Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review
Abstract
:1. Introduction
2. Search Methods
3. Convalescent Plasma
3.1. Characteristics of CCP
3.2. Safety of CCP
3.3. Clinical Indications of CCP
3.3.1. Hospitalized Patients
3.3.2. Outpatients
3.3.3. Immunocompromised Patients
4. Hyperimmune Immunoglobulins
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019?adgroupsurvey={adgroupsurvey}&gclid=EAIaIQobChMI09ix0OX0gAMV1pNoCR0H-w_aEAAYASAAEgJQpfD_BwE (accessed on 14 November 2023).
- Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells 2021, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Mair-Jenkins, J.; Saavedra-Campos, M.; Baillie, J.K.; Cleary, P.; Khaw, F.-M.; Lim, W.S.; Makki, S.; Rooney, K.D.; Nguyen-Van-Tam, J.S.; Beck, C.R.; et al. The Effectiveness of Convalescent Plasma and Hyperimmune Immunoglobulin for the Treatment of Severe Acute Respiratory Infections of Viral Etiology: A Systematic Review and Exploratory Meta-analysis. J. Infect. Dis. 2015, 211, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Marano, G.; Vaglio, S.; Pupella, S.; Facco, G.; Catalano, L.; Liumbruno, G.M.; Grazzini, G. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus. 2016, 14, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Luke, T.C.; Casadevall, A.; Watowich, S.J.; Hoffman, S.L.; Beigel, J.H.; Burgess, T.H. Hark back: Passive immunotherapy for influenza and other serious infections. Crit. Care Med. 2010, 38, e66–e73. [Google Scholar] [CrossRef]
- Ripoll, J.G.; van Helmond, N.; Senefeld, J.W.; Wiggins, C.C.; Klassen, S.A.; Baker, S.E.; Larson, K.F.; Murphy, B.M.; Andersen, K.J.; Ford, S.K.; et al. Convalescent Plasma for Infectious Diseases: Historical Framework and Use in COVID-19. Clin. Microbiol. Newsl. 2021, 43, 23–32. [Google Scholar] [CrossRef]
- Bloch, E.M.; Shoham, S.; Casadevall, A.; Sachais, B.S.; Shaz, B.; Winters, J.L.; van Buskirk, C.; Grossman, B.J.; Joyner, M.; Henderson, J.P.; et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J. Clin. Investig. 2020, 130, 2757–2765. [Google Scholar] [CrossRef]
- Casadevall, A.; Grossman, B.J.; Henderson, J.P.; Joyner, M.J.; Shoham, S.; Pirofski, L.-A.; Paneth, N. The Assessment of Convalescent Plasma Efficacy against COVID-19. Med 2020, 1, 66–77. [Google Scholar] [CrossRef]
- Wendel, S.; Land, K.; Devine, D.V.; Daly, J.; Bazin, R.; Tiberghien, P.; Lee, C.; Arora, S.; Patidar, G.K.; Khillan, K.; et al. Lessons learned in the collection of convalescent plasma during the COVID-19 pandemic. Vox Sang. 2021, 116, 872–879. [Google Scholar] [CrossRef]
- Focosi, D.; Franchini, M. Impact of pathogen-reduction technologies on COVID-19 convalescent plasma potency. Transfus. Clin. Biol. 2021, 28, 132–134. [Google Scholar] [CrossRef]
- Del Fante, C.; Franchini, M.; Baldanti, F.; Percivalle, E.; Glingani, C.; Marano, G.; Mengoli, C.; Mortellaro, C.; Viarengo, G.; Perotti, C.; et al. A retrospective study assessing the characteristics of COVID-19 convalescent plasma donors and donations. Transfusion 2021, 61, 830–838. [Google Scholar] [CrossRef]
- Focosi, D.; Casadevall, A. Pathogen reduction technologies need to evaluate Fc-mediated antibody functions. Transfusion 2022, 62, 1680–1681. [Google Scholar] [CrossRef]
