The Most Recent Insights into the Roots of Gastric Cancer
Abstract
:1. Introduction
2. H. pylori and Gastric Cancer
2.1. The Interplay between Host- and H. pylori-Related Biomarkers
Biomarkers | Authors and Year | Effects |
---|---|---|
Pepsinogens | Kurilovich et al., 2016 [28,29,30,31] & Cai et al., 2016 [28,29,30,31] Lin et al., 2021 [33] Deng et al., 2022 [34] |
|
Gastrin 17 | Cai et al., 2016 [28,29,30,31] Tu et al., 2017 [30] |
|
Blood glucose | Deng et al., 2022 [34] Lindkvist et al., 2013 [35] Tran et al., 2012 [36] Hidaka et al., 2015 [37] |
|
Lipid metabolism parameters | Asano et al., 2008 [38] Deng et al., 2022 [34] |
|
Iron-metabolism parameters | Deng et al., 2022 [34] |
|
Gastric microecological dysbiosis | Guo et al., 2019 [41,42] & Ferreira et al., 2018 [41,42] Lofgren et al., 2011 [43] Castaño-Rodríguez et al., 2017 [44] |
|
MicroRNAs | Zhu et al., 2019 [45] Shao et al., 2019 [48] Liu et al., 2012 [50] Qi et al., 2023 [51] Tsai et al., 2020 [53] Huffaker et al., 2017 [59] Cortés-Márquez et al., 2018 [61] Staedel et al., 2013 [62] & Cao et al., 2018 [56,63] |
|
Toll-like receptors (TLRs) | Schmausser et al., 2005 [65,66] & Yokota et al., 2010 [65,66] Meliț et al., 2019 [20] |
|
Aberrant methylation of bacterial DNA | Liu et al., 2020 [76] Sepulveda et al., 2016 [77,78,79,80,81] & Xie et al., 2020 [77,78,79,80,81] |
|
VacA and CagA | Nell et al., 2018 [82,83,84] & Palrasu et al., 2020 [85,86] |
|
Lipopolysaccharide | Wang et al., 2017 [15,95,96] |
|
2.2. H. pylori Infection and Gastric Carcinogenesis Hallmarks in Children
Risk Factors | Authors and Year | Effects |
---|---|---|
Age | Tessler est al, 2019 [97] Okuda et al., 2019 [98] |
|
H. pylori infection | Cam et al. [99] Attard et al., 2023 [100] Braga et al., 2014 [114] Hsieh et al., 2022 [117] Yu et al., 2022 [118] Honma et al., 2019 [102] |
|
Genetic predisposition | Attard et al., 2023 [100] Obayashi et al., 2016 [101] |
|
Ethnicity | Attard et al., 2023 [100] |
|
Gastric microbiota | Miao et al., 2020 [111] |
|
Damage biomarkers | George et al., 2020 [119] Deptuła et al., 2021 [120] |
|
Aberrant immune system responses | Helmin-Basa et al., 2019 [121] Meliț LE et al., 2022 [2] |
|
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Correa, P. Human Gastric Carcinogenesis: A Multistep and Multifactorial Process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992, 52, 6735–6740. [Google Scholar] [PubMed]
- Meliț, L.E.; Mărginean, C.O.; Săsăran, M.O.; Mocan, S.; Ghiga, D.V.; Bogliş, A.; Duicu, C. Innate Immunity—The Hallmark of Helicobacter pylori Infection in Pediatric Chronic Gastritis. World J. Clin. Cases 2021, 9, 6686–6697. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.C.; Ladeira, M.S.P.; Scaletsky, I.C.A.; Pedrazzoli, J.; Ribeiro, M.L. Methylation Pattern of THBS1, GATA-4, and HIC1 in Pediatric and Adult Patients Infected with Helicobacter pylori. Dig. Dis. Sci. 2013, 58, 2850–2857. [Google Scholar] [CrossRef] [PubMed]
- Dincă, A.L.; Meliț, L.E.; Mărginean, C.O. Old and New Aspects of H. pylori-Associated Inflammation and Gastric Cancer. Children 2022, 9, 1083. [Google Scholar] [CrossRef]
- Shimada, T.; Watanabe, N.; Hiraishi, H.; Terano, A. Redox Regulation of Interleukin-8 Expression in MKN28 Cells. Dig. Dis. Sci. 1999, 44, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-Z.; Goldberg, J.B.; Hatakeyama, M. Helicobacter pylori Infection, Oncogenic Pathways and Epigenetic Mechanisms in Gastric Carcinogenesis. Future Oncol. 2010, 6, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Correa, P. Gastric Cancer: Overview. Gastroenterol. Clin. N. Am. 2013, 42, 211–217. [Google Scholar] [CrossRef]
- Mărginean, C.O.; Meliț, L.E.; Săsăran, M.O. Gastric Microenvironment—A Partnership between Innate Immunity and Gastric Microbiota Tricks Helicobacter pylori. J. Clin. Med. 2021, 10, 3258. [Google Scholar] [CrossRef]
- Spiegelhauer, M.R.; Kupcinskas, J.; Johannesen, T.B.; Urba, M.; Skieceviciene, J.; Jonaitis, L.; Frandsen, T.H.; Kupcinskas, L.; Fuursted, K.; Andersen, L.P. Transient and Persistent Gastric Microbiome: Adherence of Bacteria in Gastric Cancer and Dyspeptic Patient Biopsies after Washing. J. Clin. Med. 2020, 9, E1882. [Google Scholar] [CrossRef]
- Bassis, C.M.; Erb-Downward, J.R.; Dickson, R.P.; Freeman, C.M.; Schmidt, T.M.; Young, V.B.; Beck, J.M.; Curtis, J.L.; Huffnagle, G.B. Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. mBio 2015, 6, e00037. [Google Scholar] [CrossRef]
