Endothelial Dysfunction Markers in Ovarian Cancer: VTE Risk and Tumour Prognostic Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Description
2.2. Sample Collection, Genomic DNA and RNA Extraction
2.3. Polymorphism Selection and Genotyping
2.4. Gene Selection
2.5. cDNA Conversion and Gene-Relative Quantification
2.6. Statistical Analysis
3. Results
3.1. Distribution of SNP Genotypes
3.2. ED Markers and Clinical Characteristics of OC Patients
3.3. ED-Markers and VTE Status
3.4. SNPs’ Impact on Clinical Outcome of OC Patients (Independently of VTE)
3.5. Genes’ Impact on Clinical Outcome of OC Patients (Independently of VTE)
3.6. SNPs’ Impact on Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Tavares, V.; Marques, I.S.; de Melo, I.G.; Assis, J.; Pereira, D.; Medeiros, R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int. J. Mol. Sci. 2024, 25, 1845. [Google Scholar] [CrossRef] [PubMed]
- Moufarrij, S.; O’cearbhaill, R.E. Novel Therapeutics in Ovarian Cancer: Expanding the Toolbox. Curr. Oncol. 2023, 31, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Sowamber, R.; Lukey, A.; Huntsman, D.; Hanley, G. Ovarian Cancer: From Precursor Lesion Identification to Population-Based Prevention Programs. Curr. Oncol. 2023, 30, 10179–10194. [Google Scholar] [CrossRef] [PubMed]
- Sideris, M.; Menon, U.; Manchanda, R. Screening and prevention of ovarian cancer. Med. J. Aust. 2024, 220, 264–274. [Google Scholar] [CrossRef]
- Marques, I.S.; Tavares, V.; Savva-Bordalo, J.; Rei, M.; Liz-Pimenta, J.; de Melo, I.G.; Assis, J.; Pereira, D.; Medeiros, R. Long Non-Coding RNAs: Bridging Cancer-Associated Thrombosis and Clinical Outcome of Ovarian Cancer Patients. Int. J. Mol. Sci. 2023, 25, 140. [Google Scholar] [CrossRef]
- Gong, T.-T.; Guo, S.; Liu, F.-H.; Huo, Y.-L.; Zhang, M.; Yan, S.; Zhou, H.-X.; Pan, X.; Wang, X.-Y.; Xu, H.-L.; et al. Proteomic characterization of epithelial ovarian cancer delineates molecular signatures and therapeutic targets in distinct histological subtypes. Nat. Commun. 2023, 14, 7802. [Google Scholar] [CrossRef]
- González-Martín, A.; Harter, P.; Leary, A.; Lorusso, D.; Miller, R.; Pothuri, B.; Ray-Coquard, I.; Tan, D.; Bellet, E.; Oaknin, A.; et al. Newly diagnosed and relapsed epithelial ovarian cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 833–848. [Google Scholar] [CrossRef]
- Arora, T.; Mullangi, S.; Vadakekut, E.S.; Lekkala, M.R. Epithelial Ovarian Cancer; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tavares, V.; Savva-Bordalo, J.; Rei, M.; Liz-Pimenta, J.; Assis, J.; Pereira, D.; Medeiros, R. Haemostatic Gene Expression in Cancer-Related Immunothrombosis: Contribution for Venous Thromboembolism and Ovarian Tumour Behaviour. Cancers 2024, 16, 2356. [Google Scholar] [CrossRef]
- Matte, I.; Garde-Granger, P.; Bessette, P.; Piché, A. Ascites from ovarian cancer patients stimulates MUC16 mucin expression and secretion in human peritoneal mesothelial cells through an Akt-dependent pathway. BMC Cancer 2019, 19, 406. [Google Scholar] [CrossRef]
