PARP Inhibitors in Metastatic Castration-Resistant Prostate Cancer: Unraveling the Therapeutic Landscape
Abstract
:1. Introduction
2. Single-Agent PARPis in the mCRPC Setting
2.1. PROfound
2.2. TRITON3
3. PARPi-Based Combinations
3.1. PROpel
3.2. MAGNITUDE
3.3. TALAPRO-2
3.4. Pooled Analysis
4. Ongoing Investigation
CASPAR
5. Patient Selection in mCRPC
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Bergengren, O.; Pekala, K.R.; Matsoukas, K.; Fainberg, J.; Mungovan, S.F.; Bratt, O.; Bray, F.; Brawley, O.; Luckenbaugh, A.N.; Mucci, L.; et al. 2022 Update on Prostate Cancer Epidemiology and Risk Factors—A Systematic Review. Eur. Urol. 2023, 84, 191–206. [Google Scholar] [CrossRef]
- Gebrael, G.; Fortuna, G.G.; Sayegh, N.; Swami, U.; Agarwal, N. Advances in the treatment of metastatic prostate cancer. Trends Cancer 2023, 9, 840–854. [Google Scholar] [CrossRef]
- Siegel, D.A.; O’Neil, M.E.; Richards, T.B.; Dowling, N.F.; Weir, H.K. Prostate Cancer Incidence and Survival, by Stage and Race/Ethnicity-United States, 2001–2017. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Hausler, R.; Le, A.N.; Kelly, G.; Powers, J.; Ding, J.; Feld, E.; Desai, H.; Morrison, C.; Doucette, A.; et al. Association of Inherited Mutations in DNA Repair Genes with Localized Prostate Cancer. Eur. Urol. 2022, 81, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.H.; Fu, W.; Wang, H.; Baras, A.S.; Lotan, T.L.; Antonarakis, E.S. Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: Association of Gleason score and tumor stage. Prostate Cancer Prostatic Dis. 2018, 22, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G.; et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Goh, C.; Olmos, D.; Saunders, E.; Leongamornlert, D.; Tymrakiewicz, M.; Mahmud, N.; Dadaev, T.; Govindasami, K.; Guy, M.; et al. Germline BRCA Mutations Are Associated with Higher Risk of Nodal Involvement, Distant Metastasis, and Poor Survival Outcomes in Prostate Cancer. J. Clin. Oncol. 2013, 31, 1748. [Google Scholar] [CrossRef]
- Nambiar, D.K.; Mishra, D.; Singh, R.P. Targeting DNA repair for cancer treatment: Lessons from PARP inhibitor trials. Oncol. Res. 2023, 31, 405–421. [Google Scholar] [CrossRef]
- Nickoloff, J.A.; Jones, D.; Lee, S.H.; Williamson, E.A.; Hromas, R. Drugging the Cancers Addicted to DNA Repair. JNCI J. Natl. Cancer Inst. 2017, 109, djx059. [Google Scholar] [CrossRef]
- Franza, A.; Claps, M.; Procopio, G. PARP inhibitors and metastatic castration-resistant prostate cancer: Uture directions and pitfalls. Transl. Oncol. 2022, 15, 101263. [Google Scholar] [CrossRef]
- Tisseverasinghe, S.; Bahoric, B.; Anidjar, M.; Probst, S.; Niazi, T. Advances in PARP Inhibitors for Prostate Cancer. Cancers 2023, 15, 1849. [Google Scholar] [CrossRef]
- Created with BioRender.com [Internet]. Available online: https://www.biorender.com/ (accessed on 21 November 2023).
- De Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Piulats, J.M.; Reaume, M.N.; Ostler, P.; McDermott, R.; Gingerich, J.R.; Pintus, E.; Sridhar, S.S.; Bambury, R.M.; Emmenegger, U.; et al. Rucaparib or Physician’s Choice in Metastatic Prostate Cancer. N. Engl. J. Med. 2023, 388, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 383, 2345–2357. [Google Scholar] [CrossRef]
- FDA Approves Olaparib for HRR Gene-Mutated Metastatic Castration-Resistant Prostate Cancer|FDA [Internet]. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-resistant-prostate-cancer (accessed on 22 November 2023).