- Bashir, M.; Prietl, B.; Tauschmann, M.; Mautner, S.I.; Kump, P.K.; Treiber, G.; Wurm, P.; Gorkiewicz, G.; Högenauer, C.; Pieber, T.R. Effects of High Doses of Vitamin D3 on Mucosa-Associated Gut Microbiome Vary between Regions of the Human Gastrointestinal Tract. Eur. J. Nutr. 2016, 55, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Stearns, J.C.; Lynch, M.D.J.; Senadheera, D.B.; Tenenbaum, H.C.; Goldberg, M.B.; Cvitkovitch, D.G.; Croitoru, K.; Moreno-Hagelsieb, G.; Neufeld, J.D. Bacterial Biogeography of the Human Digestive Tract. Sci. Rep. 2011, 1, 170. [Google Scholar] [CrossRef] [PubMed]
- Kudra, A.; Kaźmierczak-Siedlecka, K.; Sobocki, B.K.; Muszyński, D.; Połom, J.; Carbone, L.; Marano, L.; Roviello, F.; Kalinowski, L.; Stachowska, E. Postbiotics in Oncology: Science or Science Fiction? Front. Microbiol. 2023, 14, 1182547. [Google Scholar] [CrossRef] [PubMed]
- Abdelnasser, S.M.; Yahya, S.M.M.; Mohamed, W.F.; Gadallah, M.A.; Abu Shady, H.M.; Mahmoud, M.G.; Asker, M.M.S. Human Apoptosis Antibody Array-Membranes Studying the Apoptotic Effect of Marine Bacterial Exopolysaccharides in HepG2 Cells. J. Cancer Res. Ther. 2021, 17, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xu, H.; Ou, Y.; Feng, Z.; Zhang, Q.; Zhu, Q.; Cai, Z. LPS-Induced CXCR7 Expression Promotes Gastric Cancer Proliferation and Migration via the TLR4/MD-2 Pathway. Diagn. Pathol. 2019, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Sepich-Poore, G.D.; Zitvogel, L.; Straussman, R.; Hasty, J.; Wargo, J.A.; Knight, R. The Microbiome and Human Cancer. Science 2021, 371, eabc4552. [Google Scholar] [CrossRef] [PubMed]
- Eck, M.; Schmausser, B.; Scheller, K.; Toksoy, A.; Kraus, M.; Menzel, T.; Müller-Hermelink, H.K.; Gillitzer, R. CXC Chemokines Gro(Alpha)/IL-8 and IP-10/MIG in Helicobacter pylori Gastritis. Clin. Exp. Immunol. 2000, 122, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Kaparakis, M.; Walduck, A.K.; Price, J.D.; Pedersen, J.S.; van Rooijen, N.; Pearse, M.J.; Wijburg, O.L.C.; Strugnell, R.A. Macrophages Are Mediators of Gastritis in Acute Helicobacter pylori Infection in C57BL/6 Mice. Infect. Immun. 2008, 76, 2235–2239. [Google Scholar] [CrossRef]
- Peek, R.M.; Fiske, C.; Wilson, K.T. Role of Innate Immunity in Helicobacter pylori-Induced Gastric Malignancy. Physiol. Rev. 2010, 90, 831–858. [Google Scholar] [CrossRef]
- Meliț, L.E.; Mărginean, C.O.; Mărginean, C.D.; Mărginean, M.O. The Relationship between Toll-like Receptors and Helicobacter pylori-Related Gastropathies: Still a Controversial Topic. Available online: https://www.hindawi.com/journals/jir/2019/8197048/abs/ (accessed on 9 February 2019).
- Borka Balas, R.; Meliț, L.; Mărginean, M. Worldwide Prevalence and Risk Factors of Helicobacter pylori Infection in Children. Children 2022, 9, 1359. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chiang, T.-H.; Chou, C.-K.; Tu, Y.-K.; Liao, W.-C.; Wu, M.-S.; Graham, D.Y. Association between Helicobacter pylori Eradication and Gastric Cancer Incidence: A Systematic Review and Meta-Analysis. Gastroenterology 2016, 150, 1113–1124.e5. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Plummer, M.; Franceschi, S.; Vignat, J.; Forman, D.; de Martel, C. Global Burden of Gastric Cancer Attributable to Helicobacter pylori. Int. J. Cancer 2015, 136, 487–490. [Google Scholar] [CrossRef] [PubMed]
- Amieva, M.; Peek, R.M. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology 2016, 150, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric Cancer: Epidemiology, Risk Factors, Classification, Genomic Characteristics and Treatment Strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef]
- Boubrik, F.; Belmouden, A.; El Kadmiri, N. Potential Non-Invasive Biomarkers of Helicobacter pylori-Associated Gastric Cancer. J. Gastrointest. Cancer 2022, 53, 1113–1120. [Google Scholar] [CrossRef]
- Kurilovich, S.; Belkovets, A.; Reshetnikov, O.; Openko, T.; Malyutina, S.; Ragino, Y.; Scherbakova, L.; Leja, M.; Paloheimo, L.; Syrjänen, K.; et al. Stomach-Specific Biomarkers (GastroPanel) Can Predict the Development of Gastric Cancer in a Caucasian Population: A Longitudinal Nested Case-Control Study in Siberia. Anticancer Res. 2016, 36, 247–253. [Google Scholar]