- Marques, I.S.; Tavares, V.; Neto, B.V.; Mota, I.N.R.; Pereira, D.; Medeiros, R. Long Non-Coding RNAs in Venous Thromboembolism: Where Do We Stand? Int. J. Mol. Sci. 2023, 24, 12103. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, K. The pathogenesis of cancer-associated thrombosis. Int. J. Hematol. 2024, 119, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.J.; Morinaga, L.T.; Alves, J.L.; Castro, M.A.; Calderaro, D.; Jardim, C.V.; Souza, R. Cancer-associated thrombosis: The when, how and why. Eur. Respir. Rev. 2019, 28, 180119. [Google Scholar] [CrossRef]
- Yeini, E.; Satchi-Fainaro, R. The role of P-selectin in cancer-associated thrombosis and beyond. Thromb. Res. 2022, 213, S22–S28. [Google Scholar] [CrossRef]
- Shafa, A.; Watkins, A.B.; McGree, M.E.; Weroha, S.J.; Wahner Hendrickson, A.E.; Block, M.S.; Langstraat, C.L.; McBane, R.D., 2nd; Bakkum-Gamez, J.N.; Kumar, A. Incidence of venous thromboembolism in patients with advanced stage ovarian cancer undergoing neoadjuvant chemotherapy: Is it time for thromboprophylaxis? Gynecol. Oncol. 2023, 176, 36–42. [Google Scholar] [CrossRef]
- Glassman, D.; Bateman, N.W.; Lee, S.; Zhao, L.; Yao, J.; Tan, Y.; Ivan, C.; Rangel, K.M.; Zhang, J.; Conrads, K.A.; et al. Molecular Correlates of Venous Thromboembolism (VTE) in Ovarian Cancer. Cancers 2022, 14, 1496. [Google Scholar] [CrossRef] [PubMed]
- Kacimi, S.E.O.; Moeinafshar, A.; Haghighi, S.S.; Saghazadeh, A.; Rezaei, N. Venous thromboembolism in cancer and cancer immunotherapy. Crit. Rev. Oncol. 2022, 178, 103782. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Ma, Z.; Zhang, Y. Soluble P-selectin level in patients with cancer-associated venous and artery thromboembolism: A systematic review and meta-analysis. Arch. Med Sci. 2023, 19, 274–282. [Google Scholar] [CrossRef]
- Poredos, P.; Jezovnik, M.K. Endothelial Dysfunction and Venous Thrombosis. Angiology 2018, 69, 564–567. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Migliacci, R.; Becattini, C.; Pesavento, R.; Davi, G.; Vedovati, M.C.; Guglielmini, G.; Falcinelli, E.; Ciabattoni, G.; Valle, F.D.; Prandoni, P.; et al. Endothelial dysfunction in patients with spontaneous venous thromboembolism. Haematologica 2007, 92, 812–818. [Google Scholar] [CrossRef]
- Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc. Pharmacol. 2018, 100, 1–19. [Google Scholar] [CrossRef]
- Zhang, J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev. Cardiovasc. Med. 2022, 23, 73. [Google Scholar] [CrossRef]
- Tripska, K.; Sá, I.C.I.; Vasinova, M.; Vicen, M.; Havelek, R.; Eissazadeh, S.; Svobodova, Z.; Vitverova, B.; Theuer, C.; Bernabeu, C.; et al. Monoclonal anti-endoglin antibody TRC105 (carotuximab) prevents hypercholesterolemia and hyperglycemia-induced endothelial dysfunction in human aortic endothelial cells. Front. Med. 2022, 9, 845918. [Google Scholar] [CrossRef] [PubMed]
- Endemann, D.H.; Schiffrin, E.L. Endothelial dysfunction J. Am. Soc. Nephrol. 2004, 15, 1983–1992. [Google Scholar] [CrossRef]
