Increased Variability in Lower Limb Muscle Activation Is Observed with Increasing Walking Speed in Fall-Risk Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Ethical Considerations
2.2. Participants and Procedures
2.3. Data Collection
2.3.1. Fall Risk
2.3.2. Lower Limb Muscle Activity and Variability
2.3.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callisaya, M.L.; Blizzard, L.; Schmidt, M.D.; McGinley, J.L.; Srikanth, V.K. Ageing and gait variability—A population-based study of older people. Age Ageing 2010, 39, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Ellis, T.; Cavanaugh, J.T.; Earhart, G.M.; Ford, M.P.; Foreman, K.B.; Dibble, L.E. Which measures of physical function and motor impairment best predict quality of life in Parkinson’s disease? Park. Relat. Disord. 2011, 17, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Distefano, G.; Goodpaster, B.H. Effects of exercise and aging on skeletal muscle. Cold Spring Harb. Perspect. Med. 2018, 8, a029785. [Google Scholar] [CrossRef]
- Stotz, A.; Hamacher, D.; Zech, A. Relationship between muscle strength and gait parameters in healthy older women and men. Int. J. Environ. Res. Public Health 2023, 20, 5362. [Google Scholar] [CrossRef]
- Ishigaki, E.Y.; Ramos, L.G.; Carvalho, E.S.; Lunardi, A.C. Effectiveness of muscle strengthening and description of protocols for preventing falls in the elderly: A systematic review. Braz. J. Phys. Ther. 2014, 18, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zhang, Y.; Bai, J.-J.; Sun, J.; Bao, Z.-J.; Wang, Z. Impact of lower limb muscle strength on walking function beyond aging and diabetes. J. Int. Med. Res. 2020, 48, 0300060520928826. [Google Scholar] [CrossRef]
- Bobowik, P.; Wiszomirska, I. Diagnostic dependence of muscle strength measurements and the risk of falls in the elderly. Int. J. Rehabil. Res. 2020, 43, 330–336. [Google Scholar] [CrossRef]
- Promsri, A.; Cholamjiak, P.; Federolf, P. Walking stability and risk of falls. Bioengineering 2023, 10, 471. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef]
- LaRoche, D.; Joshi, P. Muscle Activation Variability as a Determinant of Gait Variability in Older Adults. Innov. Aging 2023, 7, 597. [Google Scholar] [CrossRef]
- Afschrift, M.; van Deursen, R.; De Groote, F.; Jonkers, I. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity. Gait Posture 2019, 68, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Christou, E.A.; Carlton, L.G. Old adults exhibit greater motor output variability than young adults only during rapid discrete isometric contractions. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, B524–B532. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Valentine, R.J.; Evans, E.M.; Sosnoff, J.J. Lower extremity muscle quality and gait variability in older adults. Age Ageing 2012, 41, 595–599. [Google Scholar] [CrossRef]
- Schmitz, A.; Silder, A.; Heiderscheit, B.; Mahoney, J.; Thelen, D.G. Differences in lower-extremity muscular activation during walking between healthy older and young adults. J. Electromyogr. Kinesiol. 2009, 19, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Li, X.; Li, R. Correlation analysis of gait variability and center of pressure during stance in healthy older adults. In Proceedings of the 2022 International Conference on Wearables, Sports and Lifestyle Management (WSLM), IEEE, Kunming, China, 14–16 January 2022; pp. 79–83. [Google Scholar]
