Patterns of C1-Inhibitor Plasma Levels and Kinin–Kallikrein System Activation in Relation to COVID-19 Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Patient Selection and Definition
2.3. Blood Sampling and Laboratory Tests
2.4. Preparation of PKa:C1-INH Complexes
2.5. ELISAs
2.6. Western Blot
2.7. Amidolytic Activity of Kallikrein
2.8. Statistics
3. Results
3.1. Characteristics of the Study Population
3.2. Dysregulation of C1-INH in COVID-19
3.3. Interaction of PKa and C1-INH in COVID-19
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 28 June 2024).
- Cai, M.; Xie, Y.; Topol, E.J.; Al-Aly, Z. Three-Year Outcomes of Post-Acute Sequelae of COVID-19. Nat. Med. 2024, 30, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Blombäck, M.; Wallén, H. COVID-19: Not a Thrombotic Disease but a Thromboinflammatory Disease. Ups. J. Med. Sci. 2024, 129, e9863. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.W.; Kemper, C.; Woodruff, T.M. COVID-19: Complement, Coagulation, and Collateral Damage. J. Immunol. 2020, 205, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Maglakelidze, N.; Manto, K.M.; Craig, T.J. A Review: Does Complement or the Contact System Have a Role in Protection or Pathogenesis of COVID-19? Pulm. Ther. 2020, 6, 169–176. [Google Scholar] [CrossRef]
- Polycarpou, A.; Howard, M.; Farrar, C.A.; Greenlaw, R.; Fanelli, G.; Wallis, R.; Klavinskis, L.S.; Sacks, S. Rationale for Targeting Complement in COVID-19. EMBO Mol. Med. 2020, 12, e12642. [Google Scholar] [CrossRef]
- Shatzel, J.J.; DeLoughery, E.P.; Lorentz, C.U.; Tucker, E.I.; Aslan, J.E.; Hinds, M.T.; Gailani, D.; Weitz, J.I.; McCarty, O.J.T.; Gruber, A. The Contact Activation System as a Potential Therapeutic Target in Patients with COVID-19. Res. Pract. Thromb. Haemost. 2020, 4, 500–505. [Google Scholar] [CrossRef]
- Meini, S.; Zanichelli, A.; Sbrojavacca, R.; Iuri, F.; Roberts, A.T.; Suffritti, C.; Tascini, C. Understanding the Pathophysiology of COVID-19: Could the Contact System Be the Key? Front. Immunol. 2020, 11, 2014. [Google Scholar] [CrossRef]
- Gando, S.; Wada, T. Thromboplasminflammation in COVID-19 Coagulopathy: Three Viewpoints for Diagnostic and Therapeutic Strategies. Front. Immunol. 2021, 12, 649122. [Google Scholar] [CrossRef]
- van de Veerdonk, F.L.; Netea, M.G.; van Deuren, M.; van der Meer, J.W.; de Mast, Q.; Brüggemann, R.J.; van der Hoeven, H. Kallikrein-Kinin Blockade in Patients with COVID-19 to Prevent Acute Respiratory Distress Syndrome. eLife 2020, 9, e57555. [Google Scholar] [CrossRef]
- Roche, J.A.; Roche, R. A Hypothesized Role for Dysregulated Bradykinin Signaling in COVID-19 Respiratory Complications. FASEB J. 2020, 34, 7265–7269. [Google Scholar] [CrossRef]
- Cooper, S.L.; Boyle, E.; Jefferson, S.R.; Heslop, C.R.A.; Mohan, P.; Mohanraj, G.G.J.; Sidow, H.A.; Tan, R.C.P.; Hill, S.J.; Woolard, J. Role of the Renin-Angiotensin-Aldosterone and Kinin-Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID. Int. J. Mol. Sci. 2021, 22, 8255. [Google Scholar] [CrossRef] [PubMed]
- Zeerleder, S. C1-Inhibitor: More than a Serine Protease Inhibitor. Semin. Thromb. Hemost. 2011, 37, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Wagenaar-Bos, I.G.A.; Hack, C.E. Structure and Function of C1-Inhibitor. Immunol. Allergy Clin. N. Am. 2006, 26, 615–632. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wagner, E.; Zhang, H.; Frank, M.M. Complement 1 Inhibitor Is a Regulator of the Alternative Complement Pathway. J. Exp. Med. 2001, 194, 1609–1616. [Google Scholar] [CrossRef]