- Franses, J.W.; Drosu, N.C.; Gibson, W.J.; Chitalia, V.C.; Edelman, E.R. Dysfunctional endothelial cells directly stimulate cancer inflammation and metastasis. Int. J. Cancer 2013, 133, 1334–1344. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, K.M.; Noh, D.Y.; Ahn, S.H.; Lee, J.E.; Han, W.; Jang, I.J.; Shin, S.G.; Yoo, K.Y.; Hayes, R.B.; et al. Genetic polymorphisms of eNOS, hormone receptor status, and survival of breast cancer. Breast Cancer Res. Treat. 2006, 100, 213–218. [Google Scholar] [CrossRef]
- Lutsey, P.L.; Zakai, N.A. Epidemiology and prevention of venous thromboembolism. Nat. Rev. Cardiol. 2023, 20, 248–262. [Google Scholar] [CrossRef]
- Chiarella, P.; Capone, P.; Sisto, R. Contribution of Genetic Polymorphisms in Human Health. Int. J. Environ. Res. Public Heal. 2023, 20, 912. [Google Scholar] [CrossRef] [PubMed]
- Berek, J.S.; Renz, M.; Kehoe, S.; Kumar, L.; Friedlander, M. Cancer of the ovary, fallopian tube, and peritoneum. Int. J. Gynecol. Obstet. 2021, 155, 61–85. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Gran, O.V.; Smith, E.N.; Braekkan, S.K.; Jensvoll, H.; Solomon, T.; Hindberg, K.; Wilsgaard, T.; Rosendaal, F.R.; Frazer, K.A.; Hansen, J.-B. Joint effects of cancer and variants in the factor 5 gene on the risk of venous thromboembolism. Haematologica 2016, 101, 1046–1053. [Google Scholar] [CrossRef]
- de Melo, I.G.; Tavares, V.; Pereira, D.; Medeiros, R. Contribution of Endothelial Dysfunction to Cancer Susceptibility and Progression: A Comprehensive Narrative Review on the Genetic Risk Component. Curr. Issues Mol. Biol. 2024, 46, 4845–4873. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Zhu, X.; Zhong, L.; Jiang, Q.; Wang, Y.; Tang, Q.; Li, Q.; Zhang, C.; Wang, H.; et al. Drug resistance in ovarian cancer: From mechanism to clinical trial. Mol. Cancer 2024, 23, 1–26. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Saito, Y.; Nakayama, M.; Shimasaki, Y.; Yoshimura, T.; Yoshimura, M.; Harada, M.; Kajiyama, N.; Kishimoto, I.; Kuwahara, K.; et al. Replication protein A1 reduces transcription of the endothelial nitric oxide synthase gene containing a -786T->C mutation associated with coronary spastic angina. Hum. Mol. Genet. 2000, 9, 2629–2637. [Google Scholar] [CrossRef]
- Filho, C.K.C.; Oliveira-Paula, G.H.; Pereira, V.C.R.; Lacchini, R. Clinically relevant endothelial nitric oxide synthase polymorphisms and their impact on drug response. Expert Opin. Drug Metab. Toxicol. 2020, 16, 927–951. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, H.; Qi, X.; Zhou, M. eNOS rs2070744 polymorphism might influence predisposition to hemorrhagic cerebral vascular diseases in East Asians: A meta-analysis. Brain Behav. 2020, 10, e01538. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.-F.; Xu, Y.; Ren, R.; Heng, B.-L.; Su, Z.-X. Association between three eNOS polymorphisms and cancer risk: A meta-analysis. Asian Pac. J. Cancer Prev. 2014, 15, 5317–5324. [Google Scholar] [CrossRef]