- Ikeda, F.; Shikata, K.; Hata, J.; Fukuhara, M.; Hirakawa, Y.; Ohara, T.; Mukai, N.; Nagata, M.; Yoshida, D.; Yonemoto, K.; et al. Combination of Helicobacter pylori Antibody and Serum Pepsinogen as a Good Predictive Tool of Gastric Cancer Incidence: 20-Year Prospective Data From the Hisayama Study. J. Epidemiol. 2016, 26, 629–636. [Google Scholar] [CrossRef]
- Tu, H.; Sun, L.; Dong, X.; Gong, Y.; Xu, Q.; Jing, J.; Bostick, R.M.; Wu, X.; Yuan, Y. A Serological Biopsy Using Five Stomach-Specific Circulating Biomarkers for Gastric Cancer Risk Assessment: A Multi-Phase Study. Am. J. Gastroenterol. 2017, 112, 704–715. [Google Scholar] [CrossRef]
- Cai, Q.; Zhu, C.; Yuan, Y.; Feng, Q.; Feng, Y.; Hao, Y.; Li, J.; Zhang, K.; Ye, G.; Ye, L.; et al. Development and Validation of a Prediction Rule for Estimating Gastric Cancer Risk in the Chinese High-Risk Population: A Nationwide Multicentre Study. Gut 2019, 68, 1576–1587. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Jiang, S.; Zhou, Y.; Guan, Z.; Dong, S.; Chu, F.-F.; Kang, C.; Gao, Q. Serum Pepsinogen II Levels Are Doubled with Helicobacter pylori Infection in an Asymptomatic Population of 40,383 Chinese Subjects. Medicine 2021, 100, e26562. [Google Scholar] [CrossRef]
- Lin, Z.; Bian, H.; Chen, C.; Chen, W.; Li, Q. Application of Serum Pepsinogen and Carbohydrate Antigen 72-4 (CA72-4) Combined with Gastrin-17 (G-17) Detection in the Screening, Diagnosis, and Evaluation of Early Gastric Cancer. J. Gastrointest. Oncol. 2021, 12, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Zhang, Y.; Zhang, R.; Yi, J.; Dong, J.; Sha, L.; Yan, M. Circulating Proteins and Metabolite Biomarkers in Gastric Cancer: A Systematic Review and Meta-Analysis. Arch. Med. Res. 2023, 54, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Lindkvist, B.; Almquist, M.; Bjørge, T.; Stocks, T.; Borena, W.; Johansen, D.; Hallmans, G.; Engeland, A.; Nagel, G.; Jonsson, H.; et al. Prospective Cohort Study of Metabolic Risk Factors and Gastric Adenocarcinoma Risk in the Metabolic Syndrome and Cancer Project (Me-Can). Cancer Causes Control 2013, 24, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Lee, J.; Gunathilake, M.; Cho, H.; Kim, J. Influence of Fasting Glucose Level on Gastric Cancer Incidence in a Prospective Cohort Study. Cancer Epidemiol. Biomark. Prev. 2022, 31, 254–261. [Google Scholar] [CrossRef]
- Hidaka, A.; Sasazuki, S.; Goto, A.; Sawada, N.; Shimazu, T.; Yamaji, T.; Iwasaki, M.; Inoue, M.; Noda, M.; Tajiri, H.; et al. Plasma Insulin, C-Peptide and Blood Glucose and the Risk of Gastric Cancer: The Japan Public Health Center-Based Prospective Study. Int. J. Cancer 2015, 136, 1402–1410. [Google Scholar] [CrossRef]
- Asano, K.; Kubo, M.; Yonemoto, K.; Doi, Y.; Ninomiya, T.; Tanizaki, Y.; Arima, H.; Shirota, T.; Matsumoto, T.; Iida, M.; et al. Impact of Serum Total Cholesterol on the Incidence of Gastric Cancer in a Population-Based Prospective Study: The Hisayama Study. Int. J. Cancer 2008, 122, 909–914. [Google Scholar] [CrossRef]
- Knekt, P.; Reunanen, A.; Takkunen, H.; Aromaa, A.; Heliövaara, M.; Hakulinen, T. Body Iron Stores and Risk of Cancer. Int. J. Cancer 1994, 56, 379–382. [Google Scholar] [CrossRef]
- Cook, M.B.; Dawsey, S.M.; Diaw, L.; Blaser, M.J.; Perez-Perez, G.I.; Abnet, C.C.; Taylor, P.R.; Albanes, D.; Virtamo, J.; Kamangar, F. Serum Pepsinogens and Helicobacter pylori in Relation to the Risk of Esophageal Squamous Cell Carcinoma in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1966–1975. [Google Scholar] [CrossRef]
- Guo, C.; Liu, F.; Zhu, L.; Wu, F.; Cui, G.; Xiong, Y.; Wang, Q.; Yin, L.; Wang, C.; Wang, H.; et al. Analysis of Culturable Microbiota Present in the Stomach of Children with Gastric Symptoms. Braz. J. Microbiol. 2019, 50, 107–115. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric Microbial Community Profiling Reveals a Dysbiotic Cancer-Associated Microbiota. Gut 2018, 67, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Lofgren, J.L.; Whary, M.T.; Ge, Z.; Muthupalani, S.; Taylor, N.S.; Mobley, M.; Potter, A.; Varro, A.; Eibach, D.; Suerbaum, S.; et al. Lack of Commensal Flora in Helicobacter pylori-Infected INS-GAS Mice Reduces Gastritis and Delays Intraepithelial Neoplasia. Gastroenterology 2011, 140, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Rodríguez, N.; Kaakoush, N.O.; Lee, W.S.; Mitchell, H.M. Dual Role of Helicobacter and Campylobacter Species in IBD: A Systematic Review and Meta-Analysis. Gut 2017, 66, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-L.; Ren, L.