Structural and Dynamic Analyses of Pathogenic Variants in PIK3R1 Reveal a Shared Mechanism Associated among Cancer, Undergrowth, and Overgrowth Syndromes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selecting and Annotating PIK3R1 Genomic Variants
2.2. Molecular Modeling and Molecular Dynamics Simulation of PI3K
2.3. Statistical Analysis
2.4. SH2 Domain Representatives
3. Results
3.1. Structure-Based Assessment of PIK3R1 Variants
3.2. Mechanism of Somatic Hotspot Variants
3.3. Mechanism of Germline Syndromic Variants
3.4. Vascular Anomalies and Overgrowth
3.5. SHORT Syndrome and Undergrowth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barcena, C.; Quesada, V.; De Sandre-Giovannoli, A.; Puente, D.A.; Fernandez-Toral, J.; Sigaudy, S.; Baban, A.; Levy, N.; Velasco, G.; Lopez-Otin, C. Exome sequencing identifies a novel mutation in PIK3R1 as the cause of SHORT syndrome. BMC Med. Genet. 2014, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, Q.; Li, Q.; Tang, Y.; Wang, Y.; Li, X.; Li, N.; Wang, J.; Wang, X. A novel PIK3R1 mutation of SHORT syndrome in a Chinese female with diffuse thyroid disease: A case report and review of literature. BMC Med. Genet. 2020, 21, 215. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Liu, J.; Feng, R.; Xu, M.; Liu, J. Novel PIK3R1 mutation of SHORT syndrome: A case report with a 6-month follow up. J. Diabetes Investig. 2021, 12, 1919–1922. [Google Scholar] [CrossRef]
- Singh, A.; Joshi, V.; Jindal, A.K.; Mathew, B.; Rawat, A. An updated review on activated PI3 kinase delta syndrome (APDS). Genes. Dis. 2020, 7, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Madsen, R.R.; Vanhaesebroeck, B.; Semple, R.K. Cancer-Associated PIK3CA Mutations in Overgrowth Disorders. Trends Mol. Med. 2018, 24, 856–870. [Google Scholar] [CrossRef]
- Cottrell, C.E.; Bender, N.R.; Zimmermann, M.T.; Heusel, J.W.; Corliss, M.; Evenson, M.J.; Magrini, V.; Corsmeier, D.J.; Avenarius, M.; Dudley, J.N.; et al. Somatic PIK3R1 variation as a cause of vascular malformations and overgrowth. Genet. Med. 2021, 23, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.H.; Cottrell, C.E.; Streicher, J.L.; Schilter, K.F.; Basel, D.G.; Baselga, E.; Burrows, P.E.; Ciliberto, H.M.; Vigh-Conrad, K.A.; Eichenfield, L.F.; et al. Analyzing the Genetic Spectrum of Vascular Anomalies with Overgrowth via Cancer Genomics. J. Investig. Dermatol. 2018, 138, 957–967. [Google Scholar] [CrossRef]
- Zhang, Y.; Kwok-Shing Ng, P.; Kucherlapati, M.; Chen, F.; Liu, Y.; Tsang, Y.H.; de Velasco, G.; Jeong, K.J.; Akbani, R.; Hadjipanayis, A.; et al. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell 2017, 31, 820–832.e823. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Li, Z.; Li, X.; Jin, M.; Jia, N.; Cui, X.; Hu, G.; Tang, T.; Yu, Q. Pan-cancer analysis on the role of PIK3R1 and PIK3R2 in human tumors. Sci. Rep. 2022, 12, 5924. [Google Scholar] [CrossRef]
- Antonino, M.; Nicolo, M.; Jerome Renee, L.; Federico, M.; Chiara, V.; Stefano, S.; Maria, S.; Salvatore, C.; Antonio, B.; Calvo-Henriquez, C.; et al. Single-nucleotide polymorphism in chronic rhinosinusitis: A systematic review. Clin. Otolaryngol. 2022, 47, 14–23. [Google Scholar] [CrossRef]
- Liu, S.; Knapp, S.; Ahmed, A.A. The structural basis of PI3K cancer mutations: From mechanism to therapy. Cancer Res. 2014, 74, 641–646. [Google Scholar] [CrossRef]
- Ueki, K.; Fruman, D.A.; Brachmann, S.M.; Tseng, Y.H.; Cantley, L.C.; Kahn, C.R. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol. Cell Biol. 2002, 22, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, Y.; McIlroy, J.; Rordorf-Nikolic, T.; Orr, G.A.; Backer, J.M. Regulation of the p85/p110 phosphatidylinositol 3’-kinase: Stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol. Cell Biol. 1998, 18, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, B.D.; Lu, Y.; Mao, M.; Zhang, J.; LaPushin, R.; Siminovitch, K.; Mills, G.B. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J. Biol. Chem. 2001, 276, 27455–27461. [Google Scholar] [CrossRef] [PubMed]