- Sydorchuk, A.R.; Sydorchuk, L.P.; Gutnitska, A.F.; Dzhuryak, V.S.; Kryvetska, I.I.; Sydorchuk, R.I.; Ursuliak, Y.V.; Iftoda, O.M. Endothelium function biomarkers and carotid intima-media thickness changes in relation to NOS3 (rs2070744) and GNB3 (rs5443) genes polymorphism in the essential arterial hypertension. Endocr. Regul. 2022, 56, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Sydorchuk, A.; Sydorchuk, L.; Gutnitska, A.; Vasyuk, V.; Tkachuk, O.; Dzhuryak, V.; Myshkovskii, Y.; Kyfiak, P.; Sydorchuk, R.; Iftoda, O. The role of NOS3 (rs2070744) and GNB3 (rs5443) genes’ polymorphisms in endothelial dysfunction pathway and carotid intima-media thickness in hypertensive patients. Gen. Physiol. Biophys. 2023, 42, 179–190. [Google Scholar] [CrossRef]
- Yetkin, U.; Karabay, O.; Önol, H. Effects of oral anticoagulation with various INR levels in deep vein thrombosis cases. Curr. Control. Trials Cardiovasc. Med. 2004, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, G.K.; Siamwala, J.H.; Chatterjee, S. eNOS phosphorylation in health and disease. Biochimie 2010, 92, 1186–1198. [Google Scholar] [CrossRef]
- Neubauer, K.; Zieger, B. Endothelial cells and coagulation. Cell Tissue Res. 2022, 387, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; Paolisso, G.; Casamassimi, A.; Al-Omran, M.; Barbieri, M.; Sommese, L.; Infante, T.; Ignarro, L.J. Effects of nitric oxide on cell proliferation: Novel insights. J. Am. Coll. Cardiol. 2013, 62, 89–95. [Google Scholar] [CrossRef]
- Gao, X.; Wang, J.; Wang, W.; Wang, M.; Zhang, J. eNOS Genetic Polymorphisms and Cancer Risk: A Meta-Analysis and a Case-Control Study of Breast Cancer. Medicine 2015, 94, e972. [Google Scholar] [CrossRef]
- Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol. 2015, 6, 334–343. [Google Scholar] [CrossRef]
- Rose, M.; Burgess, J.T.; O’byrne, K.; Richard, D.J.; Bolderson, E. PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front. Cell Dev. Biol. 2020, 8, 564601. [Google Scholar] [CrossRef]
- Wilson, A.; Menon, V.; Khan, Z.; Alam, A.; Litovchick, L.; Yakovlev, V. Nitric oxide-donor/PARP-inhibitor combination: A new approach for sensitization to ionizing radiation. Redox Biol. 2019, 24, 101169. [Google Scholar] [CrossRef]
- Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 2020, 108, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, T.G.; Amaral, A.T.; Puerto-Camacho, P.; Peinado, H.; de Álava, E. Endoglin in the Spotlight to Treat Cancer. Int. J. Mol. Sci. 2021, 22, 3186. [Google Scholar] [CrossRef] [PubMed]
- Santibanez, J.F.; Letamendia, A.; Perez-Barriocanal, F.; Silvestri, C.; Saura, M.; Vary, C.P.; Lopez-Novoa, J.M.; Attisano, L.; Bernabeu, C. Endoglin increases eNOS expression by modulating Smad2 protein levels and Smad2-dependent TGF-beta signaling. J. Cell. Physiol. 2007, 210, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wei, Q.; Bondy, M.L.; Yu, T.; Li, D.; Brewster, A.; Shete, S.; Sahin, A.; Meric-Bernstam, F.; Wang, L. Promoter polymorphism (−786t > C) in the endothelial nitric oxide synthase gene is associated with risk of sporadic breast cancer in non-Hispanic white women age younger than 55 years. Cancer 2006, 107, 2245–2253. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.M.; Wang, M.N.; Chen, X.J.; Li, N.; Huang, Y.D.; Chen, M. The G894t, T-786c and 4b/a polymorphisms in Enos gene and cancer risk: A meta-analysis. J. Evid. Based Med. 2014, 7, 263–269. [Google Scholar] [CrossRef]
