Changing Sleep Architecture through Motor Learning: Influences of a Trampoline Session on REM Sleep Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Screening
2.3. Procedure
2.3.1. General Procedure
2.3.2. Experimental and Control Task
2.4. Measurement
2.4.1. Subjective Measurements of Sleep
2.4.2. Objective Measurements of Sleep
2.5. Statistics
3. Results
3.1. Subjective Sleep Parameters
3.2. Objective Sleep Parameters
3.3. Motor Learning and Control Task
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stickgold, R. Sleep-dependent memory consolidation. Nature 2005, 437, 1272–1278. [Google Scholar] [CrossRef]
- King, B.R.; Hoedlmoser, K.; Hirschauer, F.; Dolfen, N.; Albouy, G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci. Biobehav. Rev. 2017, 80, 1–22. [Google Scholar] [CrossRef]
- Schmid, D.; Erlacher, D.; Klostermann, A.; Kredel, R.; Hossner, E.-J. Sleep-dependent motor memory consolidation in healthy adults: A meta-analysis. Neurosci. Biobehav. Rev. 2020, 118, 270–281. [Google Scholar] [CrossRef]
- Wulf, G.; Shea, C.H. Principles derived from the study of simple skills do not generalize to complex skill learning. Psychon. Bull. Rev. 2002, 9, 185–211. [Google Scholar] [CrossRef]
- Erlacher, D.; Schredl, M. Effect of a motor learning task on REM sleep parameters. Sleep Hypn. 2006, 8, 41–46. [Google Scholar]
- Fogel, S.M.; Smith, C.T. Learning-dependent changes in sleep spindles and Stage 2 sleep. J. Sleep Res. 2006, 15, 250–255. [Google Scholar] [CrossRef]
- Hoedlmoser, K.; Birklbauer, J.; Schabus, M.; Eibenberger, P.; Rigler, S.; Mueller, E. The impact of diurnal sleep on the consolidation of a complex gross motor adaptation task. J. Sleep Res. 2015, 24, 100–109. [Google Scholar] [CrossRef]
- Morita, Y.; Ogawa, K.; Uchida, S. The effect of a daytime 2-hour nap on complex motor skill learning. Sleep Biol. Rhythm. 2012, 10, 302–309. [Google Scholar] [CrossRef]
- Le Bon, O.; Staner, L.; Hoffmann, G.; Dramaix, M.; San Sebastian, I.; Murphy, J.R.; Kentos, M.; Pelc, I.; Linkowski, P. The first-night effect may last more than one night. J. Psychiatr. Res. 2001, 35, 165–172. [Google Scholar] [CrossRef]
- Blischke, K.; Erlacher, D.; Kresin, H.; Brückner, S.; Malangré, A. Benefits of sleep in motor learning—Prospects and limitations. J. Hum. Kinet. 2008, 20, 23–36. [Google Scholar] [CrossRef]
- Kempler, L.; Richmond, J.L. Effect of sleep on gross motor memory. Memory 2012, 20, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Buchegger, J.; Fritsch, R.; Meier-Koll, A.; Riehle, H. Does trampolining and anaerobic physical fitness affect sleep? Percept. Mot. Skills 1991, 73, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Borbély, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar] [PubMed]
- Görtelmeyer, R. Schlaf-Fragebogen A, B (Sf-A, Sf-B). In Internationale Skalen fur Psychiatrie; Collegium Internationale Psychiatriae Scalarum: Weinheim, Germany, 1986; Volume 4. [Google Scholar]
- Görtelmeyer, R. SF-A/R, SF-B/R. Schlaffragebogen A, B. Revidierte Fassung; Hogrefe: Göttingen, Germany, 2011. [Google Scholar]
- Smith, C.; Aubrey, J.B.; Peters, K.R. Different roles for REM and stage 2 sleep in motor learning: A proposed model. Psychol. Belg. 2004, 44, 79–102. [Google Scholar] [CrossRef]
- Hossner, E.-J.; Schiebl, F.; Göhner, U. A functional approach to movement analysis and error identification in sports and physical education. Front. Psychol. 2015, 6, 1339. [Google Scholar] [CrossRef] [PubMed]
