Sugarcane Pokkah Boeng Disease: Insights and Future Directions for Effective Management
Abstract
:1. Introduction
2. Epidemiology, Ecology, and Dissemination of Pokkah Boeng Pathogens
2.1. History
2.2. Symptoms and Host Range
2.2.1. Chlorotic Stage
2.2.2. Acute or Top Rot Stage
2.2.3. Knife-Cut Stage
Pathogens | Morphology | Pigmentation | Host | Severity | Refs |
---|---|---|---|---|---|
Fusarium proliferatum | Soft and fluffy, macroconidia were hyaline, 3 to 5 septate, fusiform and micro conidia are ovoid, 0 to 1 septate, hyaline | Greyish-white to pale purple | Maize, sugarcane | High | [25,26] |
F. fujuikuroi | Cottony growth, macroconidia were hyaline, 3 to 5 septate and micro conidia are ovoid, 0 to 1 septate | Purple | Maize, sugarcane | Extremely high | [27,28] |
F. verticilloides | Cottony growth, macroconidia were hyaline, 3 to 5 septate and micro conidia are ovoid, 0 to 1 septate | Light pink to dark purple | Maize, sugarcane | Medium | [29] |
F. subglutinasis | Cottony growth, macroconidia were hyaline, 3 to 5 septate and micro conidia are ovoid, 0 to 1 septate | Pinkish white or yellowish violet | Maize, sugarcane | Moderate | [30] |
F. sacchari | Cottony growth, macroconidia were hyaline, 3 to 5 septate and micro conidia are ovoid, 0 to 1 septate | Pink to purple | Sugarcane | High | [31] |
F. andiyazi | Cottony aerial mycelium, macroconidia were 3 to 5 septate and micro conidia are ovoid, 0 to 1 septate | Violet-colored | Sugarcane | Less | [32] |
2.3. Environmental Factors Influence the Pokkah Boeng Disease
2.4. Life Cycle of Pokkah Boeng Disease Causing Fusarium sp.
3. Multitrophic Interaction of Pokkah Boeng, Mealybug, and Sugarcane
4. Molecular-Based Detection of Pokkah Boeng Pathogen
5. Management of Pokkah Boeng Diseases
5.1. Cultural Methods
5.2. Chemical Control
5.3. Biological Control Agents
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Powar, R.; Mehetre, S.; Patil, P.; Patil, R.; Wagavekar, V.; Turkewadkar, S.; Patil, S. Study on energy use efficiency for sugarcane crop production using the data envelopment analysis (DEA) technique. J. Biosyst. Eng. 2020, 45, 291–309. [Google Scholar] [CrossRef]
- FAOFAOSTAT. Available online: http://www.fao.org/faostat/en/”\l“data/QC”\t“_blank (accessed on 15 November 2024).
- Indian Sugar Mills Association. Price Policy of Sugarcane. Available online: https://www.indiansugar.com/uploads/FINAL_CACP_Oct_2021.pdf (accessed on 15 November 2024).