- Nan, J.; Liu, Y.; Xu, C.; Ge, D. Effects of eNOS gene polymorphisms on individual susceptibility to cancer: A meta-analysis. Nitric Oxide 2019, 84, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Polat, F.; Turaçlar, N.; Yilmaz, M.; Bingöl, G.; Vural, H.C. eNOS gene polymorphisms in paraffin-embedded tissues of prostate cancer patients. Turk. J. Med Sci. 2016, 46, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Abedinzadeh, M.; Dastgheib, S.A.; Maleki, H.; Heiranizadeh, N.; Zare, M.; Jafari-Nedooshan, J.; Kargar, S.; Neamatzadeh, H. Association of Endothelial Nitric Oxide Synthase Gene Polymorphisms with Susceptibility to Prostate Cancer: A Comprehensive Systematic Review and Meta-Analysis. Urol. J. 2020, 17, 329–337. [Google Scholar] [CrossRef]
- Su, C.-W.; Chien, M.-H.; Lin, C.-W.; Chen, M.-K.; Chow, J.-M.; Chuang, C.-Y.; Chou, C.-H.; Liu, Y.-C.; Yang, S.-F. Associations of genetic variations of the endothelial nitric oxide synthase gene and environmental carcinogens with oral cancer susceptibility and development. Nitric Oxide 2018, 79, 1–7. [Google Scholar] [CrossRef]
- Jang, M.J.; Jeon, Y.J.; Kim, J.W.; Chong, S.Y.; Hong, S.P.; Oh, D.; Cho, Y.K.; Chung, K.W.; Kim, N.K. Association of eNOS polymorphisms (-786T > C, 4a4b, 894G > T) with colorectal cancer susceptibility in the Korean population. Gene 2012, 512, 275–281. [Google Scholar] [CrossRef]
- Krishnaveni, D.; Amar Chand, B.; Shravan Kumar, P.; Uma Devi, M.; Ramanna, M.; Jyothy, A.; Pratibha, N.; Balakrishna, N.; Venkateshwari, A. Association of endothelial nitric oxide synthase gene T-786C promoter polymorphism with gastric cancer. World J. Gastrointest. Oncol. 2015, 7, 87–94. [Google Scholar] [CrossRef]
- George, D.J.; Martini, J.-F.; Staehler, M.; Motzer, R.J.; Magheli, A.; Donskov, F.; Escudier, B.; Li, S.; Casey, M.; Valota, O.; et al. Phase III Trial of Adjuvant Sunitinib in Patients with High-Risk Renal Cell Carcinoma: Exploratory Pharmacogenomic Analysis. Clin. Cancer Res. 2019, 25, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Casadei-Gardini, A.; Marisi, G.; Dadduzio, V.; Gramantieri, L.; Faloppi, L.; Ulivi, P.; Foschi, F.G.; Tamburini, E.; Vivaldi, C.; Rizzato, M.D.; et al. Association of NOS3 and ANGPT2 Gene Polymorphisms with Survival in Patients with Hepatocellular Carcinoma Receiving Sorafenib: Results of the Multicenter Prospective INNOVATE Study. Clin. Cancer Res. 2020, 26, 4485–4493. [Google Scholar] [CrossRef] [PubMed]
- Ryk, C.; Koskela, L.R.; Thiel, T.; Wiklund, N.P.; Steineck, G.; Schumacher, M.C.; de Verdier, P.J. Outcome after BCG treatment for urinary bladder cancer may be influenced by polymorphisms in the NOS2 and NOS3 genes. Redox Biol. 2015, 6, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Singh, J.; Kapoor, R.; Kaur, M. Association of SELP Polymorphisms with Soluble P-Selectin Levels and Vascular Risk in Patients with Type 2 Diabetes Mellitus: A Case–Control Study. Biochem. Genet. 2019, 57, 73–97. [Google Scholar] [CrossRef] [PubMed]