- Paréj, K.; Dobó, J.; Závodszky, P.; Gál, P. The Control of the Complement Lectin Pathway Activation Revisited: Both C1-Inhibitor and Antithrombin Are Likely Physiological Inhibitors, While A2-Macroglobulin Is Not. Mol. Immunol. 2013, 54, 415–422. [Google Scholar] [CrossRef]
- Davis, A.E.; Mejia, P.; Lu, F. Biological Activities of C1 Inhibitor. Mol. Immunol. 2008, 45, 4057–4063. [Google Scholar] [CrossRef]
- Schreiber, A.D.; Kaplan, A.P.; Austen, K.F. Inhibition by C1INH of Hagemann Factor Fragment Activation of Coagulation, Fibrinolysis, and Kinin Generation. J. Clin. Investig. 1973, 52, 1402–1409. [Google Scholar] [CrossRef]
- Wuillemin, W.A.; Minnema, M.; Meijers, J.C.; Roem, D.; Eerenberg, A.J.; Nuijens, J.H.; ten Cate, H.; Hack, C.E. Inactivation of Factor XIa in Human Plasma Assessed by Measuring Factor XIa-Protease Inhibitor Complexes: Major Role for C1-Inhibitor. Blood 1995, 85, 1517–1526. [Google Scholar] [CrossRef]
- Gigli, I.; Mason, J.W.; Colman, R.W.; Austen, K.F. Interaction of Plasma Kallikrein with the C1 Inhibitor. J. Immunol. 1970, 104, 574–581. [Google Scholar] [CrossRef]
- Van Nostrand, W.E.; McKay, L.D.; Baker, J.B.; Cunningham, D.D. Functional and Structural Similarities between Protease Nexin I and C1 Inhibitor. J. Biol. Chem. 1988, 263, 3979–3983. [Google Scholar] [CrossRef]
- Caccia, S.; Castelli, R.; Maiocchi, D.; Bergamaschini, L.; Cugno, M. Interaction of C1 Inhibitor with Thrombin on the Endothelial Surface: Blood Coagul. Fibrinolysis 2011, 22, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Ratnoff, O.D.; Pensky, J.; Ogston, D.; Naff, G.B. The Inhibition of Plasmin, Plasma Kallikrein, Plasma Permeability Factor, and the C’1r Subcomponent of the First Component of Complement by Serum C’1 Esterase Inhibitor. J. Exp. Med. 1969, 129, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Thorsen, S.; Philips, M. Isolation of Tissue-Type Plasminogen Activator-Inhibitor Complexes from Human Plasma. Evidence for a Rapid Plasminogen Activator Inhibitor. Biochim. Biophys. Acta 1984, 802, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Hausburg, M.A.; Banton, K.L.; Roshon, M.; Bar-Or, D. Clinically Distinct COVID-19 Cases Share Notably Similar Immune Response Progression: A Follow-up Analysis. Heliyon 2020, 7, e05877. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Thomas, T.; Dzieciatkowska, M.; Hill, R.C.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hod, E.A.; Spitalnik, S.L.; Hansen, K.C. Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level. J. Proteome Res. 2020, 19, 4417–4427. [Google Scholar] [CrossRef] [PubMed]
- Overmyer, K.A.; Shishkova, E.; Miller, I.J.; Balnis, J.; Bernstein, M.N.; Peters-Clarke, T.M.; Meyer, J.G.; Quan, Q.; Muehlbauer, L.K.; Trujillo, E.A.; et al. Large-Scale Multi-Omic Analysis of COVID-19 Severity. Cell Syst. 2021, 12, 23–40.e7. [Google Scholar] [CrossRef]
- Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 2020, 182, 59–72.e15. [Google Scholar] [CrossRef]
- Charitos, P.; Heijnen, I.A.F.M.; Egli, A.; Bassetti, S.; Trendelenburg, M.; Osthoff, M. Functional Activity of the Complement System in Hospitalized COVID-19 Patients: A Prospective Cohort Study. Front. Immunol. 2021, 12, 765330. [Google Scholar] [CrossRef]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef]