- Mehdi, F.; Cao, Z.; Zhang, S.; Gan, Y.; Cai, W.; Peng, L.; Wu, Y.; Wang, W.; Yang, B. Factors affecting the production of sugarcane yield and sucrose accumulation: Suggested potential biological solutions. Front. Plant Sci. 2024, 15, 1374228. [Google Scholar]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Cao, Z.; Tang, H.; Cai, Y.; Zeng, B.; Zhao, J.; Tang, X.; Lu, M.; Wang, H.; Zhu, X.; Wu, X. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high-temperature tolerance at the heading stage. Plant Biotechnol. J. 2022, 20, 1591–1605. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Viswanathan, R. Need for a paradigm shift in sugarcane disease management. Perspectives in Sugarcane Agriculture. Coimbatore Soc. Sugarcane Res. Dev. 2012, 171–296. [Google Scholar]
- Rott, P. A Guide to Sugarcane Diseases; Editions Quae: Versailles, France, 2000. [Google Scholar]
- Awan, M.F.; Ali, A.; Muzaffar, A.; Abbas, M.A.; Rao, A.Q.; Qamar, Z.; Butt, S.J.; Khan, G.A.; Rashid, B.; Nasir, I.A. Transgenic cotton: Harboring broad term resistance against insect and weeds through incorporation of CEMB double Bt and cp4EPSPS genes. Pak. J. Agric. Sci. 2016, 53, 501–505. [Google Scholar]
- Wada, A.; Abo, M.; Agboire, S.; Obakin, F.; Okusanya, B. Incidence, severity and distribution of sugarcane diseases in Nigeria. I. Southern Guinea Savannah zone. Discov. Innov. 1999, 11, 33–39. [Google Scholar] [CrossRef]
- Viswanathan, R.; Rao, G. Disease scenario and management of major sugarcane diseases in India. Sugar Tech. 2011, 13, 336–353. [Google Scholar] [CrossRef]
- Viswanathan, R. Varietal degeneration in sugarcane and its management in India. Sugar Tech. 2016, 18, 1–7. [Google Scholar] [CrossRef]
- Viswanathan, R. Sustainable ecofriendly disease management systems in sugarcane production under the changing climate. J. Mycol. Plant Pathol. 2013, 43, 12–27. [Google Scholar]
- Viswanathan, R. Status of sugarcane wilt: One hundred years after its occurrence in India. J. Sugarcane Res. 2013, 3, 86–106. [Google Scholar]
- Viswanathan, R.; Malathi, P.; Sundar, A.R.; Poongothai, M.; Singh, N. Current status of sugarcane wilt in India. Sugar Cane Int. 2006, 24, 3–7. [Google Scholar]
- Wakker, J.H. “De” Ziekten Van Het Suikerriet Op Java; Brill: Leiden, The Netherlands, 1898; Volume 1. [Google Scholar]
- Karuppaiyan, R.; Ram, B.; Ramdiya, S.; Ali, M.; Meena, M. The incidence of pokkah boeng in indigenous and exotic sugarcane (Saccharum officinarum) clones. Indian J. Agric. Sci. 2015, 85, 596–601. [Google Scholar] [CrossRef]
- Zakaria, L. Fusarium species associated with diseases of major tropical fruit crops. Horticulturae 2023, 9, 322. [Google Scholar] [CrossRef]
- Arie, T. Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. J. Pestic. Sci. 2019, 44, 275–281. [Google Scholar] [CrossRef]
- Achar, P.N.; Sreenivasa, M.Y. Current perspectives of biocontrol agents for management of Fusarium verticillioides and its fumonisin in cereals—A review. J. Fungi 2021, 7, 776. [Google Scholar] [CrossRef]
- Vishwakarma, S.; Kumar, P.; Nigam, A.; Singh, A.; Kumar, A. Pokkah boeng: An emerging disease of sugarcane. J. Plant Pathol. Microbiol. 2013, 4, 2. [Google Scholar]
- Patil, A.; Hema Singh, H.S.; Sharma, S.; Rao, G. Morphology and pathogenicity of isolates of Fusarium moniliforme causing Pokkah boeng disease of sugarcane in Maharashtra. In Microbial Diversity: Modern Trends; Daya Publishing House: Delhi, India, 2007. [Google Scholar]
- Bourne, B. Fusarium Sett or Stem Rot. Vol. I, Sugar-Cane Diseases of the World; Martin, J.P., Abbott, E.V., Hughes, C.G., Eds.; Elsevier: New York, NY, USA, 1961; pp. 187–202. [Google Scholar]
- Kee, Y.J.; Zakaria, L.; Mohd, M.H. Morphology, phylogeny and pathogenicity of Fusarium species from Sansevieria trifasciata in Malaysia. Plant Pathol. 2020, 69, 442–454. [Google Scholar] [CrossRef]
- Proctor, R.H.; Desjardins, A.E.; Moretti, A. Biological and chemical complexity of Fusarium proliferatum. In The Role of Plant Pathology in Food Safety and Food Security; Springer: Berlin/Heidelberg, Germany, 2010; pp. 97–111. [Google Scholar]