- Barbaux, S.C.; Blankenberg, S.; Rupprecht, H.J.; Francomme, C.; Bickel, C.; Hafner, G.; Nicaud, V.; Meyer, J.; Cambien, F.; Tiret, L. Association between P-selectin gene polymorphisms and soluble P-selectin levels and their relation to coronary artery disease. Arter. Thromb. Vasc. Biol. 2001, 21, 1668–1673. [Google Scholar] [CrossRef]
- Kou, L.; Yang, N.; Dong, B.; Li, Y.; Yang, J.; Qin, Q. Interaction between SELP genetic polymorphisms with inflammatory cytokine interleukin-6 (IL-6) gene variants on cardiovascular disease in Chinese Han population. Mamm. Genome 2017, 28, 436–442. [Google Scholar] [CrossRef]
- Ay, C.; Jungbauer, L.V.; Sailer, T.; Tengler, T.; Koder, S.; Kaider, A.; Panzer, S.; Quehenberger, P.; Pabinger, I.; Mannhalter, C. High concentrations of soluble P-selectin are associated with risk of venous thromboembolism and the P-selectin Thr715 variant. Clin. Chem. 2007, 53, 1235–1243. [Google Scholar] [CrossRef]
- Powrózek, T.; Mlak, R.; Brzozowska, A.; Mazurek, M.; Gołębiowski, P.; Małecka-Massalska, T. Relationship Between-2028 C/T SELP Gene Polymorphism, Concentration of Plasma P-Selectin and Risk of Malnutrition in Head and Neck Cancer Patients. Pathol. Oncol. Res. 2019, 25, 741–749. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Q.; Wang, H.; Yang, X.; Mu, H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct. Target. Ther. 2024, 9, 26. [Google Scholar] [CrossRef]
- Singel, K.L.; Grzankowski, K.S.; Khan, A.N.M.N.H.; Grimm, M.J.; D’auria, A.C.; Morrell, K.; Eng, K.H.; Hylander, B.; Mayor, P.C.; Emmons, T.R.; et al. Mitochondrial DNA in the tumour microenvironment activates neutrophils and is associated with worse outcomes in patients with advanced epithelial ovarian cancer. Br. J. Cancer 2019, 120, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Mufti, A.H.; Ogiwara, K.; Swystun, L.L.; Eikenboom, J.C.J.; Budde, U.; Hopman, W.M.; Halldén, C.; Goudemand, J.; Peake, I.R.; Goodeve, A.C.; et al. The common VWF single nucleotide variants c.2365A > G and c.2385T > C modify VWF biosynthesis and clearance. Blood Adv. 2018, 2, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.L.; Rice, K.M.; Bovill, E.G.; Cushman, M.; Bis, J.C.; McKnight, B.; Lumley, T.; Glazer, N.L.; Vlieg, A.V.H.; Tang, W.; et al. Genetic variation associated with plasma von Willebrand factor levels and the risk of incident venous thrombosis. Blood 2011, 117, 6007–6011. [Google Scholar] [CrossRef] [PubMed]
- Comerford, C.; Glavey, S.; Quinn, J.; O’sullivan, J.M. The role of VWF/FVIII in thrombosis and cancer progression in multiple myeloma and other hematological malignancies. J. Thromb. Haemost. 2022, 20, 1766–1777. [Google Scholar] [CrossRef]
SNP | MAFi 1 (MA) | Genotype | n (%) | n Total (%) | MAFs (MA) |
---|---|---|---|---|---|
NOS3 rs2070744 | 49.5% (C) | CC | 21 (21.4) | 98 (100) | 46.9% (C) |