- McGregor, R.; Carlton, L.; Paterson, A.; Hills, T.; Charlewood, R.; Moreland, N.J. Neutralization capacity of convalescent plasma against SARS-CoV-2 omicron sublineages: Implications for donor selection. Vox Sang. 2023, 118, 1145–1147. [Google Scholar] [CrossRef]
- Wu, S.-C.; Arthur, C.M.; Wang, J.; Verkerke, H.; Josephson, C.D.; Kalman, D.; Roback, J.D.; Cummings, R.D.; Stowell, S.R. The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A. Blood Adv. 2021, 5, 1305–1309. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, T.; Ma, L.; Zhang, H.; Wang, H.; Wei, W.; Pei, H.; Li, H. The impact of ABO blood group on COVID-19 infection risk and mortality: A systematic review and meta-analysis. Blood Rev. 2021, 48, 100785. [Google Scholar] [CrossRef]
- Huaman, M.A.; Raval, J.S.; Paxton, J.H.; Mosnaim, G.S.; Patel, B.; Anjan, S.; Meisenberg, B.R.; Levine, A.C.; Marshall, C.E.; Yarava, A.; et al. Transfusion reactions associated with COVID-19 convalescent plasma in outpatient clinical trials. Transfusion 2023, 63, 1639–1648. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Cruciani, M.; Casadevall, A.; Joyner, M.J.; Senefeld, J.W.; Sullivan, D.J.; Zani, M.; Focosi, D. Safety of COVID-19 convalescent plasma: A definitive systematic review and meta-analysis of randomized controlled trials. Transfusion 2023. early view. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020, 323, 1582–1589. [Google Scholar] [CrossRef]
- Casadevall, A.; Joyner, M.J.; Pirofski, L.-A.; Senefeld, J.W.; Shoham, S.; Sullivan, D.; Paneth, N.; Focosi, D. Convalescent plasma therapy in COVID-19: Unravelling the data using the principles of antibody therapy. Expert Rev. Respir. Med. 2023, 17, 381–395. [Google Scholar] [CrossRef]
- Iannizzi, C.; Chai, K.L.; Piechotta, V.; Valk, S.J.; Kimber, C.; Monsef, I.; Wood, E.M.; A Lamikanra, A.; Roberts, D.J.; McQuilten, Z.; et al. Convalescent plasma for people with COVID-19: A living systematic review. Emergencias 2023, 2023, CD013600. [Google Scholar] [CrossRef]
- Casadevall, A.; Dragotakes, Q.; Johnson, P.W.; Senefeld, J.W.; A Klassen, S.; Wright, R.S.; Joyner, M.J.; Paneth, N.; E Carter, R. Convalescent plasma use in the USA was inversely correlated with COVID-19 mortality. eLife 2021, 10, e69866. [Google Scholar] [CrossRef]
- Lang, K. Is convalescent plasma still useful as a COVID treatment? BMJ 2023, 383, p2185. [Google Scholar] [CrossRef]
- Focosi, D.; Franchini, M.; Pirofski, L.-A.; Burnouf, T.; Paneth, N.; Joyner, M.J.; Casadevall, A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin. Microbiol. Rev. 2022, 35, e0020021. [Google Scholar] [CrossRef]
- Menichetti, F.; Popoli, P.; Puopolo, M.; Alegiani, S.S.; Tiseo, G.; Bartoloni, A.; De Socio, G.V.; Luchi, S.; Blanc, P.; Puoti, M.; et al. Effect of High-Titer Convalescent Plasma on Progression to Severe Respiratory Failure or Death in Hospitalized Patients With COVID-19 Pneumonia. JAMA Netw. Open 2021, 4, e2136246. [Google Scholar] [CrossRef]
- Körper, S.; Weiss, M.; Zickler, D.; Wiesmann, T.; Zacharowski, K.; Corman, V.M.; Grüner, B.; Ernst, L.; Spieth, P.; Lepper, P.M.; et al. Results of the CAPSID randomized trial for high-dose convalescent plasma in patients with severe COVID-19. J. Clin. Investig. 2021, 131, e152264. [Google Scholar] [CrossRef]
