Characterization and PCR Application of Family B DNA Polymerases from Thermococcus stetteri
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origins of the Archaeal Strain, Laboratory E. coli Strains, and Enzymes
2.2. Molecular Cloning
2.3. Expression and Purification of Recombinant Tst DNA Polymerases
2.4. DNA Polymerase Unit Assay
2.5. Thermostability Assay
2.6. Optimization of PCR Amplification
2.7. PCR Efficiency Assay
2.8. Steady-State Kinetic Assays
3. Results and Discussion
3.1. DNA Polymerase Gene
3.2. TstP36H–Sso7d DNA Polymerase
3.3. Purification of Tst DNA Polymerases
3.4. Characterization of Tst DNA Polymerases
3.5. Comparison Between PCR Efficiency of the Tst and PfuV93Q–Sso7d DNA Polymerases
3.6. Kinetic Analysis of TstP36H–Sso7d DNA Polymerases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, H.; Zhang, H.; Xu, Y.; Laššáková, S.; Korabečná, M.; Neužil, P. PCR Past, Present and Future. Biotechniques 2020, 69, 317–325. [Google Scholar] [CrossRef]
- Terpe, K. Overview of Thermostable DNA Polymerases for Classical PCR Applications: From Molecular and Biochemical Fundamentals to Commercial Systems. Appl. Microbiol. Biotechnol. 2013, 97, 10243–10254. [Google Scholar] [CrossRef] [PubMed]
- Yasukawa, K.; Yanagihara, I.; Fujiwara, S. Alteration of Enzymes and Their Application to Nucleic Acid Amplification (Review). Int. J. Mol. Med. 2020, 46, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
- Aschenbrenner, J.; Marx, A. DNA Polymerases and Biotechnological Applications. Curr. Opin. Biotechnol. 2017, 48, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Coulther, T.A.; Stern, H.R.; Beuning, P.J. Engineering Polymerases for New Functions. Trends Biotechnol. 2019, 37, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Reha-Krantz, L.J.; Woodgate, S.; Goodman, M.F. Engineering Processive DNA Polymerases with Maximum Benefit at Minimum Cost. Front. Microbiol. 2014, 5, 380. [Google Scholar] [CrossRef]
- Kuznetsova, A.A.; Kuznetsov, N.A. Direct Enzyme Engineering of B Family DNA Polymerases for Biotechnological Approaches. Bioengineering 2023, 10, 1150. [Google Scholar] [CrossRef]
- Gibbs, M.D.; Reeves, R.A.; Mandelman, D.; Mi, Q.; Lee, J.; Bergquist, P.L. Molecular Diversity and Catalytic Activity of Thermus DNA Polymerases. Extremophiles 2009, 13, 817–826. [Google Scholar] [CrossRef]
- Choi, J.J.; Jung, S.E.; Kim, H.K.; Kwon, S.T. Purification and Properties of Thermus filiformis DNA Polymerase Expressed in Escherichia coli. Biotechnol. Appl. Biochem. 1999, 30, 19–25. [Google Scholar] [CrossRef]
- Harrell, R.A.; Hart, R.P. Rapid Preparation of Thermus flavus DNA Polymerase. Genome Res. 1994, 3, 372–375. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, J.S.; Kwon, S.; Lee, D. Purification and Characterization of Thermus caldophilus GK24 DNA Polymerase. Eur. J. Biochem. 1993, 214, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Carballeira, N.; Nazabal, M.; Brito, J.; Garcia, O. Purification of a Thermostable DNA Polymerase from Thermus thermophilus HB8, Useful in the Polymerase Chain Reaction. Biotechniques 1990, 9, 276–281. [Google Scholar] [PubMed]