- Mehmood, A.; Nadeem, A.; Ashraf, M.; Siddiqui, M.S.; Rizwan, K.; Ahsan, K. A fall risk assessment mechanism for elderly people through muscle fatigue analysis on data from body area sensor network. IEEE Sens. J. 2020, 21, 6679–6690. [Google Scholar] [CrossRef]
- Rennie, L.; Löfgren, N.; Moe-Nilssen, R.; Opheim, A.; Dietrichs, E.; Franzén, E. The reliability of gait variability measures for individuals with Parkinson’s disease and healthy older adults–The effect of gait speed. Gait Posture 2018, 62, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Malatesta, D.; Canepa, M.; Menendez Fernandez, A. The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults. Eur. J. Appl. Physiol. 2017, 117, 1833–1843. [Google Scholar] [CrossRef] [PubMed]
- Lauretani, F.; Ticinesi, A.; Gionti, L.; Prati, B.; Nouvenne, A.; Tana, C.; Meschi, T.; Maggio, M. Short-Physical Performance Battery (SPPB) score is associated with falls in older outpatients. Aging Clin. Exp. Res. 2019, 31, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Welch, S.A.; Ward, R.E.; Beauchamp, M.K.; Leveille, S.G.; Travison, T.; Bean, J.F. The Short Physical Performance Battery (SPPB): A quick and useful tool for fall risk stratification among older primary care patients. J. Am. Med. Dir. Assoc. 2021, 22, 1646–1651. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Veronese, N.; Bolzetta, F.; Toffanello, E.D.; Zambon, S.; De Rui, M.; Perissinotto, E.; Coin, A.; Corti, M.-C.; Baggio, G.; Crepaldi, G. Association between short physical performance battery and falls in older people: The Progetto Veneto Anziani study. Rejuvenation Res. 2014, 17, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Valencia, O.; Cristi, I.; Ahumada, D.; Meza, K.; Salas, R.; Weinstein, A.; Guzmán-Venegas, R. The initial impact with forefoot increases the muscular activity of gastrocnemius during running. A quantitative study of electromyographic activity. Retos 2020, 38, 271–275. [Google Scholar] [CrossRef]
- Wang, W.; Li, K.; Wei, N.; Yue, S.; Yin, C. Reaching forward test during standing: A comparison between the young and the elderly: A comparison between the young and the elderly. In Proceedings of the 2017 Chinese Automation Congress (CAC), IEEE, Jinan, China, 20–22 October 2017; pp. 2254–2257. [Google Scholar]
- Watanabe, K.; Kouzaki, M.; Ogawa, M.; Akima, H.; Moritani, T. Relationships between muscle strength and multi-channel surface EMG parameters in eighty-eight elderly. Eur. Rev. Aging Phys. Act. 2018, 15, 1–10. [Google Scholar] [CrossRef]
- Moon, Y.; Sung, J.; An, R.; Hernandez, M.E.; Sosnoff, J.J. Gait variability in people with neurological disorders: A systematic review and meta-analysis. Hum. Mov. Sci. 2016, 47, 197–208. [Google Scholar] [CrossRef]
- Lim, H.; Cleland, B.; Madhavan, S. Functional connectivity of proximal and distal lower limb muscles and impact on gait variability in stroke. Gait Posture 2023, 99, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Park, J.; Shin, H.; Bae, Y. Gastrocnemius medial head stiffness is associated with potential fall risk in community-dwelling older adults. Healthcare 2022, 10, 785. [Google Scholar] [CrossRef]