CT | 50 (51.0) | ||||
TT | 27 (27.6) | ||||
SELP rs6136 | 8.9% (G) | TT | 81 (82.7) | 98 (100) | 9.2% (G) |
GT | 16 (16.3) | ||||
GG | 1 (1.0) | ||||
VWF rs1063856 | 34.1% (C) | CC | 10 (10.2) | 98 (100) | 36.2% (C) |
CT | 51 (52.0) | ||||
TT | 37 (37.8) |
SNP | Associated Characteristic | Associated Genotype/Allele | Statistical Model | p Value |
---|---|---|---|---|
NOS3 rs2070744 | Cardiovascular or metabolic disease history | CC | CC vs. CT vs. TT | 0.049 |
Cardiovascular and metabolic disease history | CC | CC vs. CT/TT | 0.023 | |
Use of PARPi | TT | CC vs. CT vs. TT | 0.029 | |
TT | CC/CT vs. TT | 0.025 | ||
Higher INR | TT | CC/CT vs. TT | 0.059 | |
SELP rs6136 | Cardiovascular and/or metabolic disease history | G | GG/GT vs. TT | 0.018 |
Advanced (III/IV) FIGO stages | TT | GG vs. GT vs. TT | 0.042 | |
VWF rs1063856 | ATE history | TT | CC/CT vs. TT | 0.018 |
TT | CC vs. CT vs. TT | 0.021 | ||
Anticoagulant use before OC diagnosis | TT | CC vs. CT vs. TT | 0.054 |
Gene | Profile | n | Expression | p Value | ||
---|---|---|---|---|---|---|
Low | Intermediate | High | ||||
NOS3 | B | VTE negative | 10 | 12 | 18 | 0.013 |
VTE positive | 5 | 4 | 0 | |||
B | VTE-free | 10 | 12 | 17 | 0.027 | |
VTE before OC | 2 | 1 | 0 | |||
VTE after OC | 3 | 3 | 0 |
SNP | Genotype | Low Gene Expression n (%) | High Gene Expression n (%) |
---|---|---|---|
NOS3 rs2070744 | CC | 8 (14.5) | 6 (10.9) |
CT | 15 (27.3) | 12 (21.8) | |
TT | 4 (7.3) | 10 (18.2) | |
SELP rs6136 | TT | 22 (40.0) | 23 (41.8) |
GT | 5 (9.1) | 5 (9.1) |
SNP | Genotype/ Allele | Statistical Model | Upregulated Gene | Gene Expression Profile | p Value | Cohort |
---|---|---|---|---|---|---|
NOS3 rs2070744 | T | TT/CT vs. CC | ICAM1 | D | 0.019 | Sub-cohort (n = 52) |
TT | CC/CT vs. TT | ENG | B | 0.058 | Entire cohort B (n = 55) | |
T | TT/CT vs. CC | ICAM1 | D | 0.045 | ||
VWF rs1063856 | TT | CC vs. CT vs. TT | SELP | B | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Melo, I.G.; Tavares, V.; Savva-Bordalo, J.; Rei, M.; Liz-Pimenta, J.; Pereira, D.; Medeiros, R. Endothelial Dysfunction Markers in Ovarian Cancer: VTE Risk and Tumour Prognostic Outcomes. Life 2024, 14, 1630. https://doi.org/10.3390/life14121630
de Melo IG, Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Pereira D, Medeiros R. Endothelial Dysfunction Markers in Ovarian Cancer: VTE Risk and Tumour Prognostic Outcomes. Life. 2024; 14(12):1630. https://doi.org/10.3390/life14121630
Chicago/Turabian Stylede Melo, Inês Guerra, Valéria Tavares, Joana Savva-Bordalo, Mariana Rei, Joana Liz-Pimenta, Deolinda Pereira, and Rui Medeiros. 2024. "Endothelial Dysfunction Markers in Ovarian Cancer: VTE Risk and Tumour Prognostic Outcomes" Life 14, no. 12: 1630. https://doi.org/10.3390/life14121630
APA Stylede Melo, I. G., Tavares, V., Savva-Bordalo, J., Rei, M., Liz-Pimenta, J., Pereira, D., & Medeiros, R. (2024). Endothelial Dysfunction Markers in Ovarian Cancer: VTE Risk and Tumour Prognostic Outcomes. Life, 14(12), 1630. https://doi.org/10.3390/life14121630