- Saghatelyan, A.; Panosyan, H.; Trchounian, A.; Birkeland, N. Characteristics of DNA Polymerase I from an Extreme Thermophile, Thermus scotoductus Strain K1. Microbiologyopen 2021, 10, e1149. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-P.; Ito, J. The Hyperthermophilic Bacterium Thermotoga maritime Has Two Different Classes of Family C DNA Polymerases: Evolutionary Implications. Nucleic Acids Res. 1998, 26, 5300–5309. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-W. Mutant Thermotoga neapolitana DNA Polymerase I: Altered Catalytic Properties for Non-Templated Nucleotide Addition and Incorporation of Correct Nucleotides. Nucleic Acids Res. 2002, 30, 4314–4320. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.R.; Choi, J.J.; Kim, H.-K.; Kwon, S.-T. Purification and Properties of Aquifex aeolicus DNA Polymerase Expressed in Escherichia coli. FEMS Microbiol. Lett. 2001, 201, 73–77. [Google Scholar] [CrossRef]
- Lundberg, K.S.; Shoemaker, D.D.; Adams, M.W.; Short, J.M.; Sorge, J.A.; Mathur, E.J. High-Fidelity Amplification Using a Thermostable DNA Polymerase Isolated from Pyrococcus furiosus. Gene 1991, 108, 1–6. [Google Scholar] [CrossRef]
- Gueguen, Y.; Rolland, J.; Lecompte, O.; Azam, P.; Le Romancer, G.; Flament, D.; Raffin, J.; Dietrich, J. Characterization of Two DNA Polymerases from the Hyperthermophilic Euryarchaeon Pyrococcus abyssi. Eur. J. Biochem. 2001, 268, 5961–5969. [Google Scholar] [CrossRef]
- Ghasemi, A.; Salmanian, A.H.; Sadeghifard, N.; Salarian, A.A.; Gholi, M.K. Cloning, Expression and Purification of Pwo Polymerase from Pyrococcus woesei. Iran. J. Microbiol. 2011, 3, 118–122. [Google Scholar]
- Atomi, H.; Fukui, T.; Kanai, T.; Morikawa, M.; Imanaka, T. Description of Thermococcus kodakaraensis Sp. Nov., a well studied Hyperthermophilic Archaeon Previously Reported as Pyrococcus sp. KOD1. Archaea 2004, 1, 263–267. [Google Scholar] [CrossRef]
- Mattila, P.; Korpela, J.; Tenkanen, T.; Pitkämem, K. Fidelity of DNA Synthesis by the Thermococcus litoralis DNA Polymerase—An Extremely Heat Stable Enzyme with Proofreading Activity. Nucleic Acids Res. 1991, 19, 4967–4973. [Google Scholar] [CrossRef] [PubMed]
- Cambon-Bonavita, M.-A.; Schmitt, P.; Zieger, M.; Flaman, J.-M.; Lesongeur, F.; Gérard, R.; Bindel, D.; Frisch, N.; Lakkis, Z.; Dupret, D.; et al. Cloning, Expression, and Characterization of DNA Polymerase I from the Hyperthermophilic Archaea Thermococcus fumicolans. Extremophiles 2000, 4, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.P.; Bae, H.; Kim, I.H.; Kwon, S.-T. Cloning, Expression, and PCR Application of DNA Polymerase from the Hyperthermophilic Archaeon, Thermococcus celer. Biotechnol. Lett. 2011, 33, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.S.; Yu, M.; Kim, S.H.; Kwon, S.