- Thomson, T.M.; Toscano-Guerra, E.; Casis, E.; Paciucci, R. C1 Esterase Inhibitor and the Contact System in COVID-19. Br. J. Haematol. 2020, 190, 520–524. [Google Scholar] [CrossRef]
- Russo, C.; Morello, G.; Malaguarnera, R.; Piro, S.; Furno, D.L.; Malaguarnera, L. Candidate Genes of SARS-CoV-2 Gender Susceptibility. Sci. Rep. 2021, 11, 21968. [Google Scholar] [CrossRef]
- Urwyler, P.; Moser, S.; Trendelenburg, M.; Sendi, P.; Osthoff, M. Targeting Thromboinflammation in COVID-19—A Narrative Review of the Potential of C1 Inhibitor to Prevent Disease Progression. Mol. Immunol. 2022, 150, 99–113. [Google Scholar] [CrossRef]
- Urwyler, P.; Moser, S.; Charitos, P.; Heijnen, I.A.F.M.; Rudin, M.; Sommer, G.; Giannetti, B.M.; Bassetti, S.; Sendi, P.; Trendelenburg, M.; et al. Treatment of COVID-19 With Conestat Alfa, a Regulator of the Complement, Contact Activation and Kallikrein-Kinin System. Front. Immunol. 2020, 11, 2072. [Google Scholar] [CrossRef]
- University Hospital, Basel, Switzerland Conestat Alfa in the Prevention of Severe SARS-CoV-2 Infection in Hospitalized Patients with COVID-19. 2021. Available online: https://clinicaltrials.gov/study/NCT04414631 (accessed on 16 June 2023).
- Urwyler, P.; Charitos, P.; Moser, S.; Heijnen, I.A.F.M.; Trendelenburg, M.; Thoma, R.; Sumer, J.; Camacho-Ortiz, A.; Bacci, M.R.; Huber, L.C.; et al. Recombinant Human C1 Esterase Inhibitor (Conestat Alfa) in the Prevention of Severe SARS-CoV-2 Infection in Hospitalized Patients with COVID-19: A Structured Summary of a Study Protocol for a Randomized, Parallel-Group, Open-Label, Multi-Center Pilot Trial (PROTECT-COVID-19). Trials 2021, 22, 1. [Google Scholar] [CrossRef]
- Pharming Technologies, B.V. Prevention of Severe SARS-CoV-2 Infection in Hospitalized Patients with COVID-19. 2022. Available online: https://clinicaltrials.gov/study/NCT04530136 (accessed on 16 June 2023).
- Urwyler, P.; Leimbacher, M.; Charitos, P.; Moser, S.; Heijnen, I.A.F.M.; Trendelenburg, M.; Thoma, R.; Sumer, J.; Camacho-Ortiz, A.; Bacci, M.R.; et al. Recombinant C1 Inhibitor in the Prevention of Severe COVID-19: A Randomized, Open-Label, Multi-Center Phase IIa Trial. Front. Immunol. 2023, 14, 1255292. [Google Scholar] [CrossRef]
- Mansour, E.; Palma, A.C.; Ulaf, R.G.; Ribeiro, L.C.; Bernardes, A.F.; Nunes, T.A.; Agrela, M.V.; Bombassaro, B.; Monfort-Pires, M.; Camargo, R.L.; et al. Safety and Outcomes Associated with the Pharmacological Inhibition of the Kinin-Kallikrein System in Severe COVID-19. Viruses 2021, 13, 309. [Google Scholar] [CrossRef]
- Mansour, E.; Bueno, F.F.; de Lima-Júnior, J.C.; Palma, A.; Monfort-Pires, M.; Bombassaro, B.; Araujo, E.P.; Bernardes, A.F.; Ulaf, R.G.; Nunes, T.A.; et al. Evaluation of the Efficacy and Safety of Icatibant and C1 Esterase/Kallikrein Inhibitor in Severe COVID-19: Study Protocol for a Three-Armed Randomized Controlled Trial. Trials 2021, 22, 71. [Google Scholar] [CrossRef]
- Caccia, S.; Suffritti, C.; Carzaniga, T.; Berardelli, R.; Berra, S.; Martorana, V.; Fra, A.; Drouet, C.; Cicardi, M. Intermittent C1-Inhibitor Deficiency Associated with Recessive Inheritance: Functional and Structural Insight. Sci. Rep. 2018, 8, 977. [Google Scholar] [CrossRef]
- Clinical Management of COVID-19: Living Guideline, 13 January 2023. Available online: https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-clinical-2023.1 (accessed on 20 June 2023).