- FDA Grants Accelerated Approval to Rucaparib for BRCA-Mutated Metastatic Castration-Resistant Prostate Cancer|FDA [Internet]. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-rucaparib-brca-mutated-metastatic-castration-resistant-prostate (accessed on 22 November 2023).
- Li, L.; Chang, W.; Yang, G.; Ren, C.; Park, S.; Karantanos, T.; Karanika, S.; Wang, J.; Yin, J.; Shah, P.K.; et al. Targeting Poly (ADP-Ribose) Polymerase and the c-Myb-TopBP1-ATR-Chk1 Signaling Pathway in Castration-Resistant Prostate Cancer. Sci. Signal. 2014, 7, ra47. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Karanika, S.; Yang, G.; Wang, J.; Park, S.; Broom, B.M.; Manyam, G.C.; Wu, W.; Luo, Y.; Basourakos, S.; et al. Androgen receptor inhibitor-induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci. Signal. 2017, 10, eaam7479. [Google Scholar] [CrossRef] [PubMed]
- Schiewer, M.J.; Goodwin, J.F.; Han, S.; Brenner, J.C.; Augello, M.A.; Dean, J.L.; Liu, F.; Planck, J.L.; Ravindranathan, P.; Chinnaiyan, A.M.; et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2012, 2, 1134–1149. [Google Scholar] [CrossRef]
- Makhov, P.; Fazliyeva, R.; Tufano, A.; Uzzo, R.G.; Kolenko, V.M. Examining the effect of PARP-1 inhibitors on transcriptional activity of androgen receptor in prostate cancer cells. Methods Mol. Biol. 2023, 2609, 329. [Google Scholar]
- Chi, K.N.; Rathkopf, D.; Smith, M.R.; Efstathiou, E.; Attard, G.; Olmos, D.; Lee, J.Y.; Small, E.J.; Pereira de Santana Gomes, A.J.; Roubaud, G.; et al. Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2023, 41, 3339–3351. [Google Scholar] [CrossRef]
- Fizazi, K.; Azad, A.A.; Matsubara, N.; Carles, J.; Fay, A.P.; De Giorgi, U.; Joung, J.Y.; Fong, P.C.C.; Voog, E.; Jones, R.J.; et al. First-line talazoparib with enzalutamide in HRR-deficient metastatic castration-resistant prostate cancer: The phase 3 TALAPRO-2 trial. Nat. Med. 2024, 30, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.W.; Armstrong, A.J.; Thiery-Vuillemin, A.; Oya, M.; Shore, N.; Loredo, E.; Procopio, G.; de Menezes, J.; Girotto, G.; Arslan, C.; et al. Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer. NEJM Évid. 2022, 1, EVIDoa2200043. [Google Scholar] [CrossRef]
- Saad, F.; Clarke, N.W.; Oya, M.; Shore, N.; Procopio, G.; Guedes, J.D.; Arslan, C.; Mehra, N.; Parnis, F.; Brown, E.; et al. Olaparib plus abiraterone versus placebo plus abiraterone in metastatic castration-resistant prostate cancer (PROpel): Final prespecified overall survival results of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1094–1108. [Google Scholar] [CrossRef]
- FDA Approves Olaparib with Abiraterone and Prednisone (or Prednisolone) for BRCA-Mutated Metastatic Castration-Resistant Prostate Cancer|FDA [Internet]. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-olaparib-abiraterone-and-prednisone-or-prednisolone-brca-mutated-metastatic-castration (accessed on 21 November 2023).
- Chi, K.N.; Sandhu, S.; Smith, M.R.; Attard, G.; Saad, M.; Olmos, D.; Castro, E.; Roubaud, G.; Pereira de Santana Gomes, A.J.; Small, E.J.; et al. Niraparib plus abiraterone acetate with prednisone in patients with metastatic castration-resistant prostate cancer and homologous recombination repair gene alterations: Second interim analysis of the randomized phase III MAGNITUDE trial. Ann. Oncol. 2023, 34, 772–782. [Google Scholar] [CrossRef]
- FDA Approves Niraparib and Abiraterone Acetate Plus Prednisone for BRCA-Mutated Metastatic Castration-Resistant Prostate Cancer|FDA [Internet]. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-niraparib-and-abiraterone-acetate-plus-prednisone-brca-mutated-metastatic-castration (accessed on 21 November 2023).