- Ortigoza, M.B.; Yoon, H.; Goldfeld, K.S.; Troxel, A.B.; Daily, J.P.; Wu, Y.; Li, Y.; Wu, D.; Cobb, G.F.; Baptiste, G.; et al. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients. JAMA Intern. Med. 2022, 182, 115–126. [Google Scholar] [CrossRef]
- De Santis, G.C.; Oliveira, L.C.; Garibaldi, P.M.; Almado, C.E.; Croda, J.; Arcanjo, G.G.; Oliveira, A.; Tonacio, A.C.; Langhi, D.M.; Bordin, J.O.; et al. High-Dose Convalescent Plasma for Treatment of Severe COVID-19. Emerg. Infect. Dis. 2022, 28, 548–555. [Google Scholar] [CrossRef]
- Bennett-Guerrero, E.; Romeiser, J.L.; Talbot, L.R.; Ahmed, T.; Mamone, L.J.; Singh, S.M.; Hearing, J.C.; Salman, H.; Holiprosad, D.D.; Freedenberg, A.T.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Convalescent Plasma Versus Standard Plasma in Coronavirus Disease 2019 Infected Hospitalized Patients in New York: A Double-Blind Randomized Trial. Crit. Care Med. 2021, 49, 1015–1025. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Hu, Y.; Tong, X.; Zheng, S.; Yang, J.; Kong, Y.; Ren, L.; Wei, Q.; Mei, H.; et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients with Severe and Life-threatening COVID-19. JAMA 2020, 324, 460–470. [Google Scholar] [CrossRef]
- Gharbharan, A.; Jordans, C.C.E.; GeurtsvanKessel, C.; den Hollander, G.J.; Karim, F.; Mollema, F.P.N.; Stalenhoef-Schukken, J.; Dofferhoff, A.; Ludwig, I.; Koster, A.; et al. Effects of Potent Neutralizing Antibodies from Convalescent Plasma in Patients Hospitalized for Severe SARS-CoV-2 Infection. Nat. Commun. 2021. [Google Scholar] [CrossRef]
- Lacombe, K.; Hueso, T.; Porcher, R.; Mekinian, A.; Chiarabini, T.; Georgin-Lavialle, S.; Ader, F.; Saison, J.; Martin-Blondel, G.; De Castro, N.; et al. Use of COVID-19 convalescent plasma to treat patients admitted to hospital for COVID-19 with or without underlying immunodeficiency: Open label, randomised clinical trial. BMJ Med. 2023, 2, e000427. [Google Scholar] [CrossRef]
- Misset, B.; Piagnerelli, M.; Hoste, E.; Dardenne, N.; Grimaldi, D.; Michaux, I.; De Waele, E.; Dumoulin, A.; Jorens, P.G.; van der Hauwaert, E.; et al. Convalescent Plasma for COVID-19–Induced ARDS in Mechanically Ventilated Patients. N. Engl. J. Med. 2023, 389, 1590–1600. [Google Scholar] [CrossRef]
- Thompson, M.A.; Henderson, J.P.; Shah, P.K.; Rubinstein, S.M.; Joyner, M.J.; Choueiri, T.K.; Flora, D.B.; Griffiths, E.A.; Gulati, A.P.; Hwang, C.; et al. Association of Convalescent Plasma Therapy With Survival in Patients With Hematologic Cancers and COVID-19. JAMA Oncol. 2021, 7, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Donato, M.L.; Park, S.; Baker, M.; Korngold, R.; Morawski, A.; Geng, X.; Tan, M.; Ip, A.; Goldberg, S.; Rowley, S.; et al. Clinical and laboratory evaluation of patients with SARS-CoV-2 pneumonia treated with high-titer convalescent plasma. JCI Insight 2021, 6, e143196. [Google Scholar] [CrossRef] [PubMed]
- Briggs, N.; Gormally, M.V.; Li, F.; Browning, S.L.; Treggiari, M.M.; Morrison, A.; Laurent-Rolle, M.; Deng, Y.; Hendrickson, J.E.; Tormey, C.A.; et al. Early but not late convalescent plasma is associated with better survival in moderate-to-severe COVID-19. PLoS ONE 2021, 16, e0254453. [Google Scholar] [CrossRef]