- Joseph, K.; Bains, S.; Tholanikunnel, B.G.; Bygum, A.; Aabom, A.; Koch, C.; Farkas, H.; Varga, L.; Ghebrehiwet, B.; Kaplan, A.P. A Novel Assay to Diagnose Hereditary Angioedema Utilizing Inhibition of Bradykinin-Forming Enzymes. Allergy 2015, 70, 115–119. [Google Scholar] [CrossRef]
- Scheffel, J.; Mahnke, N.A.; Hofman, Z.L.M.; de Maat, S.; Wu, J.; Bonnekoh, H.; Pengelly, R.J.; Ennis, S.; Holloway, J.W.; Kirchner, M.; et al. Cold-Induced Urticarial Autoinflammatory Syndrome Related to Factor XII Activation. Nat. Commun. 2020, 11, 179. [Google Scholar] [CrossRef]
- Kajdácsi, E.; Jandrasics, Z.; Veszeli, N.; Makó, V.; Koncz, A.; Gulyás, D.; Köhalmi, K.V.; Temesszentandrási, G.; Cervenak, L.; Gál, P.; et al. Patterns of C1-Inhibitor/Plasma Serine Protease Complexes in Healthy Humans and in Hereditary Angioedema Patients. Front. Immunol. 2020, 11, 794. [Google Scholar] [CrossRef]
- Gallimore, M.J.; Friberger, P. Simple Chromogenic Peptide Substrate Assays for Determining Prekallikrein, Kallikrein Inhibition and Kallikrein “like” Activity in Human Plasma. Thromb. Res. 1982, 25, 293–298. [Google Scholar] [CrossRef]
- Velavan, T.P.; Meyer, C.G. Mild versus Severe COVID-19: Laboratory Markers. Int. J. Infect. Dis. 2020, 95, 304–307. [Google Scholar] [CrossRef]
- Jurado, A.; Martín, M.C.; Abad-Molina, C.; Orduña, A.; Martínez, A.; Ocaña, E.; Yarce, O.; Navas, A.M.; Trujillo, A.; Fernández, L.; et al. COVID-19: Age, Interleukin-6, C-Reactive Protein, and Lymphocytes as Key Clues from a Multicentre Retrospective Study. Immun. Ageing A 2020, 17, 22. [Google Scholar] [CrossRef]
- Sabaka, P.; Koščálová, A.; Straka, I.; Hodosy, J.; Lipták, R.; Kmotorková, B.; Kachlíková, M.; Kušnírová, A. Role of Interleukin 6 as a Predictive Factor for a Severe Course of COVID-19: Retrospective Data Analysis of Patients from a Long-Term Care Facility during Covid-19 Outbreak. BMC Infect. Dis. 2021, 21, 308. [Google Scholar] [CrossRef]
- Velavan, T.P.; Kuk, S.; Linh, L.T.K.; Lamsfus Calle, C.; Lalremruata, A.; Pallerla, S.R.; Kreidenweiss, A.; Held, J.; Esen, M.; Gabor, J.; et al. Longitudinal Monitoring of Laboratory Markers Characterizes Hospitalized and Ambulatory COVID-19 Patients. Sci. Rep. 2021, 11, 14471. [Google Scholar] [CrossRef]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Xiao, M.T.; Ellsworth, C.R.; Qin, X. Emerging Role of Complement in COVID-19 and Other Respiratory Virus Diseases. Cell. Mol. Life Sci. 2024, 81, 94. [Google Scholar] [CrossRef]
- Karnaukhova, E. C1-Inhibitor: Structure, Functional Diversity and Therapeutic Development. Curr. Med. Chem. 2022, 29, 467–488. [Google Scholar] [CrossRef]
- Cugno, M.; Zanichelli, A.; Foieni, F.; Caccia, S.; Cicardi, M. C1-Inhibitor Deficiency and Angioedema: Molecular Mechanisms and Clinical Progress. Trends Mol. Med. 2009, 15, 69–78. [Google Scholar] [CrossRef]
