuccari, S.; Damiani, E.; Domizi, R.; Scorcella, C.; D’Arezzo, M.; Carsetti, A.; Pantanetti, S.; Vannicola, S.; Casarotta, E.; Ranghino, A.; et al. Changes in Cytokines, Haemodynamics and Microcirculation in Patients with Sepsis/Septic Shock Undergoing Continuous Renal Replacement Therapy and Blood Purification with CytoSorb. Blood Purif. 2020, 49, 107–113. [Google Scholar] [CrossRef]
- De Rosa, S.; Villa, G.; Ronco, C. The golden hour of polymyxin B hemoperfusion in endotoxic shock: The basis for sequential extracorporeal therapy in sepsis. Artif. Organs 2020, 44, 184–186. [Google Scholar] [CrossRef]
- Ronco, C.; Chawla, L.; Husain-Syed, F.; Kellum, J.A. Rationale for sequential extracorporeal therapy (SET) in sepsis. Crit. Care 2023, 27, 50. [Google Scholar] [CrossRef]
- Forin, E.; Lorenzoni, G.; Ferrer, R.; De Cal, M.; Zanella, M.; Marchionna, N.; Gregori, D.; Forfori, F.; Lorenzin, A.; Danzi, V.; et al. Endotoxin removal therapy with Polymyxin B immobilized fiber column: A single center experience from EUPHAS2 registry. Sci. Rep. 2023, 13, 17600. [Google Scholar] [CrossRef]
- De Rosa, S.; Samoni, S.; Ronco, C. Sequential Extracorporeal Therapy Collaborative Device and Timely Support for Endotoxic, Septic, and Cardiac Shock: A Case Report. Blood Purif. 2020, 49, 502–508. [Google Scholar] [CrossRef]
- Ricci, Z.; Romagnoli, S.; Reis, T.; Bellomo, R.; Ronco, C. Hemoperfusion in the intensive care unit. Intensive Care Med. 2022, 48, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Friesecke, S.; Stecher, S.S.; Gross, S.; Felix, S.B.; Nierhaus, A. Extracorporeal cytokine elimination as rescue therapy in refractory septic shock: A prospective single-center study. J. Artif. Organs 2017, 20, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Kogelmann, K.; Jarczak, D.; Scheller, M.; Druner, M. Hemoadsorption by CytoSorb in septic patients: A case series. Crit. Care 2017, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Kogelmann, K.; Hubner, T.; Schwameis, F.; Druner, M.; Scheller, M.; Jarczak, D. First Evaluation of a New Dynamic Scoring System Intended to Support Prescription of Adjuvant CytoSorb Hemoadsorption Therapy in Patients with Septic Shock. J. Clin. Med. 2021, 10, 2939. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Thamm, K.; Schmidt, B.M.W.; Falk, C.S.; Kielstein, J.T. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient. J. Intensive Care 2017, 5, 12. [Google Scholar] [CrossRef]
- Bruenger, F.; Kizner, L.; Weile, J.; Morshuis, M.; Gummert, J.F. First successful combination of ECMO with cytokine removal therapy in cardiogenic septic shock: A case report. Int. J. Artif. Organs 2015, 38, 113–116. [Google Scholar] [CrossRef]
- Linden, K.; Scaravilli, V.; Kreyer, S.F.; Belenkiy, S.M.; Stewart, I.J.; Chung, K.K.; Cancio, L.C.; Batchinsky, A.I. Evaluation of the Cytosorb Hemoadsorptive Column in a Pig Model of Severe Smoke and Burn Injury. Shock 2015, 44, 487–495. [Google Scholar] [CrossRef]
- Netti, G.S.; Sangregorio, F.; Spadaccino, F.; Staffieri, F.; Crovace, A.; Infante, B.; Maiorano, A.; Godeas, G.; Castellano, G.; Di Palma, A.M.; et al. LPS removal reduces CD80-mediated albuminuria in critically ill patients with Gram-negative sepsis. Am. J. Physiol. Ren. Physiol. 2019, 316, F723–F731. [Google Scholar] [CrossRef]
- Ankawi, G.; Neri, M.; Zhang, J.; Breglia, A.; Ricci, Z.; Ronco, C. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: The promises and the pitfalls. Crit. Care 2018, 22, 262. [Google Scholar] [CrossRef]
- Ankawi, G.; Xie, Y.; Yang, B.; Xie, P.; Ronco, C. What Have We Learned about the Use of Cytosorb Adsorption Columns? Blood Purif. 2019, 48, 196–202. [Google Scholar] [CrossRef]