-F.; Wang, H.-P.; Bai, Z.-T.; Zhang, L.; Meng, W.-B.; Zhu, K.-X.; Ding, F.-H.; Miao, L.; Yan, J.; et al. Plasma microRNAs as Potential New Biomarkers for Early Detection of Early Gastric Cancer. World J. Gastroenterol. 2019, 25, 1580–1591. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-R.; Wu, Q.; Shi, Y.-Q. Recent Advances of miRNAs in the Development and Clinical Application of Gastric Cancer. Chin. Med. J. 2020, 133, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, R.-W.; Sui, P.-C.; He, H.-T.; Ding, L. Dysregulation of Non-Coding RNAs in Gastric Cancer. World J. Gastroenterol. 2015, 21, 10956–10981. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Chen, Z.; Soutto, M.; Zhu, S.; Lu, H.; Romero-Gallo, J.; Peek, R.; Zhang, S.; El-Rifai, W. Helicobacter pylori-Induced miR-135b-5p Promotes Cisplatin Resistance in Gastric Cancer. FASEB J. 2019, 33, 264–274. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, Z.; Zhang, T.; Shen, L.; Li, Y.; Ding, S. SIRT1-Targeted miR-543 Autophagy Inhibition and Epithelial-Mesenchymal Transition Promotion in Helicobacter pylori CagA-Associated Gastric Cancer. Cell Death Dis. 2019, 10, 625. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Zhang, X.; Zhang, H. The Correlation of the miR-29a/MMP9 Axis with Helicobacter pylori Infection in Gastric Cancer. Am. J. Transl. Res. 2021, 13, 10155–10162. [Google Scholar]
- Qi, C.; Liu, L.; Wang, J.; Jin, Y. Up-Regulation of microRNA-183 Reduces FOXO1 Expression in Gastric Cancer Patients with Helicobacter pylori Infection. Histol. Histopathol. 2023, 38, 1349–1357. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Zou, Y.; Jiao, Y.; Huang, Y.; Fan, L.; Li, X.; Yu, H.; He, C.; Wei, W.; et al. MicroRNA-143-3p, up-Regulated in H. pylori-Positive Gastric Cancer, Suppresses Tumor Growth, Migration and Invasion by Directly Targeting AKT2. Oncotarget 2017, 8, 28711–28724. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-C.; Chen, T.-Y.; Tsai, K.-J.; Lin, M.-W.; Hsu, C.-Y.; Wu, D.-C.; Tsai, E.-M.; Hsieh, T.-H. NF-κB/miR-18a-3p and miR-4286/BZRAP1 Axis May Mediate Carcinogenesis in Helicobacter pylori-Associated Gastric Cancer. Biomed. Pharmacother. 2020, 132, 110869. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, K.; Isomoto, H.; Inoue, N.; Nakayama, T.; Hayashi, T.; Nakayama, M.; Nakao, K.; Hirayama, T.; Kohno, S. MicroRNA Signatures in Helicobacter pylori-Infected Gastric Mucosa. Int. J. Cancer 2011, 128, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M.F.; Genta, R.M.; Yardley, J.H.; Correa, P. Classification and Grading of Gastritis. The Updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol. 1996, 20, 1161–1181. [Google Scholar] [CrossRef] [PubMed]
- Săsăran, M.O.; Meliț, L.E.; Dobru, E.D. MicroRNA Modulation of Host Immune Response and Inflammation Triggered by Helicobacter pylori. Int. J. Mol. Sci. 2021, 22, 1406. [Google Scholar] [CrossRef] [PubMed]
- Isomoto, H.; Matsushima, K.; Inoue, N.; Hayashi, T.; Nakayama, T.; Kunizaki, M.; Hidaka, S.; Nakayama, M.; Hisatsune, J.; Nakashima, M.; et al. Interweaving microRNAs and Proinflammatory Cytokines in Gastric Mucosa with Reference to H. pylori Infection. J. Clin. Immunol. 2012, 32, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Oertli, M.; Engler, D.B.; Kohler, E.; Koch, M.; Meyer, T.F.; Müller, A. MicroRNA-155 Is Essential for the T Cell-Mediated Control of Helicobacter pylori Infection and for the Induction of Chronic Gastritis and Colitis. J. Immunol. 2011, 187, 3578–3586. [Google Scholar] [CrossRef]
- Huffaker, T.B.; Lee, S.-H.; Tang, W.W.; Wallace, J.A.; Alexander, M.; Runtsch, M.C.; Larsen, D.K.; Thompson, J.; Ramstead, A.G.; Voth, W.P.; et al. Antitumor Immunity Is Defective in T Cell-Specific microRNA-155-Deficient Mice and Is Rescued by Immune Checkpoint Blockade. J. Biol. Chem. 2017, 292, 18530–18541. [Google Scholar] [CrossRef]
- Lario, S.; Ramírez-Lázaro, M.J.; Aransay, A.M.; Lozano, J.J.; Montserrat, A.; Casalots, Á.; Junquera, F.; Álvarez, J.; Segura, F.; Campo, R.; et al. microRNA Profiling in Duodenal Ulcer Disease Caused by Helicobacter pylori Infection in a Western Population. Clin. Microbiol. Infect. 2012, 18, E273–E282. [Google Scholar] [CrossRef]