- Adesanya, T.M.A.; Campbell, C.M.; Cheng, L.; Ogbogu, P.U.; Kahwash, R. C1 Esterase Inhibition: Targeting Multiple Systems in COVID-19. J. Clin. Immunol. 2021, 41, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Medjeral-Thomas, N.R.; Troldborg, A.; Hansen, A.G.; Pihl, R.; Clarke, C.L.; Peters, J.E.; Thomas, D.C.; Willicombe, M.; Palarasah, Y.; Botto, M.; et al. Protease Inhibitor Plasma Concentrations Associate with COVID-19 Infection. Oxf. Open Immunol. 2021, 2, iqab014. [Google Scholar] [CrossRef] [PubMed]
- Nossent, E.J.; Schuurman, A.R.; Reijnders, T.D.Y.; Saris, A.; Jongerius, I.; Blok, S.G.; de Vries, H.; Duitman, J.; Vonk Noordegraaf, A.; Meijboom, L.J.; et al. Pulmonary Procoagulant and Innate Immune Responses in Critically Ill COVID-19 Patients. Front. Immunol. 2021, 12, 664209. [Google Scholar] [CrossRef] [PubMed]
- Busch, M.H.; Timmermans, S.A.M.E.G.; Nagy, M.; Visser, M.; Huckriede, J.; Aendekerk, J.P.; de Vries, F.; Potjewijd, J.; Jallah, B.; Ysermans, R.; et al. Neutrophils and Contact Activation of Coagulation as Potential Drivers of COVID-19. Circulation 2020, 142, 1787–1790. [Google Scholar] [CrossRef] [PubMed]
- Lipcsey, M.; Persson, B.; Eriksson, O.; Blom, A.M.; Fromell, K.; Hultström, M.; Huber-Lang, M.; Ekdahl, K.N.; Frithiof, R.; Nilsson, B. The Outcome of Critically Ill COVID-19 Patients Is Linked to Thromboinflammation Dominated by the Kallikrein/Kinin System. Front. Immunol. 2021, 12, 627579. [Google Scholar] [CrossRef]
- Henderson, M.W.; Lima, F.; Moraes, C.R.P.; Ilich, A.; Huber, S.C.; Barbosa, M.S.; Santos, I.; Palma, A.C.; Nunes, T.A.; Ulaf, R.G.; et al. Contact and Intrinsic Coagulation Pathways Are Activated and Associated with Adverse Clinical Outcomes in COVID-19. Blood Adv. 2022, 6, 3367–3377. [Google Scholar] [CrossRef]
- Demichev, V.; Tober-Lau, P.; Lemke, O.; Nazarenko, T.; Thibeault, C.; Whitwell, H.; Röhl, A.; Freiwald, A.; Szyrwiel, L.; Ludwig, D.; et al. A Time-Resolved Proteomic and Prognostic Map of COVID-19. Cell Syst. 2021, 12, 780–794.e7. [Google Scholar] [CrossRef]
- Wygrecka, M.; Birnhuber, A.; Seeliger, B.; Michalick, L.; Pak, O.; Schultz, A.-S.; Schramm, F.; Zacharias, M.; Gorkiewicz, G.; David, S.; et al. Altered Fibrin Clot Structure and Dysregulated Fibrinolysis Contribute to Thrombosis Risk in Severe COVID-19. Blood Adv. 2022, 6, 1074–1087. [Google Scholar] [CrossRef]
- Veronez, C.L.; Christiansen, S.C.; Smith, T.D.; Riedl, M.A.; Zuraw, B.L. COVID-19 and Hereditary Angioedema: Incidence, Outcomes, and Mechanistic Implications. Allergy Asthma Proc. 2021, 42, 506–514. [Google Scholar] [CrossRef]
- Martínez-Salazar, B.; Holwerda, M.; Stüdle, C.; Piragyte, I.; Mercader, N.; Engelhardt, B.; Rieben, R.; Döring, Y. COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences. Front. Cell Dev. Biol. 2022, 10, 824851. [Google Scholar] [CrossRef]