- Monard, C.; Rimmele, T.; Ronco, C. Extracorporeal Blood Purification Therapies for Sepsis. Blood Purif. 2019, 47 (Suppl. S3), 2–15. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.; Marengo, M.; Fiorentino, M.; Fanelli, V.; Brienza, N.; Fiaccadori, E.; Grasselli, G.; Morabito, S.; Pota, V.; Romagnoli, S.; et al. Extracorporeal blood purification therapies for sepsis-associated acute kidney injury in critically ill patients: Expert opinion from the SIAARTI-SIN joint commission. J. Nephrol. 2023, 36, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
- Rugg, C.; Klose, R.; Hornung, R.; Innerhofer, N.; Bachler, M.; Schmid, S.; Fries, D.; Strohle, M. Hemoadsorption with CytoSorb in Septic Shock Reduces Catecholamine Requirements and In-Hospital Mortality: A Single-Center Retrospective ‘Genetic’ Matched Analysis. Biomedicines 2020, 8, 539. [Google Scholar] [CrossRef] [PubMed]
- Mariano, F.; Hollo, Z.; Depetris, N.; Malvasio, V.; Mella, A.; Bergamo, D.; Pensa, A.; Berardino, M.; Stella, M.; Biancone, L. Coupled-plasma filtration and adsorption for severe burn patients with septic shock and acute kidney injury treated with renal replacement therapy. Burns 2020, 46, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Godi, I.; Lorenzin, A.; De Rosa, S.; Golino, G.; Knust, M.; Gaspar, A.; Sandini, A.; Fiorin, F.; de Cal, M.; Navalesi, P.; et al. Vancomycin Adsorption During in vitro Model of Hemoperfusion with HA380 Cartridge. Nephron 2021, 145, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Lorenzin, A.; de Cal, M.; Marcello, M.; Sorbo, D.; Copelli, S.; Ronco, C.; de Rosa, S.; Zanella, M. Vancomycin Adsorption during in vitro Model of Hemoperfusion with Mini-Module of HA380 Cartridge. Blood Purif. 2023, 52, 174–182. [Google Scholar] [CrossRef] [PubMed]
- de Cal, M.; Lorenzin, A.; Risino, B.; Zanetti, F.; Fanton, G.; Fallico, L.; Rassu, M.; De Rosa, S.; Ronco, C.; Zanella, M. Extracorporeal therapy in the treatment of sepsis: In vitro assessment of the effect of an absorbent cartridge on the circulating bacterial concentration and its interaction with the antibiotic therapy. Int. J. Artif. Organs 2023, 46, 344–350. [Google Scholar] [CrossRef]
- Hawchar, F.; Rao, C.; Akil, A.; Mehta, Y.; Rugg, C.; Scheier, J.; Adamson, H.; Deliargyris, E.; Molnar, Z. The Potential Role of Extracorporeal Cytokine Removal in Hemodynamic Stabilization in Hyperinflammatory Shock. Biomedicines 2021, 9, 768. [Google Scholar] [CrossRef]
- Giuntoli, L.; Dalmastri, V.; Cilloni, N.; Orsi, C.; Stalteri, L.; Demelas, V.; Giuliani, G.; Gordini, G.; De Ponti, F.; La Manna, G. Severe quetiapine voluntary overdose successfully treated with a new hemoperfusion sorbent. Int. J. Artif. Organs 2019, 42, 516–520. [Google Scholar] [CrossRef]
- Dalmastri, V.; Angelini, A.; Minerva, V.; Ballarini, M.; Grammatico, F.; Todeschini, P.; Pizzini, A.M.; Silingardi, M.; La Manna, G. Extracorporeal hemoadsorption therapy as a potential therapeutic option for rapid removal of Apixaban in high risk-surgical patients: A case report. J. Med. Case Rep. 2023, 17, 283. [Google Scholar] [CrossRef]
- Scandroglio, A.M.; Pieri, M.; Nardelli, P.; Fominskiy, E.; Calabro, M.G.; Melisurgo, G.; Ajello, S.; Pappalardo, F. Impact of CytoSorb on kinetics of vancomycin and bivalirudin in critically ill patients. Artif. Organs 2021, 45, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Villegas, R.; Arni, S. Hemoadsorption in Organ Preservation and Transplantation: A Narrative Review. Life 2024, 14, 65. https://doi.org/10.3390/life14010065
García-Villegas R, Arni S. Hemoadsorption in Organ Preservation and Transplantation: A Narrative Review. Life. 2024; 14(1):65. https://doi.org/10.3390/life14010065
Chicago/Turabian StyleGarcía-Villegas, Refugio, and Stephan Arni. 2024. "Hemoadsorption in Organ Preservation and Transplantation: A Narrative Review" Life 14, no. 1: 65. https://doi.org/10.3390/life14010065
APA StyleGarcía-Villegas, R., & Arni, S. (2024). Hemoadsorption in Organ Preservation and Transplantation: A Narrative Review. Life, 14(1), 65. https://doi.org/10.3390/life14010065