- Cortés-Márquez, A.C.; Mendoza-Elizalde, S.; Arenas-Huertero, F.; Trillo-Tinoco, J.; Valencia-Mayoral, P.; Consuelo-Sánchez, A.; Zarate-Franco, J.; Dionicio-Avendaño, A.R.; Herrera-Esquivel, J.d.J.; Recinos-Carrera, E.G.; et al. Differential Expression of miRNA-146a and miRNA-155 in Gastritis Induced by Helicobacter pylori Infection in Paediatric Patients, Adults, and an Animal Model. BMC Infect. Dis. 2018, 18, 463. [Google Scholar] [CrossRef]
- Staedel, C.; Darfeuille, F. MicroRNAs and Bacterial Infection. Cell Microbiol. 2013, 15, 1496–1507. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Tan, S.; Tu, Y.; Zhang, G.; Liu, Y.; Li, D.; Xu, S.; Le, Z.; Xiong, J.; Zou, W.; et al. MicroRNA-125a-5p Inhibits Invasion and Metastasis of Gastric Cancer Cells by Targeting BRMS1 Expression. Oncol. Lett. 2018, 15, 5119–5130. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity 2011, 34, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Schmausser, B.; Andrulis, M.; Endrich, S.; Müller-Hermelink, H.-K.; Eck, M. Toll-like Receptors TLR4, TLR5 and TLR9 on Gastric Carcinoma Cells: An Implication for Interaction with Helicobacter pylori. Int. J. Med. Microbiol. 2005, 295, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Yokota, S.-I.; Okabayashi, T.; Rehli, M.; Fujii, N.; Amano, K.-I. Helicobacter pylori Lipopolysaccharides Upregulate Toll-like Receptor 4 Expression and Proliferation of Gastric Epithelial Cells via the MEK1/2-ERK1/2 Mitogen-Activated Protein Kinase Pathway. Infect. Immun. 2010, 78, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Rodríguez, N.; Kaakoush, N.O.; Pardo, A.L.; Goh, K.-L.; Fock, K.M.; Mitchell, H.M. Genetic Polymorphisms in the Toll-like Receptor Signalling Pathway in Helicobacter pylori Infection and Related Gastric Cancer. Hum. Immunol. 2014, 75, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-Z.; Torok, A.M.; Smith, M.F.; Goldberg, J.B. Toll-like Receptor 2-Mediated Gene Expression in Epithelial Cells during Helicobacter pylori Infection. Helicobacter 2005, 10, 193–204. [Google Scholar] [CrossRef]
- Ihan, A.; Gubina, M. The Immune Response to Helicobacter pylori. Food Technol. Biotechnol. 2014, 52, 204–209. [Google Scholar]
- Uno, K.; Kato, K.; Shimosegawa, T. Novel Role of Toll-like Receptors in Helicobacter pylori—Induced Gastric Malignancy. World J. Gastroenterol. 2014, 20, 5244–5251. [Google Scholar] [CrossRef]
- Gong, Y.; Tao, L.; Jing, L.; Liu, D.; Hu, S.; Liu, W.; Zhou, N.; Xie, Y. Association of TLR4 and Treg in Helicobacter pylori Colonization and Inflammation in Mice. PLoS ONE 2016, 11, e0149629. [Google Scholar] [CrossRef]
- Varga, M.G.; Peek, R.M. DNA Transfer and Toll-like Receptor Modulation by Helicobacter pylori. Curr. Top. Microbiol. Immunol. 2017, 400, 169–193. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Nascimento, L.; Massari, P.; Wetzler, L.M. The Role of TLR2 in Infection and Immunity. Front. Immunol. 2012, 3, 79. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.D.; Fernandez-Jimenez, N.; Ghantous, A.; Degli Esposti, D.; Cuenin, C.; Cahais, V.; Choi, I.J.; Kim, Y.-I.; Kim, J.; Herceg, Z. Genome-Wide Profiling of Normal Gastric Mucosa Identifies Helicobacter pylori- and Cancer-Associated DNA Methylome Changes. Int. J. Cancer 2018, 143, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Leodolter, A.; Alonso, S.; González, B.; Ebert, M.P.; Vieth, M.; Röcken, C.; Wex, T.; Peitz, U.; Malfertheiner, P.; Perucho, M. Somatic DNA Hypomethylation in H. Pylori-Associated High-Risk Gastritis and Gastric Cancer: Enhanced Somatic Hypomethylation Associates with Advanced Stage Cancer. Clin Transl Gastroenterol 2015, 6, e85. [Google Scholar] [CrossRef]
- Liu, D.; Ma, X.; Yang, F.; Xiao, D.; Jia, Y.; Wang, Y. Discovery and Validation of Methylated-Differentially Expressed Genes in Helicobacter pylori-Induced Gastric Cancer. Cancer Gene Ther. 2020, 27, 473–485. [Google Scholar] [CrossRef]
- Sepulveda, J.L.; Gutierrez-Pajares, J.L.; Luna, A.; Yao, Y.; Tobias, J.W.; Thomas, S.; Woo, Y.; Giorgi, F.; Komissarova, E.V.; Califano, A.; et al. High-Definition CpG Methylation of Novel Genes in Gastric Carcinogenesis Identified by next-Generation Sequencing. Mod. Pathol. 2016, 29, 182–193. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, N.; Kim, H.W.; Park, J.H.; Shin, C.M.; Lee, D.H. Promising Aberrant DNA Methylation Marker to Predict Gastric Cancer Development in Individuals with Family History and Long-Term Effects of H. pylori Eradication on DNA Methylation. Gastric Cancer 2021, 24, 302–313. [Google Scholar] [CrossRef]