- Zhou, C.K.; Bennett, M.M.; Villa, C.H.; Hammonds, K.P.; Lu, Y.; Ettlinger, J.; Priest, E.L.; Gottlieb, R.L.; Davis, S.; Mays, E.; et al. Multi-center matched cohort study of convalescent plasma for hospitalized patients with COVID-19. PLoS ONE 2022, 17, e0273223. [Google Scholar] [CrossRef] [PubMed]
- Senefeld, J.W.; Gorman, E.K.; Johnson, P.W.; Moir, M.E.; Klassen, S.A.; Carter, R.E.; Paneth, N.S.; Sullivan, D.J.; Morkeberg, O.H.; Wright, R.S.; et al. Mortality Rates among Hospitalized Patients With COVID-19 Treated with Convalescent Plasma: A Systematic Review and Meta-Analysis. Mayo Clin. Proc. Innov. Qual. Outcomes 2023, 7, 499–513. [Google Scholar] [CrossRef]
- Libster, R.; Marc, G.P.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early High-Titer Plasma Therapy to Prevent Severe COVID-19 in Older Adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Gebo, K.A.; Shoham, S.; Bloch, E.M.; Lau, B.; Shenoy, A.G.; Mosnaim, G.S.; Gniadek, T.J.; Fukuta, Y.; Patel, B.; et al. Early Outpatient Treatment for COVID-19 with Convalescent Plasma. N. Engl. J. Med. 2022, 386, 1700–1711. [Google Scholar] [CrossRef]
- Baksh, S.N.; Heath, S.L.; Fukuta, Y.; Shade, D.; Meisenberg, B.; Bloch, E.M.; Tobian, A.A.R.; Spivak, E.S.; Patel, B.; Gerber, J.; et al. Symptom Duration and Resolution with Early Outpatient Treatment of Convalescent Plasma for Coronavirus Disease 2019: A Randomized Trial. J. Infect. Dis. 2023, 227, 1266–1273. [Google Scholar] [CrossRef]
- Gebo, K.A.; Heath, S.L.; Fukuta, Y.; Zhu, X.; Baksh, S.; Abraham, A.G.; Habtehyimer, F.; Shade, D.; Ruff, J.; Ram, M.; et al. Early antibody treatment, inflammation, and risk of post-COVID conditions. mBio 2023, 14, e0061823. [Google Scholar] [CrossRef]
- Gharbharan, A.; Jordans, C.; Zwaginga, L.; Papageorgiou, G.; van Geloven, N.; van Wijngaarden, P.; Hollander, J.D.; Karim, F.; van Leeuwen-Segarceanu, E.; Soetekouw, R.; et al. Outpatient convalescent plasma therapy for high-risk patients with early COVID-19: A randomized placebo-controlled trial. Clin. Microbiol. Infect. 2023, 29, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Alemany, A.; Millat-Martinez, P.; Corbacho-Monné, M.; Malchair, P.; Ouchi, D.; Ruiz-Comellas, A.; Ramírez-Morros, A.; Codina, J.R.; Simon, R.A.; Videla, S.; et al. High-titre methylene blue-treated convalescent plasma as an early treatment for outpatients with COVID-19: A randomised, placebo-controlled trial. Lancet Respir. Med. 2022, 10, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.C.; Fukuta, Y.; A Huaman, M.; Ou, J.; Meisenberg, B.R.; Patel, B.; Paxton, J.H.; Hanley, D.F.; A Rijnders, B.J.; Gharbharan, A.; et al. Coronavirus Disease 2019 Convalescent Plasma Outpatient Therapy to Prevent Outpatient Hospitalization: A Meta-Analysis of Individual Participant Data From 5 Randomized Trials. Clin. Infect. Dis. 2023, 76, 2077–2086. [Google Scholar] [CrossRef] [PubMed]