- Agarwal, N.; Azad, A.A.; Carles, J.; Fay, A.P.; Matsubara, N.; Heinrich, D.; Szczylik, C.; De Giorgi, U.; Joung, J.Y.; Fong, P.C.C.; et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): A randomised, placebo-controlled, phase 3 trial. Lancet 2023, 402, 291–303. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves Talazoparib with Enzalutamide for HRR Gene-Mutated Metastatic Castration-Resistant Prostate Cancer|FDA [Internet]. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-talazoparib-enzalutamide-hrr-gene-mutated-metastatic-castration-resistant-prostate (accessed on 21 November 2023).
- Sayyid, R.K.; Klaassen, Z.; Berlin, A.; Roy, S.; Brandão, L.R.; Bernardino, R.; Chavarriaga, J.; Jiang, D.M.; Spratt, D.E.; Fleshner, N.E.; et al. Poly(adenosine diphosphate-ribose) polymerase inhibitor combinations in first-line metastatic castrate-resistant prostate cancer setting: A systematic review and meta-analysis. BJU Int. 2023, 132, 619–630. [Google Scholar] [CrossRef] [PubMed]
PROfound | TRITON3 | |||
---|---|---|---|---|
Clinical trial number | NCT02987543 | NCT02975934 | ||
Interventional arm treatment | Olaparib (300 mg bid) | Rucaparib (600 mg bid) | ||
Control arm treatment | Physician’s choice of enzalutamide (160 mg qd) or abiraterone (1000 mg qd) with prednisone (5 mg bid) | Physician’s choice of docetaxel, abiraterone, or enzalutamide | ||
Population | mCRPC, disease progression on prior ARPI (enazalutamide or abiraterone) Alterations in ≥1 of 15 genes with direct or indirect role in HRR | mCRPC disease with progression on prior ARPI (abiraterone, enzalutamide, apalutamide, or investigational agent) Alterations in BRCA1/2 or ATM | ||
Stratification factors | Previous taxane Measurable disease | ECOG (0 or 1) Presence of hepatic metastases (yes or no) Genetic alteration (BRCA1, BRCA2, or ATM) | ||
Crossover | Allowed under certain criteria | Allowed | ||
HRR genes tested | BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L | BRCA1, BRCA2, ATM | ||
HRR testing source | Primary prostate or metastatic tissue | Tissue or plasma or other | ||
Primary endpoint | rPFS assessed by independent review committee | rPFS according to independent review | ||
Key secondary endpoints | rPFS assessed by independent review in the overall population | OS ORR | ||
Additional endpoints | ORR Time to pain progression OS PSA50 response CTC conversion rate | Duration of response Time to PSA progression PSA response (PSA50 or PSA90) Frequency of clinical benefit Patient-reported outcomes | ||
Median follow-up (months) | 21.9 months in cohort A 20.7 months in cohort B | 62 months | ||
Study arm | Olaparib | Enzalutamide or abiraterone | Rucaparib | Abiraterone or enzalutamide or docetaxel |
No. of patients | 256 | 131 | 270 | 135 |
HRRm patients, n (%) | 256 (100) | 131 (100) | 270 (100) | 135 (100) |
Age, years, median (range) | 69 (47–91) | 69 (49–87) | 70 (45–90) | 71 (47–92) |