- Kirkwood, R.N.; Trede, R.G.; de Souza Moreira, B.; Kirkwood, S.A.; Pereira, L.S.M. Decreased gastrocnemius temporal muscle activation during gait in elderly women with history of recurrent falls. Gait Posture 2011, 34, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mukaino, M.; Ohtsuka, K.; Otaka, Y.; Tanikawa, H.; Matsuda, F.; Tsuchiyama, K.; Yamada, J.; Saitoh, E. Gait characteristics of post-stroke hemiparetic patients with different walking speeds. Int. J. Rehabil. Res. 2020, 43, 69–75. [Google Scholar] [CrossRef]
- Vaillancourt, D.E.; Larsson, L.; Newell, K.M. Effects of aging on force variability, single motor unit discharge patterns, and the structure of 10, 20, and 40 Hz EMG activity. Neurobiol. Aging 2003, 24, 25–35. [Google Scholar] [CrossRef]
- Aoyama, T.; Kohno, Y. Temporal and quantitative variability in muscle electrical activity decreases as dexterous hand motor skills are learned. PLoS ONE 2020, 15, e0236254. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.A.; Porta, M.; Pilloni, G.; Arippa, F.; Pau, M.; Côté, J.N. Sex-independent and dependent effects of older age on cycle-to-cycle variability of muscle activation during gait. Exp. Gerontol. 2019, 124, 110656. [Google Scholar] [CrossRef] [PubMed]
- Dzeladini, F.; Grappe, A.; Simpson, C.; Wu, A.; Ijspeert, A. Muscle activation variability is inversely correlated with walking speed. In Proceedings of the Converging Clinical and Engineering Research on Neurorehabilitation II: 3rd International Conference on NeuroRehabilitation (ICNR 2016), Segovia, Spain, 18–21 October 2016; pp. 1025–1029. [Google Scholar]
- Escalona, M.J.; Bourbonnais, D.; Goyette, M.; Le Flem, D.; Duclos, C.; Gagnon, D.H. Effects of varying Overground walking speeds on lower-extremity muscle synergies in healthy individuals. Mot. Control 2021, 25, 234–251. [Google Scholar] [CrossRef] [PubMed]
- Ronthal, M. Gait disorders and falls in the elderly. Med. Clin. 2019, 103, 203–213. [Google Scholar] [CrossRef]
- Ammendolia, C.; Schneider, M.; Williams, K.; Zickmund, S.; Hamm, M.; Stuber, K.; Tomkins-Lane, C.; Rampersaud, Y.R. The physical and psychological impact of neurogenic claudication: The patients’ perspectives. J. Can. Chiropr. Assoc. 2017, 61, 18. [Google Scholar]
- Mullen, S.P.; McAuley, E.; Satariano, W.A.; Kealey, M.; Prohaska, T.R. Physical activity and functional limitations in older adults: The influence of self-efficacy and functional performance. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2012, 67, 354–361. [Google Scholar] [CrossRef]
Fall-Risk Older Adults (n = 141) | Non-Fall-Risk Older Adults (n = 160) | t | p | |
---|---|---|---|---|
Sex (male/female) | 47/94 | 72/88 | ||
Age (years) | 79.97 ± 5.69 | 78.81 ± 5.13 | 1.857 | 0.064 |
Weight (kg) | 59.27 ± 9.51 | 61.23 ± 10.08 | −1.726 | 0.085 |
Height (cm) | 155.62 ± 8.05 | 159.33 ± 8.14 | −3.956 | <0.001 |
SPPB (score) | 7.74 ± 1.87 | 11.47 ± 0.70 | −23.326 | <0.001 |
Fall Risk Older Adults | Non-Fall Risk Older Adults | |||||||
---|---|---|---|---|---|---|---|---|