- Stadler, E.; Chai, K.L.; E Schlub, T.; Cromer, D.; Khan, S.R.; Polizzotto, M.N.; Kent, S.J.; Beecher, C.; White, H.; Turner, T.; et al. Determinants of passive antibody efficacy in SARS-CoV-2 infection: A systematic review and meta-analysis. Lancet Microbe 2023, 4, e883–e892. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Focosi, D.; Hanley, D.; Cruciani, M.; Franchini, M.; Ou, J.; Casadevall, A.; Paneth, N. Outpatient regimens to reduce COVID-19 hospitalisations: A systematic review and meta-analysis of randomized controlled trials. medRxiv 2022. medRxiv:2022.05.24.22275478. [Google Scholar]
- Hoertel, N.; Boulware, D.R.; Sánchez-Rico, M.; Burgun, A.; Limosin, F. Prevalence of Contraindications to Nirmatrelvir-Ritonavir Among Hospitalized Patients with COVID-19 at Risk for Progression to Severe Disease. JAMA Netw. Open 2022, 5, e2242140. [Google Scholar] [CrossRef]
- Bloch, E.M.; Focosi, D.; Shoham, S.; Senefeld, J.; Tobian, A.A.R.; Baden, L.R.; Tiberghien, P.; Sullivan, D.J.; Cohn, C.; Dioverti, V.; et al. Guidance on the Use of Convalescent Plasma to Treat Immunocompromised Patients with Coronavirus Disease 2019. Clin. Infect. Dis. 2023, 76, 2018–2024. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Franchini, M.; Mengoli, C.; Cruciani, M.; Zani, M.; Gorman, E.K.; Focosi, D.; Casadevall, A.; Joyner, M.J. COVID-19 Convalescent Plasma for the Treatment of Immunocompromised Patients: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e2250647. [Google Scholar] [CrossRef]
- Denkinger, C.M.; Janssen, M.; Schäkel, U.; Gall, J.; Leo, A.; Stelmach, P.; Weber, S.F.; Krisam, J.; Baumann, L.; Stermann, J.; et al. Anti-SARS-CoV-2 antibody-containing plasma improves outcome in patients with hematologic or solid cancer and severe COVID-19: A randomized clinical trial. Nat. Cancer 2023, 4, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Hueso, T.; Godron, A.-S.; Lanoy, E.; Pacanowski, J.; Levi, L.I.; Gras, E.; Surgers, L.; Guemriche, A.; Meynard, J.-L.; Pirenne, F.; et al. Convalescent plasma improves overall survival in patients with B-cell lymphoid malignancy and COVID-19: A longitudinal cohort and propensity score analysis. Leukemia 2022, 36, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zheng, Y.; Feng, S. Omicron related COVID-19 prevention and treatment measures for patients with hematological malignancy and strategies for modifying hematologic treatment regimes. Front. Cell. Infect. Microbiol. 2023, 13, 1207225. [Google Scholar] [CrossRef]
- Focosi, D.; Tuccori, M.; Franchini, M. The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19. Life 2021, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Uddin, S.M.; Shalim, E.; Sayeed, M.A.; Anjum, F.; Saleem, F.; Muhaymin, S.M.; Ali, A.; Ali, M.R.; Ahmed, I.; et al. Hyperimmune anti-COVID-19 IVIG (C-IVIG) treatment in severe and critical COVID-19 patients: A phase I/II randomized control trial. EClinicalMedicine 2021, 36, 100926. [Google Scholar] [CrossRef] [PubMed]
- Parikh, D.; Chaturvedi, A.; Shah, N.; Patel, P.; Patel, R.; Ray, S. Safety and Efficacy of COVID-19 Hyperimmune Globulin (HIG) solution In the Treatment of Active COVID-19 Infection—Findings from a Prospective, Randomized, Controlled, Multi-Centric Trial. 2021. Available online: https://wwwmedrxivorg/content/101101/2021072621261119v1 (accessed on 10 November 2023.).