PSA at start of study, ng/mL, median (range) | 68.2 (24.1–294.4) | 106.5 (37.2–326.6) | 26.9 (0.1–1247) | 28.8 (0–1039) |
Bone metastasis, n (%) | 86 (34) | 38 (29) | 235 (87) | 114 (84) |
Visceral metastasis, n (%) | 68 (27) | 44 (34) | 74 (27) | 46 (34) |
Prior docetaxel, n (%) | 115 (45) | 58 (44) | 63 (23) | 28 (21) |
Prior ARPI exposure, n (%) | 256 (100) | 131 (100) | 270 (100) | 135 (100) |
Outcomes | ||||
rPFS in allcomers, HR (95% CI, p) | 0.49 (0.38–0.63, p < 0.001) | 0.61 (0.47–0.80, p < 0.001) | ||
Median rPFS in allcomers, months | 5.8 | 3.5 | 10.2 | 6.4 |
rPFS in subgroup 1, HR (95% CI, p) | BRCA/ATM mutations (Cohort A) 0.34 (0.25–0.47, p < 0.001) | BRCA mutations 0.50 (0.36–0.69, p < 0.001) | ||
Median rPFS in subgroup 1, months | 7.4 | 3.6 | 11.2 | 6.4 |
rPFS in subgroup 2, HR (95% CI, p) | All other mutations (Cohort B) 0.88 (NA) | ATM mutation 0.95 (0.59–1.52 NA) | ||
Median rPFS in subgroup 2, months | 4.8 | 3.3 | 8.1 | 6.8 |
OS in allcomers, HR (95% CI, p) | 0.55 (0.29–1.06, NA) * | 0.94 (0.72–1.23, NA) | ||
Median OS in allcomers, months | 17.3 | 14.0 | 23.6 | 20.9 |
OS in subgroup 1, HR (95% CI, p) | BRCA/ATM mutations (Cohort A) 0.42 (0.19–0.91, NA) * | BRCA mutation 0.81 (0.58–1.12, p = 1.12) | ||
Median OS in subgroup 1, months | 19.1 | 14.7 | 24.3 | 20.8 |
OS in subgroup 2, HR (95% CI, p) | All other mutations (Cohort B) 0.83 (0.11–5.98, NA) * | ATM mutation 1.20 (0.74–1.95, NA) | ||
Median OS in subgroup 2, months | 14.1 | 11.5 | 21.7 | 21.7 |
Any-grade treatment-related AE, n (%) | 246 (96) | 115/130 (88) | 270 (100) | 129/130 (99) |
Grade ≥ 3 TEAEs, n (%) | 133 (52) | 52/130 (40) | 161 (60) | 69/130 (53) |
Any-grade treatment-related anemia, n (%) | 127 (50) | 20/130 (15) | 126 (47) | 23/130 (18) |
Grade ≥ 3 treatment-related anemia, n (%) | 58 (23) | 7/130 (5) | 64 (24) | 1/130 (1) |
PROpel | MAGNITUDE | TALAPRO-2 | ||||
---|---|---|---|---|---|---|
Clinical trial number | NCT03732820 | NCT03748641 | NCT03395197 | |||
Combination therapy tested | Olaparib + abiraterone | Niraparib + abiraterone | Talazoparib + enzalutamide | |||
Interventional arm treatment | Olaparib (300 mg bid) + abiraterone (1000 mg qd) + prednisone or prednisolone (5 mg bid) | Niraparib (200 mg qd) + abiraterone (1000 mg qd) + prednisone (10 mg qd) | Talazoparib (0.5 mg qd) + enzalutamide (160 mg qd) | |||
Control arm treatment | Placebo + abiraterone (1000 mg qd) + prednisone or prednisolone (5 mg bid) | Placebo + abiraterone (1000 mg qd) + prednisone (10 mg qd) | Placebo + enzalutamide (160 mg qd) | |||
Population | First-line mCRPC ECOG 0–1 Allcomers regardless of HRR status Docetaxel allowed at local and mCSPC stage Prior abiraterone not allowed Prior ARPI allowed if stopped ≥12 months | First-line mCRPC ECOG 0–1 Allcomers stratified into 2 experimental cohorts (HRRm and non-HRRm) Docetaxel allowed at mCSPC stage Prior abiraterone for ≤4 months in mCRPC was allowed | First-line mCRPC ECOG 0–1 Allcomers regardless of HRR status Prior abiraterone and docetaxel allowed in mCSPC | |||