- Hauptmann, B.; Reinhart, E.; Brandt, S.A.; Karni, A. The predictive value of the leveling off of within session performance for procedural memory consolidation. Cogn. Brain Res. 2005, 24, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, C.M.; Bortz, R.; Mitchell, D.; Bartel, P.; Jooste, P. Slow-wave sleep: A recovery period after exercise. Science 1981, 214, 1253–1254. [Google Scholar] [CrossRef]
- Dattilo, M.; Antunes, H.; Medeiros, A.; Neto, M.M.; Souza, H.; Tufik, S.; de Mello, M. Sleep and muscle recovery: Endocrinological and molecular basis for a new and promising hypothesis. Med. Hypotheses 2011, 77, 220–222. [Google Scholar] [CrossRef]
- Dattilo, M.; Antunes, H.K.M.; Medeiros, A.; Mônico-Neto, M.; Souza, H.d.S.; Lee, K.S.; Tufik, S.; de Mello, M.T. Paradoxical sleep deprivation induces muscle atrophy. Muscle Nerve 2012, 45, 431–433. [Google Scholar] [CrossRef]
- Saletin, J.M.; Goldstein, A.N.; Walker, M.P. The Role of Sleep in Directed Forgetting and Remembering of Human Memories. Cereb. Cortex 2011, 21, 2534–2541. [Google Scholar] [CrossRef]
- Diekelmann, S.; Wilhelm, I.; Born, J. The whats and whens of sleep-dependent memory consolidation. Sleep Med. Rev. 2009, 13, 309–321. [Google Scholar] [CrossRef]
- Fischer, D.; Klerman, E.B.; Phillips, A.J.K. Measuring sleep regularity: Theoretical properties and practical usage of existing metrics. Sleep 2021, 44, zsab103. [Google Scholar] [CrossRef] [PubMed]
- Albouy, G.; King, B.R.; Maquet, P.; Doyon, J. Hippocampus and striatum: Dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus 2013, 23, 985–1004. [Google Scholar] [CrossRef] [PubMed]
- Doyon, J.; Bellec, P.; Amsel, R.; Penhune, V.; Monchi, O.; Carrier, J.; Lehéricy, S.; Benali, H. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 2009, 199, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Robertson, E.M.; Pascual-Leone, A.; Miall, R.C. Current concepts in procedural consolidation. Nat. Rev. Neuro-Sci. 2004, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Robertson, E.M.; Pascual-Leone, A.; Press, D.Z. Awareness modifies the skill-learning benefits of sleep. Curr. Biol. 2004, 14, 208–212. [Google Scholar] [CrossRef]
- Boutin, A.; Doyon, J. A sleep spindle framework for motor memory consolidation. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190232. [Google Scholar] [CrossRef]
- Berg, N.H.v.D.; Gibbings, A.; Baena, D.; Pozzobon, A.; Al-Kuwatli, J.; Ray, L.B.; Fogel, S.M. Eye movements during phasic versus tonic rapid eye movement sleep are biomarkers of dissociable electroencephalogram processes for the consolidation of novel problem-solving skills. Sleep 2023, 46, zsad151. [Google Scholar] [CrossRef]
- Leeder, J.; Glaister, M.; Pizzoferro, K.; Dawson, J.; Pedlar, C. Sleep duration and quality in elite athletes measured using wristwatch actigraphy. J. Sports Sci. 2012, 30, 541–545. [Google Scholar] [CrossRef]
- Erlacher, D.; Ehrlenspiel, F.; Adegbesan, O.A.; El-Din, H.G. Sleep habits in German athletes before important competitions or games. J. Sports Sci. 2011, 29, 859–866. [Google Scholar] [CrossRef]
Subjective Sleep Variables | No Task (Adaptation Night) | Bicycle Night (Control Night) | Trampoline Night (Experimental Night) | t-Test | |
---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | t(18) | p | |
Sleep quality | 2.83 ± 0.82 | 3.98 ± 0.40 | 3.88 ± 0.61 | 1.5 | 0.16 |
Feeling of being refreshed in the morning | 2.95 ± 0.74 | 3.16 ± 0.69 | 3.15 ± 0.57 | 0.1 | 0.93 |
Balance in the evening | 3.09 ± 0.76 | 3.60 ± 0.47 | 3.65 ± 0.44 | −0.1 | 0.90 |