- Huygens, S.; Hofsink, Q.; Nijhof, I.S.; Goorhuis, A.; Kater, A.P.; Boekhorst, P.A.W.T.; Swaneveld, F.; Novotný, V.M.J.; Bogers, S.; A Welkers, M.R.; et al. Hyperimmune Globulin for Severely Immunocompromised Patients Hospitalized with Coronavirus Disease 2019: A Randomized, Controlled Trial. J. Infect. Dis. 2022, 227, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Polizzotto, M.N.; Nordwall, J.; Babiker, A.G.; Phillips, A.; Vock, D.M.; Eriobu, N.; Kwaghe, V.; Paredes, R.; Mateu, L.; Ramachandruni, S.; et al. Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): A double-blind, placebo-controlled, phase 3, randomised trial. Lancet 2022, 399, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Kimber, C.; Valk, S.J.; Chai, K.L.; Piechotta, V.; Iannizzi, C.; Monsef, I.; Wood, E.M.; A Lamikanra, A.; Roberts, D.J.; McQuilten, Z.; et al. Hyperimmune immunoglobulin for people with COVID-19. Emergencias 2023, 2023, CD015167. [Google Scholar] [CrossRef]
- Maor, Y.; Shinar, E.; Izak, M.; Rahav, G.; Brosh-Nissimov, T.; Kessler, A.; Rahimi-Levene, N.; Benin-Goren, O.; Cohen, D.; Zohar, I.; et al. A Randomized Controlled Study Assessing Convalescent Immunoglobulins vs. Convalescent Plasma for Hospitalized Patients With Coronavirus 2019. Clin. Infect. Dis. 2023, 77, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Tobian, A.A.R.; Cohn, C.S.; Shaz, B.H. COVID-19 convalescent plasma. Blood 2021, 140, 196–207. [Google Scholar] [CrossRef]
- Moog, R. COVID 19 convalescent plasma: Is there still a place for CCP? Transfus. Apher. Sci. 2023, 62, 103680. [Google Scholar] [CrossRef]
- Kanj, S.; Al-Omari, B. Convalescent Plasma Transfusion for the Treatment of COVID-19 in Adults: A Global Perspective. Viruses 2021, 13, 849. [Google Scholar] [CrossRef]
- Cohn, C.S.; Estcourt, L.; Grossman, B.J.; Pagano, M.B.; Allen, E.S.; Bloch, E.M.; Casadevall, A.; Devine, D.V.; Dunbar, N.M.; Foroutan, F.; et al. COVID-19 convalescent plasma: Interim recommendations from the AABB. Transfusion 2021, 61, 1313–1323. [Google Scholar] [CrossRef]
- Joyner, M.J.; Carter, R.E.; Fairweather, D.; Wright, R.S. Convalescent plasma and COVID-19: Time for a second—Second look? Transfus. Med. 2023, 33, 16–20. [Google Scholar] [CrossRef]
- Hassan, S.; West, K.A.; Conry-Cantilena, K.; De Giorgi, V. Regulatory challenges of convalescent plasma collection during the evolving stages of COVID-19 pandemic in the United States. Transfusion 2022, 62, 483–492. [Google Scholar] [CrossRef]
- Chavda, V.P.; Bezbaruah, R.; Dolia, S.; Shah, N.; Verma, S.; Savale, S.; Ray, S. Convalescent plasma (hyperimmune immunoglobulin) for COVID-19 management: An update. Process. Biochem. 2023, 127, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Kandula, U.R.; Tuji, T.S.; Gudeta, D.B.; Bulbula, K.L.; Mohammad, A.A.; Wari, K.D.; Abbas, A. Effectiveness of COVID-19 Convalescent Plasma (CCP) During the Pandemic Era: A Literature Review. J. Blood Med. 2023, 14, 159–187. [Google Scholar] [CrossRef] [PubMed]
- Nashaat, H.-A.H.; Anani, M.; Attia, F.M. Convalescent plasma in COVID-19: Renewed focus on the timing and effectiveness of an old therapy. Blood Res. 2022, 57, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, C.; Ntanasis-Stathopoulos, I.; Sekeri, K.; Ntanasis-Stathopoulos, A.; Gavriatopoulou, M.; Psaltopoulou, T.; Dounias, G.; Sergentanis, T.N.; Terpos, E. Convalescent Plasma Therapy for COVID-19: A Systematic Review and Meta-Analysis on Randomized Controlled Trials. Viruses 2023, 15, 765. [Google Scholar] [CrossRef] [PubMed]
- Klassen, S.A.; Senefeld, J.W.; Senese, K.A.; Johnson, P.W.; Wiggins, C.C.; Baker, S.E.; van Helmond, N.; Bruno, K.A.; Pirofski, L.-A.; Shoham, S.; et al. Convalescent Plasma Therapy for COVID-19: A Graphical Mosaic of the Worldwide Evidence. Front. Med. 2021, 8, 684151. [Google Scholar] [CrossRef] [PubMed]