PS | −20% Speed | 20% Speed | 40% Speed | PS | −20% Speed | 20% Speed | 40% Speed | |
RF activity (μV) | 32.69 ± 16.13 | 28.38 ±15.23 b | 35.85 ± 19.78 b | 39.38 ± 23.82 b | 31.02 ± 15.85 | 26.16 ± 13.88 b | 31.81 ± 16.05 | 36.38 ± 17.93 b |
RF CV (%) | 15.88 ± 10.28 a | 14.07 ± 7.39 b | 16.97 ± 9.42 | 16.86 ± 9.52 | 13.22 ± 6.66 | 12.45 ± 5.85 | 12.84 ± 7.02 | 11.64 ± 5.29 b |
BF activity (μV) | 46.15 ± 21.97 | 40.04 ± 19.96 b | 48.35 ± 24.24 b | 51.82 ± 24.83 b | 47.20 ± 21.14 | 39.40 ± 19.42 b | 46.55 ± 21.72 | 51.02 ± 23.76 b |
BF CV (%) | 14.12 ± 6.18 a | 14.25 ± 7.16 | 14.68 ± 8.01 | 15.66 ± 10.09 b | 12.34 ± 8.72 | 11.80 ± 4.30 | 11.32 ± 4.16 | 11.53 ± 6.42 |
TA activity (μV) | 55.27 ± 23.96 | 49.37 ± 22.57 b | 54.34 ± 24.52 | 56.57 ± 23.29 | 60.00 ± 24.67 | 52.54 ± 22.00 b | 58.24 ± 23.04 b | 62.24 ± 23.66 b |
TA CV (%) | 15.31 ± 8.81 a | 15.64 ± 7.72 | 14.78 ± 7.35 | 15.80 ± 7.53 | 12.68 ± 4.79 | 13.66 ± 5.94 b | 12.09 ± 4.71 | 11.78 ± 4.41 b |
GCM activity (μV) | 50.36 ± 20.96 a | 44.17 ± 20.92 b | 51.45 ± 20.78 | 56.31 ± 25.67 b | 64.34 ± 25.61 | 56.33 ± 26.04 b | 63.18 ± 26.00 | 70.90 ± 27.77 b |
GCM CV (%) | 14.69 ± 6.30 a | 14.99 ± 6.46 | 15.15 ± 6.00 | 16.88 ± 7.73 b | 11.78 ± 4.07 | 12.78 ± 5.18 | 11.56 ± 4.42 | 11.50 ± 4.43 |
Fall-Risk Older Adults a | Non-Fall-Risk Older Adults a | Between Groups c | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | η2 | adj b | F | p | η2 | adj b | F | p | η2 | adj b | |
RF (μV) | 36.504 | <0.001 | 0.206 | 0.912 | 48.029 | <0.001 | 0.232 | 0.200 | 1.108 | 0.365 | 0.004 | 0.510 |
RF CV (%) | 4.867 | 0.340 | 0.008 | 0.455 | 2.712 | 0.0.437 | 0.006 | 0.694 | 4.876 | 0.003 | 0.015 | 0.311 |
BF (μV) | 36.026 | <0.001 | 0.204 | 0.495 | 49.823 | <0.001 | 0.239 | 0.413 | 1.218 | 0.302 | 0.004 | 0.175 |
BF CV (%) | 2.137 | 0.095 | 0.015 | 0.461 | 1.086 | 0.355 | 0.007 | 0.413 | 2.664 | 0.029 | 0.010 | 0.415 |
TA (μV) | 25.850 | <0.001 | 0.155 | 0.100 | 41.947 | <0.001 | 0.209 | 0.488 | 1.605 | 0.187 | 0.005 | 0.159 |
TA CV (%) | 0.866 | 0.459 | 0.006 | 0.897 | 7.335 | <0.001 | 0.044 | 0.310 | 2.321 | 0.074 | 0.008 | 0.957 |
GCM (μV) | 26.356 | <0.001 | 0.157 | 0.662 | 67.642 | <0.001 | 0.298 | 0.135 | 1.334 | 0.262 | 0.004 | 0.195 |
GCM CV (%) | 4.849 | 0.003 | 0.033 | 0.280 | 4.438 | 0.004 | 0.027 | 0.179 | 6.624 | <0.001 | 0.022 | 0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Bae, Y. Increased Variability in Lower Limb Muscle Activation Is Observed with Increasing Walking Speed in Fall-Risk Older Adults. Life 2024, 14, 1551. https://doi.org/10.3390/life14121551
Park Y, Bae Y. Increased Variability in Lower Limb Muscle Activation Is Observed with Increasing Walking Speed in Fall-Risk Older Adults. Life. 2024; 14(12):1551. https://doi.org/10.3390/life14121551
Chicago/Turabian StylePark, Yongnam, and Youngsook Bae. 2024. "Increased Variability in Lower Limb Muscle Activation Is Observed with Increasing Walking Speed in Fall-Risk Older Adults" Life 14, no. 12: 1551. https://doi.org/10.3390/life14121551
APA StylePark, Y., & Bae, Y. (2024). Increased Variability in Lower Limb Muscle Activation Is Observed with Increasing Walking Speed in Fall-Risk Older Adults. Life, 14(12), 1551. https://doi.org/10.3390/life14121551