- Jiang, H.; Wu, N.; Jin, S.; Ahmed, T.; Wang, H.; Li, B.; Wu, X.; Bao, Y.; Liu, F.; Zhang, J.-Z. Identification of rice seed-derived Fusarium spp. and development of LAMP assay against Fusarium fujikuroi. Pathogens 2020, 10, 1. [Google Scholar] [CrossRef]
- Qiu, J.; Lu, Y.; He, D.; Lee, Y.-W.; Ji, F.; Xu, J.; Shi, J. Fusarium fujikuroi species complex associated with rice, maize, and soybean from Jiangsu province, China: Phylogenetic, pathogenic, and toxigenic analysis. Plant Dis. 2020, 104, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Mohan, C.; Hunjan, M.S. Morphological and pathological characterization of Fusarium verticillioides from different maize growing areas of Punjab. Indian Phytopathol. 2016, 69, 190–194. [Google Scholar]
- Shin, J.-H.; Han, J.-H.; Lee, J.K.; Kim, K.S. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathol. J. 2014, 30, 397. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Melo, M.; Guimarães, E.; Veiga, C.; Carmo Sandin, F.; Moreira, G.; Costa, S.; Pfenning, L. Identification and pathogenicity of Fusarium species associated with pokkah boeng of sugarcane in Brazil. Plant Pathol. 2019, 68, 1350–1360. [Google Scholar] [CrossRef]
- Zidan, L.; Jawdat, D.; Naffaa, W. Morphology, pathogenicity and molecular identification of some Fusarium species within the Gibberella fujikuroi species complex from wheat in Syria. Curr. Res. Environ. Appl. Mycol. 2020, 10, 156–166. [Google Scholar] [CrossRef]
- Manjula, P.A.; Kishore Verma, P.; Manoj Kumar, V. Efficacy of Bacillus spp., against Fusarium sacchari causing Pokkah boeng disease of sugarcane under in vitro condition. Management 2017, 2, 468–473. [Google Scholar]
- Kumar, V.; Singh, V.P.; Kumar, B.; Srivastava, S.; Kumar, B. Effect of soil properties and chemotherapeutants on pokkah boeng disease of sugarcane. Plant Pathol. J. Faisalabad 2018, 17, 51–58. [Google Scholar] [CrossRef]
- Kumar, P.; Misra, A.; Srivastava, A.; Modi, D. Mapping of F. moniliforme var. subglutinans from normal and malformed panicles and seedlings of mango by recovery method. Plant Arch. 2011, 11, 567–569. [Google Scholar]
- Ranjan, A.; Minnatullah, M.; Chand, H.; Singh, S.P.; Dubey, S. Evaluation of sugarcane varieties against pokkah boeng disease and its natural occurrence. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 44–50. [Google Scholar] [CrossRef]
- Kim, H.; Woloshuk, C. Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet. Biol. 2008, 45, 947–953. [Google Scholar] [CrossRef]
- Ma, L.-J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, P.; Sieber, C.M.; Von Bargen, K.W.; Studt, L.; Niehaus, E.-M.; Espino, J.J.; Huss, K.; Michielse, C.B.; Albermann, S.; Wagner, D. Deciphering the cryptic genome: Genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog. 2013, 9, e1003475. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Jadhav, S. Studies on Pokkah Boeng and Pine Apple Disease of Sugarcane in Maharashtra with Their Economic Losses in Yield and Quality of Sugarcane; Final Project Report, ICAR; Vasantdada Sugar Institute: Pune, India, 1995; pp. 1–570. [Google Scholar]
- Jeyakumar, J.M.J.; Zhang, M. Symptoms and their assessment of sugarcane pokkah boeng. Int. J. Environ. Agric. Res. United States Am. 2020, 6, 50–54. [Google Scholar]
- Geetha, N.; Viswanathan, R.; Ramasubramanian, T.; Salin, K.; Yogambal, C.; Nirmala Devi, P.; Karthigeyan, S.; Chitra, N. Phenacoccus saccharifolii (Green)(Pseudococcidae: Hemiptera) on sugarcane in Tamil Nadu, India. Curr. Sci. 2022, 123, 1142–1151. [Google Scholar] [CrossRef]
- Holliday, P. Fungus Diseases of Tropical Crops; Courier Corporation: Chelmsford, MA, USA, 1995. [Google Scholar]
- Tnau Agriech Portal; TamilNadu Agricultural University. Crop Production: Sugarcane. Available online: https://agritech.tnau.ac.in/agriculture/sugarcrops_sugarcane.html (accessed on 15 November 2024).