-T. Enhanced PCR Efficiency of High-Fidelity DNA Polymerase from Thermococcus waiotapuensis. Enzym. Microb. Technol. 2014, 63, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Miroshnichenko, M.L.; Gongadze, G.M.; Rainey, F.A.; Kostyukova, A.S.; Lysenko, A.M.; Chernyh, N.A.; Bonch-Osmolovskaya, E.A. Thermococcus gorgonarius Sp. Nov. and Thermococcus pacificus Sp. Nov.: Heterotrophic Extremely Thermophilic Archaea from New Zealand Submarine Hot Vents. Int. J. Syst. Bacteriol. 1998, 48 Pt 1, 23–29. [Google Scholar] [CrossRef]
- Griffiths, K.; Nayak, S.; Park, K.; Mandelman, D.; Modrell, B.; Lee, J.; Ng, B.; Gibbs, M.D.; Bergquist, P.L. New High Fidelity Polymerases from Thermococcus Species. Protein Expr. Purif. 2007, 52, 19–30. [Google Scholar] [CrossRef]
- Kwon, K.-M.; Kang, S.G.; Sokolova, T.G.; Cho, S.S.; Kim, Y.J.; Kim, C.-H.; Kwon, S.-T. Characterization of a Family B DNA Polymerase from Thermococcus barophilus Ch5 and Its Application for Long and Accurate PCR. Enzym. Microb. Technol. 2016, 86, 117–126. [Google Scholar] [CrossRef]
- Huang, H.; Keohavong, P. Fidelity and Predominant Mutations Produced by Deep Vent Wild-Type and Exonuclease-Deficient DNA Polymerases During In Vitro DNA Amplification. DNA Cell Biol. 1996, 15, 589–594. [Google Scholar] [CrossRef]
- Ppyun, H.; Kim, S.H.; Youn, M.H.; Cho, S.S.; Kwon, K.M.; Kweon, D.-H.; Kwon, S.-T. Improved PCR Performance and Fidelity of Double Mutant Neq A523R/N540R DNA Polymerase. Enzym. Microb. Technol. 2016, 82, 197–204. [Google Scholar] [CrossRef]
- Miroshnichenko, M.L.; Bonch-Osmolovskaya, E.A.; Neuner, A.; Kostrikina, N.A.; Chernych, N.A.; Alekseev, V.A. Thermococcus stetteri Sp. Nov., a New Extremely Thermophilic Marine Sulfur-Metabolizing Archaebacterium. Syst. Appl. Microbiol. 1989, 12, 257–262. [Google Scholar] [CrossRef]
- Tveit, H.; Kristensen, T. Fluorescence-Based DNA Polymerase Assay. Anal. Biochem. 2001, 289, 96–98. [Google Scholar] [CrossRef] [PubMed]
- Elshawadfy, A.M.; Keith, B.J.; Ee Ooi, H.; Kinsman, T.; Heslop, P.; Connolly, B.A. DNA Polymerase Hybrids Derived from the Family-B Enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: Improving Performance in the Polymerase Chain Reaction. Front. Microbiol. 2014, 5, 224. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.K.; Chen, R.; Skasko, M.; Reynolds, H.M.; Lee, K.; Bambara, R.A.; Mansky, L.M.; Kim, B. A Role for DNTP Binding of Human Immunodeficiency Virus Type 1 Reverse Transcriptase in Viral Mutagenesis. Biochemistry 2004, 43, 4490–4500. [Google Scholar] [CrossRef] [PubMed]
- Skasko, M.; Weiss, K.K.; Reynolds, H.M.; Jamburuthugoda, V.; Lee, K.; Kim, B. Mechanistic Differences in RNA-Dependent DNA Polymerization and Fidelity Between Murine Leukemia Virus and HIV-1 Reverse Transcriptases. J. Biol. Chem. 2005, 280, 12190–12200. [Google Scholar] [CrossRef] [PubMed]