Fatigue in the evening | 2.70 ± 0.75 | 3.42 ± 0.68 | 3.18 ± 0.63 | 1.3 | 0.21 |
Symptoms during sleep | 1.64 ± 0.46 | 1.32 ± 0.31 | 1.33 ± 0.43 | −0.2 | 0.88 |
Objective Sleep Variables | No Task (Adaptation Night) | Bicycle Night (Control Night) | Trampoline Night (Experimental Night) | t-Test | |
---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | t(18) | p | |
Global sleep architecture | |||||
Total time in bed (min) | 469.8 ± 23.3 | 471.0 ± 22.7 | 471.5 ± 11.0 | −0.1 | 0.92 |
Sleep efficiency (%) | 78.2 ± 21.9 | 89.7 ± 4.7 | 91.0 ± 3.9 | −1.4 | 0.17 |
Sleep latency (min) | 47.5 ± 89.4 | 18.2 ± 10.9 | 20.3 ± 12.8 | −1.0 | 0.31 |
Number of awakenings | 19.5 ± 10.2 | 18.3 ± 9.5 | 19.5 ± 8.7 | −0.9 | 0.37 |
NREM parameters | |||||
Wake % SPT | 11.6 ± 15.6 | 6.2 ± 4.5 | 4.5 ± 2.5 | 1.9 | 0.07 |
Stage 1 % SPT | 6.6 ± 3.6 | 8.1 ± 3.8 | 7.4 ± 2.4 | 1.1 | 0.29 |
Stage 2 % SPT | 51.3 ± 13.2 | 53.7 ± 8.8 | 53.9 ± 8.9 | −0.2 | 0.88 |
Stage 3 % SPT | 18.7 ± 11.0 | 16.5 ± 9.2 | 17.5 ± 9.7 | −1.1 | 0.27 |
REM parameters 1 | |||||
REM % SPT | 11.7 ± 5.2 | 15.3 ± 4.7 | 16.5 ± 4.4 | −1.9 | 0.04 |
REM latency (min) | 136.2 ± 60.3 | 94.8 ± 38.2 | 97.4 ± 41.3 | −0.3 | 0.38 |
REM latency (3 min) | 150.6 ± 61.8 | 141.3 ± 58.7 | 139.3 ± 61.9 | 0.1 | 0.46 |
Duration of first REM period | 13.3 ± 8.8 | 12.7 ± 11.9 | 12.9 ± 9.9 | −0.1 | 0.47 |
REM density (1. REM period) | 8.5 ± 6.3 | 9.7 ± 5.6 | 7.6 ± 4.6 | 1.9 | 0.04 |
REM density (whole night) | 11.9 ± 4.2 | 12.1 ± 4.8 | 12.2 ± 4.9 | −0.1 | 0.47 |
Bicycle Night (Control Night) | Trampoline Night (Experimental Night) | t-Test | ||
---|---|---|---|---|
M ± SD | M ± SD | t(21) | ||
Feeling comfortable | 8.64 ± 3.00 | 10.25 ± 3.08 | −1.8 | 0.08 |
Boredom | 7.39 ± 4.28 | 1.39 ± 2.85 | 6.0 | <0.01 |
Variety | 3.36 ± 2.96 | 10.73 ± 2.76 | −8.9 | <0.01 |
Competence | 10.75 ± 2.15 | 8.00 ± 2.69 | 4.2 | <0.01 |
Fear | 0.39 ± 0.58 | 2.73 ± 2.75 | −3.9 | <0.01 |
Control | 6.00 ± 4.45 | 11.48 ± 1.70 | −6.3 | <0.01 |
Bicycle Night (Control Night) | Trampoline Night (Experimental Night) | t-Test | ||
---|---|---|---|---|
M ± SD | M ± SD | t(20) | ||
Physical strain | 141.70 ± 6.24 | 157.66 ± 14.54 | −4.7 | <0.01 |
Break | 97.53 ± 10.36 | 115.14 ± 14.17 | −5.6 | <0.01 |
Borg | 13.55 ± 1.84 | 14.95 ± 1.96 | −2.3 | 0.03 |
Variables | Results |
---|---|
Number of elements | 7.59 ± 1.44 |
Time to turn jump | 39.34 ± 7.90 |
Time to first long programme | 46.93 ± 8.57 |
Time to second long programme | 51.60 ± 6.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erlacher, D.; Schmid, D.; Zahno, S.; Schredl, M. Changing Sleep Architecture through Motor Learning: Influences of a Trampoline Session on REM Sleep Parameters. Life 2024, 14, 203. https://doi.org/10.3390/life14020203
Erlacher D, Schmid D, Zahno S, Schredl M. Changing Sleep Architecture through Motor Learning: Influences of a Trampoline Session on REM Sleep Parameters. Life. 2024; 14(2):203. https://doi.org/10.3390/life14020203
Chicago/Turabian StyleErlacher, Daniel, Daniel Schmid, Stephan Zahno, and Michael Schredl. 2024. "Changing Sleep Architecture through Motor Learning: Influences of a Trampoline Session on REM Sleep Parameters" Life 14, no. 2: 203. https://doi.org/10.3390/life14020203
APA StyleErlacher, D., Schmid, D., Zahno, S., & Schredl, M. (2024). Changing Sleep Architecture through Motor Learning: Influences of a Trampoline Session on REM Sleep Parameters. Life, 14(2), 203. https://doi.org/10.3390/life14020203