- Wisnieski, F.; Santos, L.C.; Calcagno, D.Q.; Geraldis, J.C.; Gigek, C.O.; Anauate, A.C.; Chen, E.S.; Rasmussen, L.T.; Payão, S.L.M.; Artigiani, R.; et al. The Impact of DNA Demethylation on the Upregulation of the NRN1 and TNFAIP3 Genes Associated with Advanced Gastric Cancer. J. Mol. Med. 2020, 98, 707–717. [Google Scholar] [CrossRef]
- Ge, Y.; Ma, G.; Liu, H.; Lin, Y.; Zhang, G.; Du, M.; Wang, M.; Chu, H.; Zhang, H.; Zhang, Z. MUC1 Is Associated with TFF2 Methylation in Gastric Cancer. Clin. Epigenetics 2020, 12, 37. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, H.; Han, Q.; Sun, T.; Nie, C.; Hong, J.; Wei, R.; Leonteva, A.; Han, X.; Wang, J.; et al. Relationship between DLEC1 and PBX3 Promoter Methylation and the Risk and Prognosis of Gastric Cancer in Peripheral Blood Leukocytes. J. Cancer Res. Clin. Oncol. 2020, 146, 1115–1124. [Google Scholar] [CrossRef]
- Blaser, M.J.; Perez-Perez, G.I.; Kleanthous, H.; Cover, T.L.; Peek, R.M.; Chyou, P.H.; Stemmermann, G.N.; Nomura, A. Infection with Helicobacter pylori Strains Possessing cagA Is Associated with an Increased Risk of Developing Adenocarcinoma of the Stomach. Cancer Res. 1995, 55, 2111–2115. [Google Scholar] [PubMed]
- Huang, J.Q.; Zheng, G.F.; Sumanac, K.; Irvine, E.J.; Hunt, R.H. Meta-Analysis of the Relationship between cagA Seropositivity and Gastric Cancer. Gastroenterology 2003, 125, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Nell, S.; Estibariz, I.; Krebes, J.; Bunk, B.; Graham, D.Y.; Overmann, J.; Song, Y.; Spröer, C.; Yang, I.; Wex, T.; et al. Genome and Methylome Variation in Helicobacter pylori with a Cag Pathogenicity Island during Early Stages of Human Infection. Gastroenterology 2018, 154, 612–623.e7. [Google Scholar] [CrossRef] [PubMed]
- Palrasu, M.; Zaika, E.; El-Rifai, W.; Garcia-Buitrago, M.; Piazuelo, M.B.; Wilson, K.T.; Peek, R.M.; Zaika, A.I. Bacterial CagA Protein Compromises Tumor Suppressor Mechanisms in Gastric Epithelial Cells. J. Clin. Investig. 2020, 130, 2422–2434. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Flores, G.; Torres, J.; Sandoval-Montes, C.; Arévalo-Romero, H.; Meza, I.; Camorlinga-Ponce, M.; Torres-Morales, J.; Chávez-Rueda, A.K.; Legorreta-Haquet, M.V.; Fuentes-Pananá, E.M. Helicobacter pylori CagA Suppresses Apoptosis through Activation of AKT in a Nontransformed Epithelial Cell Model of Glandular Acini Formation. BioMed Res. Int. 2015, 2015, 761501. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Feng, Y.; Hu, Y.; He, C.; Xie, C.; Ouyang, Y.; Artim, S.C.; Huang, D.; Zhu, Y.; Luo, Z.; et al. Helicobacter pylori CagA Promotes Epithelial Mesenchymal Transition in Gastric Carcinogenesis via Triggering Oncogenic YAP Pathway. J. Exp. Clin. Cancer Res. 2018, 37, 280. [Google Scholar] [CrossRef] [PubMed]
- Sundrud, M.S.; Torres, V.J.; Unutmaz, D.; Cover, T.L. Inhibition of Primary Human T Cell Proliferation by Helicobacter pylori Vacuolating Toxin (VacA) Is Independent of VacA Effects on IL-2 Secretion. Proc. Natl. Acad. Sci. USA 2004, 101, 7727–7732. [Google Scholar] [CrossRef] [PubMed]
- Atherton, J.C.; Cao, P.; Peek, R.M.; Tummuru, M.K.; Blaser, M.J.; Cover, T.L. Mosaicism in Vacuolating Cytotoxin Alleles of Helicobacter pylori. Association of Specific vacA Types with Cytotoxin Production and Peptic Ulceration. J. Biol. Chem. 1995, 270, 17771–17777. [Google Scholar] [CrossRef]
- Boncristiano, M.; Paccani, S.R.; Barone, S.; Ulivieri, C.; Patrussi, L.; Ilver, D.; Amedei, A.; D’Elios, M.M.; Telford, J.L.; Baldari, C.T. The Helicobacter pylori Vacuolating Toxin Inhibits T Cell Activation by Two Independent Mechanisms. J. Exp. Med. 2003, 198, 1887–1897. [Google Scholar] [CrossRef]
- Abdullah, M.; Greenfield, L.K.; Bronte-Tinkew, D.; Capurro, M.I.; Rizzuti, D.; Jones, N.L. VacA Promotes CagA Accumulation in Gastric Epithelial Cells during Helicobacter pylori Infection. Sci. Rep. 2019, 9, 38. [Google Scholar] [CrossRef]