- Madeira, F.; Madhusoodanan, N.; Lee, J.; Eusebi, A.; Niewielska, A.; Tivey, A.R.N.; Lopez, R.; Butcher, S. The EMBL-EBI Job Dispatcher Sequence Analysis Tools Framework in 2024. Nucleic Acids Res. 2024, 52, W521–W525. [Google Scholar] [CrossRef]
- Blanco, L.; Bernad, A.; Blasco, M.A.; Salas, M. A General Structure for DNA-Dependent DNA Polymerases. Gene 1991, 100, 27–38. [Google Scholar] [CrossRef]
- Braithwaite, D.K.; Ito, J. Compilation, Alignment, and Phylogenetic Relationships of DNA Polymerases. Nucleic Acids Res. 1993, 21, 787–802. [Google Scholar] [CrossRef]
- Truniger, V.; Lázaro, J.M.; Salas, M.; Blanco, L. A DNA Binding Motif Coordinating Synthesis and Degradation in Proofreading DNA Polymerases. EMBO J. 1996, 15, 3430–3441. [Google Scholar] [CrossRef]
- Śpibida, M.; Krawczyk, B.; Olszewski, M.; Kur, J. Modified DNA Polymerases for PCR Troubleshooting. J. Appl. Genet. 2017, 58, 133–142. [Google Scholar] [CrossRef]
- Wang, Y. A Novel Strategy to Engineer DNA Polymerases for Enhanced Processivity and Improved Performance In Vitro. Nucleic Acids Res. 2004, 32, 1197–1207. [Google Scholar] [CrossRef]
- Fogg, M.J.; Pearl, L.H.; Connolly, B.A. Structural Basis for Uracil Recognition by Archaeal Family B DNA Polymerases. Nat. Struct. Biol. 2002, 9, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Firbank, S.J.; Wardle, J.; Heslop, P.; Lewis, R.J.; Connolly, B.A. Uracil Recognition in Archaeal DNA Polymerases Captured by X-Ray Crystallography. J. Mol. Biol. 2008, 381, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Tubeleviciute, A.; Skirgaila, R. Compartmentalized Self-Replication (CSR) Selection of Thermococcus litoralis Sh1B DNA Polymerase for Diminished Uracil Binding. Protein Eng. Des. Sel. 2010, 23, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Oscorbin, I.P.; Belousova, E.A.; Boyarskikh, U.A.; Zakabunin, A.I.; Khrapov, E.A.; Filipenko, M.L. Derivatives of Bst-like Gss-Polymerase with Improved Processivity and Inhibitor Tolerance. Nucleic Acids Res. 2017, 45, 9595–9610. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.M. PCR Amplification of up to 35-Kb DNA with High Fidelity and High Yield from Lambda Bacteriophage Templates. Proc. Natl. Acad. Sci. USA 1994, 91, 2216–2220. [Google Scholar] [CrossRef]
- Kuznetsov, N.A.; Fedorova, O.S. Thermodynamic Analysis of Fast Stages of Specific Lesion Recognition by DNA Repair Enzymes. Biochemistry 2016, 81, 1136–1152. [Google Scholar] [CrossRef]
Primer Name | Primer Sequence (5′→3′) |
---|---|
Tst_F | GGACCATATGATCCTCGACACAGACTACATAACCG |
Tst_R | GTGCGGCCGCTCACCCCTTCCCCTTCGGC |
Tst–P36H_F | 5′–GACTACGATAGGACTTTCGAACATTACTTCTACGCCCTTCTGAAGG–3′ |
Tst–P36H_R | 5′–CCTTCAGAAGGGCGTAGAAGTAATGTTCGAAAGTCCTATCGTAGTC–3′ |
Tst–SSo7d_F | CTGGCTGAAGCCGAAGGGGAAGGGGGGTACCGGCGGTGGCGGTGCA ACCGTAAAGTTCAAGTACAAAGGCGAAGAAAAAGAGGTAGACATCT CCAAGATCAAGAAAGTATGGCGTGTGGGCAAGATGATCTCCTTCACC TACGACGAGGGCGGTGGCAAGACCGGCCGTGGTGCGGTAAGCGAAA AGGACGCGCCGAAGGAGCTGCTGCAGATGCTGGAGAAGCAGAAAAA GTGAGCGGCCGCGGTACCGG |