- Dimant, E.; Degani, O. Molecular real-time PCR monitoring of onion fusarium basal rot chemical control. J. Fungi 2023, 9, 809. [Google Scholar] [CrossRef]
- Tiwari, R.; Shukla, S.; Jaiswal, V.; Sharma, L.; Joshi, D.; Chandra, K.; Gaur, A.; Srivastava, A.; Tiwari, R.K. Bio-control potential of Trichoderma spp., against Fusarium spp., the incitants of Pokkah boeng disease of sugarcane under in-vitro conditions. Indian Phytopathol. 2021, 74, 691–701. [Google Scholar] [CrossRef]
- Shuai, J.; Tu, Q.; Zhang, Y.; Xia, X.; Wang, Y.; Cao, S.; Dong, Y.; Zhou, X.; Zhang, X.; Zhang, Z. Silence of five F. graminearum genes in wheat host confers resistance to Fusarium head blight. J. Integr. Agric. 2024. [Google Scholar] [CrossRef]
- Tamil Nadu Agricultural University. Agriportal Sugarcane Diseases. Available online: http://www.agritech.tnau.ac.in./agriculture/agri_index.html (accessed on 15 November 2024).
- Shan, H.; Cang, X.; Qin, W.; Li, W.; Wang, X.; Zhang, R.; Huang, Y.-K. Resistance to pokkah boeng disease in new and main cultivated sugarcane varieties. Euphytica 2021, 217, 194. [Google Scholar] [CrossRef]
- Viswanathan, R.; Malathi, P.; Annadurai, A.; Prasanth, C.N.; Scindiya, M. Sudden occurrence of wilt and pokkah boeng in sugarcane and status of resistance in the parental clones in National Hybridization Garden to these diseases. J. Sugarcane Res. 2014, 4, 62–81. [Google Scholar]
- Dabas, H. Spray Buttermilk to Save Cane Crop from Pokkah Boeng Disease. The Times of India, 1 October 2017.
- Sundara, B. Sugarcane ratoons, their importance and establishment. In Ratoon Management in Sugarcane; Shanthy, T.R., Prathap, D.P., Eds.; Sugarcane Breeding Institute: Coimbatore, India, 2008; pp. 6–11. [Google Scholar]
- Gomathi, R.; Rao, P.N.G.; Rakkiyappan, P.; Sundara, B.P.; Shiyamala, S. Physiological studies on ratoonability of sugarcane varieties under tropical Indian condition. Am. J. Plant Sci. 2013, 4, 27910. [Google Scholar] [CrossRef]
- Mo, X. Method for Preventing and Treating Sugarcane Pokkah Boeng Disease. Chinese Patent CN105230410A, 27 April 2018. [Google Scholar]
- Gandhi, V.; Mehra, R. Efficacy of different fungicides on pokkah boeng disease of sugarcane. J. Pharmacogn. Phytochem. 2021, 10, 285–287. [Google Scholar]
- Xu, S.; Wang, J.; Wang, H.; Bao, Y.; Li, Y.; Govindaraju, M.; Yao, W.; Chen, B.; Zhang, M. Molecular characterization of carbendazim resistance of Fusarium species complex that causes sugarcane pokkah boeng disease. Bmc Genom. 2019, 20, 115. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-Y.; Zhu, Y.-F.; Liu, Y.-Y.; Deng, Y.-Y.; Li, W.; Zhang, A.-X.; Chen, H.-G. Evaluation of tebuconazole for the management of Fusarium head blight in China. Australas. Plant Pathol. 2014, 43, 631–638. [Google Scholar] [CrossRef]