- Karbalaei, M.; Talebi Bezmin Abadi, A.; Keikha, M. Clinical Relevance of the cagA and vacA S1m1 Status and Antibiotic Resistance in Helicobacter pylori: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2022, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Mnich, E.; Gajewski, A.; Rudnicka, K.; Gonciarz, W.; Stawerski, P.; Hinc, K.; Obuchowski, M.; Chmiela, M. Immunoregulation of Antigen Presenting and Secretory Functions of Monocytic Cells by Helicobacter pylori Antigens in Relation to Impairment of Lymphocyte Expansion. Acta Biochim. Pol. 2015, 62, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, K.; Miszczyk, E.; Matusiak, A.; Walencka, M.; Moran, A.P.; Rudnicka, W.; Chmiela, M. Helicobacter pylori-Driven Modulation of NK Cell Expansion, Intracellular Cytokine Expression and Cytotoxic Activity. Innate Immun. 2015, 21, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liao, T.; Debowski, A.W.; Tang, H.; Nilsson, H.-O.; Stubbs, K.A.; Marshall, B.J.; Benghezal, M. Lipopolysaccharide Structure and Biosynthesis in Helicobacter pylori. Helicobacter 2016, 21, 445–461. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Mao, Z.; Liu, D.; Yu, J.; Wang, Y.; Ye, W.; Lin, D.; Zhou, N.; Xie, Y. Overexpression of Tim-3 Reduces Helicobacter pylori-Associated Inflammation through TLR4/NFκB Signaling in Vitro. Mol. Med. Rep. 2017, 15, 3252–3258. [Google Scholar] [CrossRef] [PubMed]
- Tessler, R.A.; Dellinger, M.; Richards, M.K.; Goldin, A.B.; Beierle, E.A.; Doski, J.J.; Goldfarb, M.; Langer, M.; Nuchtern, J.G.; Raval, M.V.; et al. Pediatric Gastric Adenocarcinoma: A National Cancer Data Base Review. J. Pediatr. Surg. 2019, 54, 1029–1034. [Google Scholar] [CrossRef]
- Okuda, M.; Nomura, K.; Kato, M.; Lin, Y.; Mabe, K.; Miyamoto, R.; Okumura, A.; Kikuchi, S. Gastric Cancer in Children and Adolescents in Japan. Pediatr. Int. 2019, 61, 80–86. [Google Scholar] [CrossRef]
- Cam, S. Risk of Gastric Cancer in Children with Helicobacter pylori Infection. Asian Pac. J. Cancer Prev. 2014, 15, 9905–9908. [Google Scholar] [CrossRef]
- Attard, T.M.; Omar, U.; Glynn, E.F.; Stoecklein, N.; St Peter, S.D.; Thomson, M.A. Gastric Cancer in the Pediatric Population, a Multicenter Cross-Sectional Analysis of Presentation and Coexisting Comorbidities. J. Cancer Res. Clin. Oncol. 2023, 149, 1261–1272. [Google Scholar] [CrossRef]
- Obayashi, N.; Ohtsuka, Y.; Hosoi, K.; Ikuse, T.; Jimbo, K.; Aoyagi, Y.; Fujii, T.; Kudo, T.; Asaoka, D.; Hojo, M.; et al. Comparison of Gene Expression between Pediatric and Adult Gastric Mucosa with Helicobacter pylori Infection. Helicobacter 2016, 21, 114–123. [Google Scholar] [CrossRef]
- Honma, H.; Nakayama, Y.; Kato, S.; Hidaka, N.; Kusakari, M.; Sado, T.; Suda, A.; Lin, Y. Clinical Features of Helicobacter pylori Antibody-Positive Junior High School Students in Nagano Prefecture, Japan. Helicobacter 2019, 24, e12559. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, T.; Okamura, T.; Iwaya, Y.; Suga, T. Screening to Identify and Eradicate Helicobacter pylori Infection in Teenagers in Japan. Gastroenterol. Clin. N. Am. 2015, 44, 667–676. [Google Scholar] [CrossRef] [PubMed]
- O’Ryan, M.L.; Lucero, Y.; Rabello, M.; Mamani, N.; Salinas, A.M.; Peña, A.; Torres-Torreti, J.P.; Mejías, A.; Ramilo, O.; Suarez, N.; et al. Persistent and Transient Helicobacter pylori Infections in Early Childhood. Clin. Infect. Dis. 2015, 61, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Lucero, Y.; Lagomarcino, A.J.; Torres, J.P.; Roessler, P.; Mamani, N.; George, S.; Huerta, N.; Gonzalez, M.; O’Ryan, M. Helicobacter pylori, Clinical, Laboratory, and Noninvasive Biomarkers Suggestive of Gastric Damage in Healthy School-Aged Children: A Case-Control Study. Int. J. Infect. Dis. 2021, 103, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Okuda, M.; Lin, Y.; Mabe, K.; Kato, M.; Osaki, T.; Miyamoto, R.; Okumura, A.; Kamiya, S.; Kikuchi, S. Serum Pepsinogen Values in Japanese Junior High School Students with Reference to Helicobacter pylori Infection. J. Epidemiol. 2020, 30, 30–36. [Google Scholar] [CrossRef]
- Lopes, A.I.; Palha, A.; Lopes, T.; Monteiro, L.; Oleastro, M.; Fernandes, A. Relationship among Serum Pepsinogens, Serum Gastrin, Gastric Mucosal Histology and H. pylori Virulence Factors in a Paediatric Population. Scand. J. Gastroenterol. 2006, 41, 524–531. [Google Scholar] [CrossRef]
- de Angelis, G.L.; Cavallaro, L.G.; Maffini, V.; Moussa, A.M.; Fornaroli, F.; Liatopoulou, S.; Bizzarri, B.; Merli, R.; Comparato, G.; Caruana, P.; et al. Usefulness of a Serological Panel Test in the Assessment of Gastritis in Symptomatic Children. Dig. Dis. 2007, 25, 206–213. [Google Scholar] [CrossRef]