Tst–SSo7d_R | CCGGTACCGCGGCCGCTCACTTTTTCTGCTTCTCCAGCATCTGCAGCA GCTCCTTCGGCGCGTCCTTTTCGCTTACCGCACCACGGCCGGTCTTGC CACCGCCCTCGTCGTAGGTGAAGGAGATCATCTTGCCCACACGCCAT ACTTTCTTGATCTTGGAGATGTCTACCTCTTTTTCTTCGCCTTTGTACT TGAACTTTACGGTTGCACCGCCACCGCCGGTACCCCCCTTCCCCTTCG GCTTCAGCCAG |
Primer Name (Target Size) | Primer Sequence (5′→3′) | λ DNA Sequence (bp) |
---|---|---|
λ–Anchor–F | CCTGCTCTGCCGCTTCACGCAGTGC | 30,352–30,376 |
λ–2 kb–R (2 kb) | CCATGATTCAGTGTGCCCGTCTGG | 32,326–32,349 |
λ–4 kb–R (4 kb) | CCAGGACTATCCGTATGACTACG | 34,286–34,315 |
λ–6 kb–R (6 kb) | GAGATGGCATATTGCTACGCAAGA | 36,339–36,362 |
λ–8 kb–R (8 kb) | GCCTCGTTGCGTTTGTTTGCACG | 38,373–38,395 |
λ–10 kb–R (10 kb) | GCACAGAAGCTATTATGCGTCCCCAGG | 40,316–40,342 |
λ–12 kb–R (12 kb) | TCTTCCTCGTGCATCGAGCTATTCGG | 42,401–42,426 |
λ–15 kb–R (15 kb) | CTTGTTCCTTTGCCGCGAGAATGG | 45,220–45,243 |
λ–Anchor–20F | GATACGGGAAAACGTAAAACCTTCG | 1755–1779 |
λ–20 kb–R | GACTGTCCGTTTTCGATAAATAAGC | 21,728–21,752 |
Pr_33nt | CTCTGTACGTTGGTCCTGAAGGAGGATAGGTTG | |
Template_90nt | CCGTCAGCTGTGCCGTCGCGCAGCACGCGCCGCCGTGGACAGAG GACTGCAGAAAATCAACCTATCCTCCTTCAGGACCAACGTACAGAG | |
Template_44nt | GGAGACATTTTGCCTTGATAGCTGCTCGACTCATCTGGGGGCCG | |
Template_44nt_R | CGGCCCCCAGATGAGTCGAGCAGCTATCAAGGCAAAATGTCTCC | |
Pr_24ntFAM | FAM–CGGCCCCCAGATGAGTCGAGCAGC |
Organism | Amino Acid Identity (%) | |||||
---|---|---|---|---|---|---|
Tst | KOD1 | Tgo | Tfu | Tli | Pfu | |
Thermococcus stetteri | 100 | 93.93 | 92.38 | 88.40 | 77.43 | 78.91 |
Thermococcus kodakaraensis | 100 | 90.58 | 69.03 | 72.27 | 79.72 | |
Thermococcus gorgonarius | 100 | 94.05 | 75.83 | 80.36 | ||
Thermococcus fumicolans | 100 | 58.20 | 76.70 | |||
Thermococcus litoralis | 100 | 74.35 | ||||
Pyrococcus furiosus | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, A.A.; Soloveva, M.A.; Mikushina, E.S.; Gavrilova, A.A.; Bakman, A.S.; Kuznetsov, N.A. Characterization and PCR Application of Family B DNA Polymerases from Thermococcus stetteri. Life 2024, 14, 1544. https://doi.org/10.3390/life14121544
Kuznetsova AA, Soloveva MA, Mikushina ES, Gavrilova AA, Bakman AS, Kuznetsov NA. Characterization and PCR Application of Family B DNA Polymerases from Thermococcus stetteri. Life. 2024; 14(12):1544. https://doi.org/10.3390/life14121544
Chicago/Turabian StyleKuznetsova, Aleksandra A., Marina A. Soloveva, Elena S. Mikushina, Anastasia A. Gavrilova, Artemiy S. Bakman, and Nikita A. Kuznetsov. 2024. "Characterization and PCR Application of Family B DNA Polymerases from Thermococcus stetteri" Life 14, no. 12: 1544. https://doi.org/10.3390/life14121544
APA StyleKuznetsova, A. A., Soloveva, M. A., Mikushina, E. S., Gavrilova, A. A., Bakman, A. S., & Kuznetsov, N. A. (2024). Characterization and PCR Application of Family B DNA Polymerases from Thermococcus stetteri. Life, 14(12), 1544. https://doi.org/10.3390/life14121544