- Song, Y.; Chen, X.; Sun, J.; Bai, Y.; Jin, L.; Lin, Y.; Sun, Y.; Cao, H.; Chen, Y. In vitro determination of sensitivity of Fusarium fujikuroi to fungicide azoxystrobin and investigation of resistance mechanism. J. Agric. Food Chem. 2022, 70, 9760–9768. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological control of plant pathogens: A global perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Collinge, D.B.; Jensen, D.F.; Rabiey, M.; Sarrocco, S.; Shaw, M.W.; Shaw, R.H. Biological control of plant diseases—What has been achieved and what is the direction? Plant Pathol. 2022, 71, 1024–1047. [Google Scholar] [CrossRef]
- Munir, S.; Li, Y.; He, P.; Huang, M.; He, P.; He, P.; Cui, W.; Wu, Y.; He, Y. Core endophyte communities of different citrus varieties from citrus growing regions in China. Sci. Rep. 2020, 10, 3648. [Google Scholar] [CrossRef]
- Ahmed, W.; Zhou, G.; Yang, J.; Munir, S.; Ahmed, A.; Liu, Q.; Zhao, Z.; Ji, G. Bacillus amyloliquefaciens WS-10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco. Egypt. J. Biol. Pest Control 2022, 32, 25. [Google Scholar] [CrossRef]
- Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S. Modes of action of microbial biocontrol in the phyllosphere. Front. Microbiol. 2020, 11, 1619. [Google Scholar] [CrossRef]
- Li, D.; Tao, W.; Yu, D.; Li, S. Emulsifying properties of rhamnolipids and their in vitro antifungal activity against plant pathogenic fungi. Molecules 2022, 27, 7746. [Google Scholar] [CrossRef]
- Pitiwittayakul, N.; Wongsorn, D.; Tanasupawat, S. Characterisation of plant growth-promoting endophytic bacteria from sug-arcane and their antagonistic activity against Fusarium moniliforme. Trop. Life Sci. Res. 2021, 32, 97. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Chen, Z.; Liang, T.; Yang, S.; Tan, H. Analysis of metabolome and microbiome revealed the resistance mechanisms in sugarcane cultivars with high resistance to pokkah boeng disease. Chem. Biol. Technol. Agric. 2024, 11, 42. [Google Scholar] [CrossRef]
- Solis-Palacios, R.; Hernández-Ramírez, G.; Salinas-Ruiz, J.; Hidalgo-Contreras, J.V.; Gómez-Merino, F.C. Effect and compatibility of phosphite with Trichoderma sp. isolates in the control of the Fusarium species complex causing pokkah boeng in sugarcane. Agronomy 2021, 11, 1099. [Google Scholar] [CrossRef]
- Anshu, A.; Agarwal, P.; Mishra, K.; Yadav, U.; Verma, I.; Chauhan, S.; Srivastava, P.K.; Singh, P.C. Synergistic action of Trichoderma koningiopsis and T. asperellum mitigates salt stress in paddy. Physiol. Mol. Biol. Plants 2022, 28, 987–1004. [Google Scholar] [CrossRef]
- Hirozawa, M.T.; Ono, M.A.; de Souza Suguiura, I.M.; Bordini, J.G.; Hirooka, E.Y.; Ono, E.Y.S. Antifungal effect and some properties of cell-free supernatants of two Bacillus subtilis isolates against Fusarium verticillioides. Braz. J. Microbiol. 2024, 1–12. [Google Scholar] [CrossRef]
- Perrony, P.E.P.; Guimarães, R.A.; Reis, L.O.; Gomes, L.B.; da Silva, L.J.; de Albuquerque Correa, C.M.; da Silva, J.C.P.; de Medeiros, F.H.V. Selectivity of chemical and biological foliar treatments on the phyllosphere communities of bacteria and fungi antagonistic to Fusarium verticillioides in maize. J. Phytopathol. 2023, 171, 656–672. [Google Scholar] [CrossRef]