- Guariso, G.; Basso, D.; Bortoluzzi, C.-F.; Meneghel, A.; Schiavon, S.; Fogar, P.; Farina, M.; Navaglia, F.; Greco, E.; Mescoli, C.; et al. GastroPanel: Evaluation of the Usefulness in the Diagnosis of Gastro-Duodenal Mucosal Alterations in Children. Clin. Chim. Acta 2009, 402, 54–60. [Google Scholar] [CrossRef]
- Lucero, Y.; Lagomarcino, A.J.; Torres, J.P.; Roessler, P.; Mamani, N.; George, S.A.; Huerta, N.; González, M.; O’Ryan, G.M. Effect of Helicobacter pylori Eradication Therapy on Clinical and Laboratory Biomarkers Associated with Gastric Damage in Healthy School-Aged Children: A Randomized Non-Blinded Trial. Helicobacter 2021, 26, e12853. [Google Scholar] [CrossRef]
- Miao, R.; Wan, C.; Wang, Z. The Relationship of Gastric Microbiota and Helicobacter pylori Infection in Pediatrics Population. Helicobacter 2020, 25, e12676. [Google Scholar] [CrossRef]
- Li, T.H.; Qin, Y.; Sham, P.C.; Lau, K.S.; Chu, K.-M.; Leung, W.K. Alterations in Gastric Microbiota after H. pylori Eradication and in Different Histological Stages of Gastric Carcinogenesis. Sci. Rep. 2017, 7, 44935. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Peng, C.; Wang, H.; Ouyang, Y.; Zhu, Z.; Shu, X.; Zhu, Y.; Lu, N. The Eradication of Helicobacter pylori Restores Rather than Disturbs the Gastrointestinal Microbiota in Asymptomatic Young Adults. Helicobacter 2019, 24, e12590. [Google Scholar] [CrossRef] [PubMed]
- Braga, L.L.B.C.; de Oliveira, M.A.A.; Gonçalves, M.H.R.B.; Chaves, F.K.; Benigno, T.G.dS.; Gomes, A.D.; Silva, C.I.S.M.; Anacleto, C.; Batista, S.d.A.; Queiroz, D.M.M. CagA Phosphorylation EPIYA-C Motifs and the vacA i Genotype in Helicobacter pylori Strains of Asymptomatic Children from a High-Risk Gastric Cancer Area in Northeastern Brazil. Memórias Do Inst. Oswaldo Cruz 2014, 109, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Zabala Torrres, B.; Lucero, Y.; Lagomarcino, A.J.; Orellana-Manzano, A.; George, S.; Torres, J.P.; O’Ryan, M. Review: Prevalence and Dynamics of Helicobacter pylori Infection during Childhood. Helicobacter 2017, 22, e12399. [Google Scholar] [CrossRef]
- Correa, P.; Piazuelo, M.B. The Gastric Precancerous Cascade. J. Dig. Dis. 2012, 13, 2–9. [Google Scholar] [CrossRef]
- Hsieh, H.; Yang, H.-B.; Sheu, B.-S.; Yang, Y.-J. Atrophic Gastritis in Helicobacter pylori-Infected Children. Helicobacter 2022, 27, e12885. [Google Scholar] [CrossRef]
- Yu, M.; Ma, J.; Song, X.-X.; Shao, Q.-Q.; Yu, X.-C.; Khan, M.N.; Qi, Y.-B.; Hu, R.-B.; Wei, P.-R.; Xiao, W.; et al. Gastric Mucosal Precancerous Lesions in Helicobacter pylori-Infected Pediatric Patients in Central China: A Single-Center, Retrospective Investigation. World J. Gastroenterol. 2022, 28, 3682–3694. [Google Scholar] [CrossRef]
- George, S.; Lucero, Y.; Torres, J.P.; Lagomarcino, A.J.; O’Ryan, M. Gastric Damage and Cancer-Associated Biomarkers in Helicobacter pylori-Infected Children. Front. Microbiol. 2020, 11, 90. [Google Scholar] [CrossRef]
- Deptuła, P.; Suprewicz, Ł.; Daniluk, T.; Namiot, A.; Chmielewska, S.J.; Daniluk, U.; Lebensztejn, D.; Bucki, R. Nanomechanical Hallmarks of Helicobacter pylori Infection in Pediatric Patients. Int. J. Mol. Sci. 2021, 22, 5624. [Google Scholar] [CrossRef]
- Helmin-Basa, A.; Wiese-Szadkowska, M.; Szaflarska-Popławska, A.; Kłosowski, M.; Januszewska, M.; Bodnar, M.; Marszałek, A.; Gackowska, L.; Michalkiewicz, J. Relationship between Helicobacter pylori Infection and Plasmacytoid and Myeloid Dendritic Cells in Peripheral Blood and Gastric Mucosa of Children. Mediat. Inflamm. 2019, 2019, 7190596. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meliț, L.E.; Mărginean, C.O.; Borka Balas, R. The Most Recent Insights into the Roots of Gastric Cancer. Life 2024, 14, 95. https://doi.org/10.3390/life14010095
Meliț LE, Mărginean CO, Borka Balas R. The Most Recent Insights into the Roots of Gastric Cancer. Life. 2024; 14(1):95. https://doi.org/10.3390/life14010095
Chicago/Turabian StyleMeliț, Lorena Elena, Cristina Oana Mărginean, and Reka Borka Balas. 2024. "The Most Recent Insights into the Roots of Gastric Cancer" Life 14, no. 1: 95. https://doi.org/10.3390/life14010095
APA StyleMeliț, L. E., Mărginean, C. O., & Borka Balas, R. (2024). The Most Recent Insights into the Roots of Gastric Cancer. Life, 14(1), 95. https://doi.org/10.3390/life14010095