Stratification factors | Metastatic site (bone only vs. visceral vs. other) Prior docetaxel in mCSPC setting (yes vs. no) | Prior taxane exposure (yes vs. no) Prior ARPI exposure (yes vs. no) Prior abiraterone use (yes vs. no) HRRm cohort: BRCA1/2 vs. other HRR gene alterations | Prior abiraterone or docetaxel in mCSPC setting (yes vs. no) HRR alteration status (deficient vs. non-deficient/unknown) | |||
Crossover | Not allowed | Patients could request to be unblinded | Not allowed | |||
HRR genes tested | ATM, BRCA1, BRCA2, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L | ATM, BRCA1, BRCA2, BRIP1, CDK12, CHEK2, FANCA, HDAC2, PALB2 | BRCA1, BRCA2, PALB2, ATM, ATR, CHECK2, FANCA, RAD51C, NBN, MLH, MRE11A, CDK12 | |||
HRR testing source | Tumor tissue and blood samples | Tumor tissue and/or blood samples | Tumor tissue and/or blood samples | |||
Primary endpoint | rPFS according to investigator assessment | rPFS according to blinded independent central review | rPFS according to blinded independent central review | |||
Key secondary endpoint | OS | OS Time to cytotoxic chemotherapy Time to symptomatic progression | OS | |||
Additional endpoints | Time to first subsequent therapy or death (TFST) Time to second progression or death (PFS2) ORR HRRm prevalence (retrospective testing) Health-related quality of life (HRQoL) Safety | ORR PFS2 Time to PSA progression Time to pain progression Patient-reported outcomes | ORR PFS2 by investigator assessment Time to cytotoxic chemotherapy Patient-reported outcomes Safety | |||
Median follow-up (months) | 36.6 | 24.8 | 24.9 | |||
Study arm | Olaparib plus abiraterone | Placebo plus abiraterone | Niraparib plus abiraterone | Placebo plus abiraterone | Talazoparib plus enzalutamide | Placebo plus enzalutamide |
No. of patients | 399 | 397 | 212 | 211 | 402 | 403 |
HRRm patients, n (%) | 111 (27.8) | 115 (29) | 212 (100) | 211 (100) | 85 (21) | 84 (21) |
Age, years, median | 69 (range 43–91) | 70 (range 46–88) | 69 (range 45–100) | 69 (range 43–88) | 71 (IQR 66–76) | 71 (IQR 65–76) |
PSA at start of study, ng/mL, median | 17.90 (IQR 6.09–67.0) | 16.81 (IQR 6.26–53.3) | 21.4 (range 0–4826.5) | 17.4 (range 0–4400.0) | 18.2 (IQR 6.9–59.4) | 16.2 (IQR 6.4–53.4) |
Bone metastasis, n (%) | 349 (87.5) | 339 (85.4) | 183 (86.3) | 170 (80.6) | 349 (87) | 342 (85) |
Visceral metastasis, n (%) | 55 (13.8) | 60 (15.1) | 51 (24.1) | 39 (18.5) | 57 (14) | 77 (19) |
Prior docetaxel in nmPC/mCSPC stage, n (%) | 90 (22.6) | 89 (22.4) | 41 (19.3) | 44 (20.9) | 86 (21.4) | 93 (23.1) |
Prior ARPI exposure, n (%) | 1 (0.3) | 0 | 8 (3.8) | 5 (2.4) | 23 (6) | 27 (7) |
Outcomes | ||||||
rPFS in allcomers, HR (95% CI, p) | 0.66 (0.54–0.81, p < 0.001) | NA | NA | 0.63 (0.51–0.78, p < 0.0001) | ||
Median rPFS in allcomers, months | 24.8 | 16.6 | NA | NA | NR | 21.9 |