- Ayala-Torres, A.M.; Aranda-Ocampo, S.; León-García de Alba, C.D.; Nava-Díaz, C.; Sánchez-Pale, J.R. Antagonistic bacteria against Fusarium spp. isolated from sclerotia of Claviceps gigantea in maize (Zea mays). Rev. Mex. De Fitopatol. 2023, 41, 143–164. [Google Scholar] [CrossRef]
- Olowe, O.M.; Nicola, L.; Asemoloye, M.D.; Akanmu, A.O.; Sobowale, A.A.; Babalola, O.O. Characterization and antagonistic potentials of selected rhizosphere Trichoderma species against some Fusarium species. Front. Microbiol. 2022, 13, 985874. [Google Scholar] [CrossRef]
- Ran, J.; Wu, Y.; Zhang, B.; Su, Y.; Lu, N.; Li, Y.; Liang, X.; Zhou, H.; Shi, J. Paenibacillus polymyxa antagonism towards Fusarium: Identification and optimisation of antibiotic production. Toxins 2023, 15, 138. [Google Scholar] [CrossRef]
Common Name | Trade Name | Chemical Group/Class | References |
---|---|---|---|
Carbendazim | Bavistin | Benzimidazole | [18] |
Copper oxychloride | Blitox | Inorganic chemical compound | [56] |
Mancozeb | Dithane | Ethylenebisdithiocarbamate | [55] |
Propiconazole | Zerox | Triazole fungicide | [55] |
Tebuconazole | Folicur | Triazole fungicide | [57] |
Hexaconazole | Alert Creeper | Triazole fungicide | [55] |
Azoxystrobulin | Amistar | Methoxyacrylate class of organic compounds | [58] |
Chlorothalonil | Bravo | Organochlorine fungicide | [55] |
Biocontrol Agent | Fusarium Pathogens | Mode of Action | References |
---|---|---|---|
B. subtilis | F. verticillioides | Produce chitinase and glucanase | [69] |
Burkholderia sp. | F. verticillioides, F. proliferatum | NR | [70] |
P. fluorescens | F. verticillioides | Antifungal activity and induced systemic resistance (ISR) | [71] |
T. viride and T. harzianum | F. fujikuroi and F. proliferatum | Competition for food and space | [72] |
Paenibacillus polymyxa | F. verticillioides | NR | [73] |
P. aeruginosa | F.sacchari | Antifungal activity | [64] |
T. harzianum | Fusarium sp. | Hyperparasitism | [50] |
B. amyloliquefaciens | F. sacchari | NR | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poorniammal, R.; Jernisha, J.; Prabhu, S.; Dufossé, L. Sugarcane Pokkah Boeng Disease: Insights and Future Directions for Effective Management. Life 2024, 14, 1533. https://doi.org/10.3390/life14121533
Poorniammal R, Jernisha J, Prabhu S, Dufossé L. Sugarcane Pokkah Boeng Disease: Insights and Future Directions for Effective Management. Life. 2024; 14(12):1533. https://doi.org/10.3390/life14121533
Chicago/Turabian StylePoorniammal, Rajendran, Jerald Jernisha, Somasundaram Prabhu, and Laurent Dufossé. 2024. "Sugarcane Pokkah Boeng Disease: Insights and Future Directions for Effective Management" Life 14, no. 12: 1533. https://doi.org/10.3390/life14121533
APA StylePoorniammal, R., Jernisha, J., Prabhu, S., & Dufossé, L. (2024). Sugarcane Pokkah Boeng Disease: Insights and Future Directions for Effective Management. Life, 14(12), 1533. https://doi.org/10.3390/life14121533