- Andrews, H.S.; Herman, J.D.; Gandhi, R.T. Treatments for COVID-19. Annu. Rev. Med. 2023, 75, 145–157. [Google Scholar] [CrossRef]
- Gudima, G.; Kofiadi, I.; Shilovskiy, I.; Kudlay, D.; Khaitov, M. Antiviral Therapy of COVID-19. Int. J. Mol. Sci. 2023, 24, 8867. [Google Scholar] [CrossRef]
- Garraud, O.; Watier, H. Is there any revival of the use of plasma therapy or neutralizing convalescent antibody therapy to treat SARS-CoV-2 variants and are we rethinking preparedness plans? Transfus. Apher. Sci. 2023, 62, 103726. [Google Scholar] [CrossRef]
- Chary, M.; Barbuto, A.F.; Izadmehr, S.; Tarsillo, M.; Fleischer, E.; Burns, M.M. COVID-19 Therapeutics: Use, Mechanism of Action, and Toxicity (Vaccines, Monoclonal Antibodies, and Immunotherapeutics). J. Med. Toxicol. 2023, 19, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Schrezenmeier, H.; Hoffmann, S.; Hofmann, H.; Appl, T.; Jahrsdörfer, B.; Seifried, E.; Körper, S. Immune Plasma for the Treatment of COVID-19: Lessons Learned so far. Hamostaseologie 2023, 43, 067–074. [Google Scholar] [CrossRef] [PubMed]
- Abebe, E.C.; Dejenie, T.A. Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Front. Immunol. 2023, 14, 1055457. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.C.; Silva, E.N.; Soares, L.M.; Scodeler, G.C.; Santos, A.d.S.; Corsetti, P.P.; Prudêncio, C.R.; de Almeida, L.A. Different drug approaches to COVID-19 treatment worldwide: An update of new drugs and drugs repositioning to fight against the novel coronavirus. Ther. Adv. Vaccines Immunother. 2022, 10, 25151355221144845. [Google Scholar] [CrossRef] [PubMed]
- Hartman, W.R. An Executed Plan to Combat COVID-19 in the United States. Adv. Anesthesia 2022, 40, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Chatterjee, S.; Mallik, B.; Sharma, A.R.; Chakraborty, C. Therapeutic Role of Neutralizing Antibody for the Treatment against SARS-CoV-2 and Its Emerging Variants: A Clinical and Pre-Clinical Perspective. Vaccines 2022, 10, 1612. [Google Scholar] [CrossRef]
- Dai, R.; Hu, M.; Tang, H.; Peng, Z.; Yan, C. Efficacy and Safety of Convalescence Plasma Therapy in COVID-19 Patients: A Systematic Review and Meta-Analysis. Evid.-Based Complement. Altern. Med. 2022, 2022, 7670817. [Google Scholar] [CrossRef]
- Marzouni, H.Z.; Rahbar, M.; Seddighi, N.; Nabizadeh, M.; Meidaninikjeh, S.; Sabouni, N. Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunol. 2022, 35, 517–528. [Google Scholar] [CrossRef]
- Lee, H.-J.; Lee, J.-H.; Cho, Y.; Ngoc, L.T.N.; Lee, Y.-C. Efficacy and Safety of COVID-19 Treatment Using Convalescent Plasma Transfusion: Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 10622. [Google Scholar] [CrossRef]
- Ling, R.R.; Sim, J.J.L.; Tan, F.L.; Tai, B.C.; Syn, N.; Mucheli, S.S.; Fan, B.E.; Mitra, S.; Ramanathan, K. Convalescent Plasma for Patients Hospitalized with Coronavirus Disease 2019: A Meta-Analysis with Trial Sequential Analysis of Randomized Controlled Trials. Transfus. Med. Rev. 2022, 36, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Gammon, R.; Katz, L.M.; Strauss, D.; Rowe, K.; Menitove, J.; Benjamin, R.J.; Goel, R.; Borge, D.; Reichenberg, S.; Smith, R. Beyond COVID-19 and lessons learned in the United States. Transfus. Med. 2023, 33, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Zhou, R.; Chen, Z. Human neutralizing antibodies for SARS-CoV-2 prevention and immunotherapy. Immunother. Adv. 2021, 2, ltab027. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, H.O.; Al Ramahi, Y.M. After the Hurricane: Anti-COVID-19 Drugs Development, Molecular Mechanisms of Action and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 739. [Google Scholar] [CrossRef]