- Karakasis, P.; Nasoufidou, A.; Sagris, M.; Fragakis, N.; Tsioufis, K. Vascular Alterations Following COVID-19 Infection: A Comprehensive Literature Review. Life 2024, 14, 545. [Google Scholar] [CrossRef] [PubMed]
- Owens, C.D.; Bonin Pinto, C.; Detwiler, S.; Olay, L.; Pinaffi-Langley, A.C.d.C.; Mukli, P.; Peterfi, A.; Szarvas, Z.; James, J.A.; Galvan, V.; et al. Neurovascular Coupling Impairment as a Mechanism for Cognitive Deficits in COVID-19. Brain Commun. 2024, 6, fcae080. [Google Scholar] [CrossRef] [PubMed]
- Zelek, W.M.; Harrison, R.A. Complement and COVID-19: Three Years on, What We Know, What We Don’t Know, and What We Ought to Know. Immunobiology 2023, 228, 152393. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.A.; Bova, M.; Berra, S.; Senter, R.; Parolin, D.; Caccia, S.; Cicardi, M. The central role of endothelium in hereditary angioedema due to C1 inhibitor deficiency. Int. Immunopharmacol. 2020, 82, 106304. [Google Scholar] [CrossRef]
- Baillie, K.; Davies, H.E.; Keat, S.B.K.; Ladell, K.; Miners, K.L.; Jones, S.A.; Mellou, E.; Toonen, E.J.M.; Price, D.A.; Morgan, B.P.; et al. Complement Dysregulation Is a Prevalent and Therapeutically Amenable Feature of Long COVID. Med 2024, 5, 239–253.e5. [Google Scholar] [CrossRef]
Mild | Symptomatic patients without evidence of viral pneumonia or hypoxia. |
Moderate | Pneumonia: clinical signs of pneumonia (fever, cough, dyspnea, fast breathing) but no signs of severe pneumonia, including SpO2 ≥ 90% on ambient air). |
Severe | Severe Pneumonia: with clinical signs of pneumonia (fever, cough, dyspnea) plus one of the following: respiratory rate > 30 breaths/min, severe respiratory distress, or SpO2 < 90% on ambient air. |
Critical |
|
Primary Antibody | Secondary Antibody | |
---|---|---|
C1-INH | in-house chicken anti-C1-INH antibody 1:10,000 (0.08 μg/mL) | anti-chicken IgY AP (A9171, Merck) 1:30,000 |
1 h RT | 1 h RT | |
PKa:C1-INH complexes | sheep anti-human Prekallikrein antibody (CL20090A Cedarlane) 1:1000 | anti-sheep IgG AP (A5187, Merck) 1:30,000 |
o.n. 4 °C | 1 h RT |
Variables | Total | Mild | Moderate | Severe | Critical |
---|---|---|---|---|---|
Number of patients | 45 | 12 | 9 | 12 | 12 |
Male, N (%) | 24 (53) | 7 (58) | 4 (44) | 7 (58) | 6 (50) |
Mean age ± SD | 58.9 ± 15 | 52 ± 11.5 | 65 ± 16 | 66 ± 17 | 55.6 ± 11.8 |
Days of hospitalization (median, IQR) | 15 (11–23) | 9 (6–14) | 17 (15–21) | 18 (11–25) | 28 (14–62) |
Days between onset and sampling (median, IQR) | 11 (8–15) | 10.5 (7–12) | 10 (6–15) | 9.5 (8–12) | 14.5 (9–24) |
Patients with comorbidities, N (%) | 38 (84) | 8 (66) | 9 (100) | 11 (91) | 10 (83) |
Total comorbidities (median, range) | 2 (0–5) | 2 (0–4) | 3 (1–5) | 1 (0–5) | 1 (0–3) |
Obesity, N (%) | 16 (35) | 4 (33) | 4 (44) | 3 (25) | 4 (33) |
Diabetes, N (%) | 9 (20) | 2 (25) | 2 (22) | 3 (27) | 2 (20) |
Hypertension, N (%) | 20 (44) | 3 (42) | 5 (55) | 7 (63) | 5 (50) |
CAD, N (%) | 4 (8) | 0 (0) | 1 (11) | 2 (16) | 0 (0) |