rPFS in BRCA patients, HR (95% CI, p) | 0.23 (0.12–0.43, NA) | 0.55 (0.39–0.78, p = 0.0007) | 0.20 (0.11–0.36, p < 0.00021) + | |||
Median rPFS in BRCA patients, months | NR | 8.4 | 19.5 | 10.9 | NR + | 11 + |
rPFS in HRRm patients, HR (95% CI, p) | 0.50 (0.34–0.73, NA) | 0.76 (0.60–0.97, p = 0.028) | 0.45 (0.33–0.61, p < 0.0001) + | |||
Median rPFS in HRRm patients, months | NR | 13.9 | 16.7 | 13.7 | NR + | 13.8 + |
rPFS in non-HRRm patients, HR (95% CI, p) | 0.76 (0.60–0.97, NA) | 1.09 (0.75–1.57, p = 0.66) * | 0.7 (0.54–0.89, p = 0.0039) | |||
Median rPFS in non-HRRm patients, months | 24.1 | 19 | NA | NA | NR | 22.5 |
OS in allcomers, HR (95% CI, p) | 0.81 (0.67–1.00, p = 0.054) | NA | 0.89 (0.69–1.14, p = 0.35) | |||
Median OS in allcomers, months | 42.1 | 34.7 | NA | NA | NA | NA |
OS in BRCA patients, HR (95% CI, p) | 0.29 (0.14–0.56, NA) | 0.88 (0.58–1.34, p = 0.5505) IPCW ** 0.54 (95% CI 0.33–0.90, p = 0.018) | 0.61 (0.31–1.23, p = 0.16) + | |||
Median OS in BRCA patients, months | NR | 23 | 29.3 | 28.6 | NA | NA |
OS in HRRm patients, HR (95% CI, p) | 0.66 (0.45–0.95, NA) | 1.01 (0.75–1.36, p = 0.948) IPCW ** 0.70 (95% CI 0.49–0.99, p = 0.0414) | 0.69 (0.46–1.03, p = 0.07) + | |||
Median OS in HRRm patients, months | NR | 28.5 | 29.3 | 32.2 | NR + | 33.7 + |
OS in non-HRRm patients, HR (95% CI, p) | 0.89 (0.70–1.14, NA) | NA | NA | |||
Median OS in non-HRRm patients, months | 42.1 | 38.9 | NA | NA | NA | NA |
Any-grade treatment-related AE, n (%) | 389/398 (98) | 380/396 (96) | 211 (99.5) | 203 (96.2) | 357/398 (90) | 279/401 (70) |
Grade ≥ 3 TEAEs, n (%) | 222/398 (58) | 171/396 (43) | 153 (72.2) | 104 (49.3) | 234/398 (59) | 71/401 (18) |
Any-grade treatment-related anemia, n (%) | 198/398 (50) | 70/396 (18) | 106 (50) | 48 (22.7) | 262/398 (66) | 70/401 (17) |
Grade ≥ 3 treatment-related anemia, n (%) | 65/398 (16) | 13/396 (3) | 64 (30.2) | 18 (8.5) | 185/398 (46) | 17/401 (4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Akhras, A.; Hage Chehade, C.; Narang, A.; Swami, U. PARP Inhibitors in Metastatic Castration-Resistant Prostate Cancer: Unraveling the Therapeutic Landscape. Life 2024, 14, 198. https://doi.org/10.3390/life14020198
Al-Akhras A, Hage Chehade C, Narang A, Swami U. PARP Inhibitors in Metastatic Castration-Resistant Prostate Cancer: Unraveling the Therapeutic Landscape. Life. 2024; 14(2):198. https://doi.org/10.3390/life14020198
Chicago/Turabian StyleAl-Akhras, Ashaar, Chadi Hage Chehade, Arshit Narang, and Umang Swami. 2024. "PARP Inhibitors in Metastatic Castration-Resistant Prostate Cancer: Unraveling the Therapeutic Landscape" Life 14, no. 2: 198. https://doi.org/10.3390/life14020198
APA StyleAl-Akhras, A., Hage Chehade, C., Narang, A., & Swami, U. (2024). PARP Inhibitors in Metastatic Castration-Resistant Prostate Cancer: Unraveling the Therapeutic Landscape. Life, 14(2), 198. https://doi.org/10.3390/life14020198