Study, Year [Reference] | Cases/Controls | Results | Signs of Efficacy |
---|---|---|---|
TSUNAMI, 2021 [24] | 487 patients (241 CCP + ST/246 ST) | The primary end point occurred in 59 of 231 patients (25.5%) treated with CCP + ST and in 67 of 239 patients (28.0%) who received ST (OR, 0.88; 95% CI, 0.59–1.33; p = 0.54). | In patients with COVID-19 at an early stage at baseline, the primary end point occurred less frequently in the group treated with CP plus ST (8 of 69 [11.6%]) vs those who received ST (16 of 73 [21.9%]) (OR 0.47; 95% CI, 0.19–1.18; p = 0.059). |
CAPSID, 2021 [25] | 105 patients (53 CCP + ST/52 ST) | The primary end point occurred in 43.4% of patients in the CCP + ST group and in 32.7% of patients in the ST group (p = 0.32). | In the subgroup that received a higher cumulative amount of nAbs, significantly shorter intervals to clinical improvement (20 vs. 66 days, p < 0.05) and to hospital discharge (21 vs. 51 days, p = 0.03) and better survival (day-60 probability of survival 91.6% vs. 68.1%, p = 0.02) were observed in comparison with the control group. |
CONTAIN, 2022 [26] | 941 patients (468 CCP/473 placebo) | The cumulative adjusted OR (caOR) for the primary outcome was 0.94 (95% CI, 0.75–1.18). | A possible benefit of CCP was observed in the subgroup of patients treated during the first pandemic wave (April–June 2020) when steroids and remdesivir where not in use (caOR 0.72; 95% CI 0.46–1.13). |
RBR-7f4mt9f, 2022 [27] | 107 patients (36 CCP + ST/71 ST) | No statistically significant reduction in mortality, requirement for invasive ventilation, and duration of hospital stay was observed between cases and controls. | At day 30, death rates were 22% for CCP group and 25% for control group; at day 60, rates were 31% for CCP and 35% for control. |
Bennet Guerrero, 2021 [28] | 74 patients (59 CCP/15 SP) | No difference in ventilator-free days or mortality (27% vs. 33%) was observed at day 28 in CCP group versus SP group. | All-cause mortality through 90 days was numerically lower in the CCP group than standard plasma group (27% vs. 33%; p = 0.63). |
Li, 2020 [29] | 103 patients (52 CCP + ST/51 ST) | No significant difference was observed in time to clinical improvement within 28 days between CCP and control groups. | A 8.3% (15.7% versus 24.0%) absolute difference in mortality rate at day + 28 was observed in favor of CCP treated patients. |
ConCOVID, 2023 [30] | 86 patients (43 CCP/43 ST) | CCP had no effect on the disease course and did not improve survival. | Mortality in CCP group was 14% (6 out of 43) vs 26% in control group (11 out of 43) (OR, 0.47; 95% CI 0.15–1.38). |
Lacombe, 2023 [31] | 120 patients (60 CCP/60 ST) | No difference in early outcomes between CCP and standard care group was observed. | The survival rate at day +14 and day +28 was higher in the CCP group than in standard care group (mortality rate: 5% versus 13% at day +14 and 12% versus 20% at day +28). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franchini, M.; Focosi, D. Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life 2024, 14, 214. https://doi.org/10.3390/life14020214
Franchini M, Focosi D. Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life. 2024; 14(2):214. https://doi.org/10.3390/life14020214
Chicago/Turabian StyleFranchini, Massimo, and Daniele Focosi. 2024. "Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review" Life 14, no. 2: 214. https://doi.org/10.3390/life14020214
APA StyleFranchini, M., & Focosi, D. (2024). Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life, 14(2), 214. https://doi.org/10.3390/life14020214