COPD or asthma, N (%) | 9 (20) | 3 (25) | 3 (33) | 1 (8) | 2 (16) |
Chronic nephropathy, N (%) | 2 (4) | 0 (0) | 1 (2) | 1 (2) | 0 (0) |
Cancer, N (%) | 2 (4) | 0 (0) | 1 (11) | 0 (0) | 1 (8) |
Other comorbidities, N (%) | 11 (24) | 5 (11) | 6 (13) | 2 (4) | 3 (6) |
Fever, N (%) | 37 (82) | 11 (91) | 9 (100) | 11 (91) | 6 (50) |
Cough, N (%) | 19 (42) | 8 (66) | 3 (33) | 3 (25) | 5 (41) |
Dyspnea, N (%) | 19 (42) | 3 (25) | 2 (22) | 8 (66) | 6 (50) |
Diarrhea, N (%) | 10 (22) | 4 (33) | 1 (11) | 2 (16) | 3 (25) |
Pneumonia, N (%) | 43 (95) | 11 (91) | 8 (88) | 12 (100) | 12 (100) |
Respiratory failure and invasive ventilation in ICU, N (%) | 12 (26) | 0 (0) | 0 (0) | 0 (0) | 12 (100) |
Sepsis, N (%) | 14 (31) | 0 (0) | 1 (11) | 5 (41) | 8 (66) |
Thromboembolic complications, N (%) | 1 (2) | 0 (0) | 0 (0) | 1 (8) | 0 (0) |
Acute kidney injury, N (%) | 3 (6) | 0 (0) | 0 (0) | 0 (0) | 3 (25) |
Other complications, N (%) | 3 (6) | 0 (0) | 1 (11) | 0 (0) | 2 (16) |
Deaths, N (%) | 8 (17) | 0 (0) | 0 (0) | 2 (16) | 6 (50) |
CRP | IL-6 | Ferritin | D-Dimers | Fibrinogen | PT | INR | aPTT | Creatinine | |
Spearman r | 0.4278 | 0.661 | 0.4997 | 0.6821 | 0.2732 | 0.1827 | 0.1528 | −0.04082 | −0.07626 |
p value | 0.0034 | <0.0001 | 0.0022 | <0.0001 | 0.0924 | 0.2722 | 0.3598 | 0.8104 | 0.6185 |
** | **** | ** | **** | ns | ns | ns | ns | ns | |
Neutrophils | Lymphocytes | Eosinophils | Basophils | Platelets | |||||
Spearman r | 0.6753 | −0.5151 | 0.007591 | 0.3102 | 0.0189 | ||||
p value | <0.0001 | 0.0003 | 0.9605 | 0.0404 | 0.9019 | ||||
**** | *** | ns | * | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berra, S.; Parolin, D.; Suffritti, C.; Folcia, A.; Zanichelli, A.; Gusso, L.; Cogliati, C.; Riva, A.; Gidaro, A.; Caccia, S. Patterns of C1-Inhibitor Plasma Levels and Kinin–Kallikrein System Activation in Relation to COVID-19 Severity. Life 2024, 14, 1525. https://doi.org/10.3390/life14121525
Berra S, Parolin D, Suffritti C, Folcia A, Zanichelli A, Gusso L, Cogliati C, Riva A, Gidaro A, Caccia S. Patterns of C1-Inhibitor Plasma Levels and Kinin–Kallikrein System Activation in Relation to COVID-19 Severity. Life. 2024; 14(12):1525. https://doi.org/10.3390/life14121525
Chicago/Turabian StyleBerra, Silvia, Debora Parolin, Chiara Suffritti, Andrea Folcia, Andrea Zanichelli, Luca Gusso, Chiara Cogliati, Agostino Riva, Antonio Gidaro, and Sonia Caccia. 2024. "Patterns of C1-Inhibitor Plasma Levels and Kinin–Kallikrein System Activation in Relation to COVID-19 Severity" Life 14, no. 12: 1525. https://doi.org/10.3390/life14121525
APA StyleBerra, S., Parolin, D., Suffritti, C., Folcia, A., Zanichelli, A., Gusso, L., Cogliati, C., Riva, A., Gidaro, A., & Caccia, S. (2024). Patterns of C1-Inhibitor Plasma Levels and Kinin–Kallikrein System Activation in Relation to COVID-19 Severity. Life, 14(12), 1525. https://doi.org/10.3390/life14121525