- Cheung, L.W.; Mills, G.B. Targeting therapeutic liabilities engendered by PIK3R1 mutations for cancer treatment. Pharmacogenomics 2016, 17, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Bean, L.J.H.; Hegde, M.R. Clinical implications and considerations for evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines. Genome Med. 2017, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Bendell, J.C.; Rodon, J.; Burris, H.A.; de Jonge, M.; Verweij, J.; Birle, D.; Demanse, D.; De Buck, S.S.; Ru, Q.C.; Peters, M.; et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 2012, 30, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Glusman, G.; Rose, P.W.; Prlic, A.; Dougherty, J.; Duarte, J.M.; Hoffman, A.S.; Barton, G.J.; Bendixen, E.; Bergquist, T.; Bock, C.; et al. Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: A proposed framework. Genome Med. 2017, 9, 113. [Google Scholar] [CrossRef]
- Zimmermann, M.T.; Urrutia, R.; Oliver, G.R.; Blackburn, P.R.; Cousin, M.A.; Bozeck, N.J.; Klee, E.W. Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing. PLoS ONE 2017, 12, e0170822. [Google Scholar] [CrossRef]
- Oliver, G.R.; Zimmermann, M.T.; Klee, E.W.; Urrutia, R.A. “The molecule’s the thing:” the promise of molecular modeling and dynamic simulations in aiding the prioritization and interpretation of genomic testing results. F1000Research 2016, 5, 766. [Google Scholar] [CrossRef] [PubMed]
- Castel, P.; Carmona, F.J.; Grego-Bessa, J.; Berger, M.F.; Viale, A.; Anderson, K.V.; Bague, S.; Scaltriti, M.; Antonescu, C.R.; Baselga, E.; et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci. Transl. Med. 2016, 8, 332ra342. [Google Scholar] [CrossRef] [PubMed]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.T.; Asthana, S.; Gao, S.P.; Lee, B.H.; Chapman, J.S.; Kandoth, C.; Gao, J.; Socci, N.D.; Solit, D.B.; Olshen, A.B.; et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol. 2016, 34, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Chang, M.T.; Johnsen, H.C.; Gao, S.P.; Sylvester, B.E.; Sumer, S.O.; Zhang, H.; Solit, D.B.; Taylor, B.S.; Schultz, N.; et al. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med. 2017, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Thauvin-Robinet, C.; Auclair, M.; Duplomb, L.; Caron-Debarle, M.; Avila, M.; St-Onge, J.; Le Merrer, M.; Le Luyer, B.; Heron, D.; Mathieu-Dramard, M.; et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am. J. Hum. Genet. 2013, 93, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Posey, J.E.; Rosenfeld, J.A.; James, R.A.; Bainbridge, M.; Niu, Z.; Wang, X.; Dhar, S.; Wiszniewski, W.; Akdemir, Z.H.; Gambin, T.; et al. Molecular diagnostic experience of whole-exome sequencing in adult patients. Genet. Med. 2016, 18, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.T.; Bhattarai, T.S.; Schram, A.M.; Bielski, C.M.; Donoghue, M.T.A.; Jonsson, P.; Chakravarty, D.; Phillips, S.; Kandoth, C.; Penson, A.; et al. Accelerating Discovery of Functional Mutant Alleles in Cancer. Cancer Discov. 2018, 8, 174–183. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, B.; Li, J.; Li, Y.; Zhang, M.; Ban, B. SHORT syndrome in two Chinese girls: A case report and review of the literature. Mol. Genet. Genomic Med. 2020, 8, e1385. [Google Scholar] [CrossRef]
- Wentink, M.; Dalm, V.; Lankester, A.C.; van Schouwenburg, P.A.; Scholvinck, L.; Kalina, T.; Zachova, R.; Sediva, A.; Lambeck, A.; Pico-Knijnenburg, I.; et al. Genetic defects in PI3Kdelta affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections. Clin. Immunol. 2017, 176, 77–86. [Google Scholar] [CrossRef]
- Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.Y.; Pieper, U.; Sali, A. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinform. 2006, 15, 5.6.1–5.6.30. [Google Scholar] [CrossRef]
- Kallberg, M.; Margaryan, G.; Wang, S.; Ma, J.; Xu, J. RaptorX server: A resource for template-based protein structure modeling. Methods Mol. Biol. 2014, 1137, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Hoegenauer, K.; Soldermann, N.; Stauffer, F.; Furet, P.; Graveleau, N.; Smith, A.B.; Hebach, C.; Hollingworth, G.J.; Lewis, I.; Gutmann, S.; et al. Discovery and Pharmacological Characterization of Novel Quinazoline-Based PI3K Delta-Selective Inhibitors. ACS Med. Chem. Lett. 2016, 7, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, X.; Chen, Y.; Lu, S.; Peng, Y.; Wang, X.; Guo, C.; Zhou, A.; Zhang, J.; Luo, Y.; et al. Crystal Structures of PI3Kalpha Complexed with PI103 and Its Derivatives: New Directions for Inhibitors Design. ACS Med. Chem. Lett. 2014, 5, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.; Serrano, L. The FoldX web server: An online force field. Nucleic Acids Res. 2005, 33, W382–W388. [Google Scholar] [CrossRef]
- Van Durme, J.; Delgado, J.; Stricher, F.; Serrano, L.; Schymkowitz, J.; Rousseau, F. A graphical interface for the FoldX forcefield. Bioinformatics 2011, 27, 1711–1712. [Google Scholar] [CrossRef]
- BIOVIA. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017; Dassault Systèmes: San Diego, CA, USA, 2017. [Google Scholar]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef]
- Mackerell, A.D., Jr.; Feig, M.; Brooks, C.L., 3rd. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004, 25, 1400–1415. [Google Scholar] [CrossRef]
- Shindyalov, I.N.; Bourne, P.E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 1998, 11, 739–747. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Grant, B.J.; Rodrigues, A.P.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics 2006, 22, 2695–2696. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 1.9.0; Schrödinger, LLC: New York, NY, USA. Available online: https://pymol.org/2/support.html (accessed on 15 February 2024).
- Karamzadeh, R.; Karimi-Jafari, M.H.; Sharifi-Zarchi, A.; Chitsaz, H.; Salekdeh, G.H.; Moosavi-Movahedi, A.A. Machine Learning and Network Analysis of Molecular Dynamics Trajectories Reveal Two Chains of Red/Ox-specific Residue Interactions in Human Protein Disulfide Isomerase. Sci. Rep. 2017, 7, 3666. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Zhou, C.; Mei, W.; Zeng, C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front. Oncol. 2022, 12, 819128. [Google Scholar] [CrossRef] [PubMed]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Zavadskiy, S.P.; Terentiev, A.A. Proteomic Profiling and Artificial Intelligence for Hepatocellular Carcinoma Translational Medicine. Biomedicines 2021, 9, 159. [Google Scholar] [CrossRef] [PubMed]
- Dornan, G.L.; Siempelkamp, B.D.; Jenkins, M.L.; Vadas, O.; Lucas, C.L.; Burke, J.E. Conformational disruption of PI3Kdelta regulation by immunodeficiency mutations in PIK3CD and PIK3R1. Proc. Natl. Acad. Sci. USA 2017, 114, 1982–1987. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed]
Cancer | Somatic Overgrowth/Vascular Malformation | SHORT Syndrome | Activated PI3K-Delta Syndrome 2 | |
---|---|---|---|---|
Disease etiology | Somatic variation in tumor | Post-zygotic somatic mosaic variation in affected cell lineages | Germline | Germline |
Reported Variation | Missense, in-frame indel, splice [28] | Missense, in-frame indel, in-frame splice (exon 14) NM_181523 | Nonsense, frameshift, missense, in-frame indel [29] | Missense, in-frame splice (exon 11) NM_181523 |
Impact on PI3K complex | Dominant, activating | Dominant, activating | Loss of function | Dominant, activating |
PIK3R1 Domain | nSH2 and iSH2 enhanced | iSH2 | cSH2 predominantly | iSH2 |
Variant | Label | Phenotype | MAF | Domain | ΔΔGfold | ΔiSH2 Interaction ‡ | ΔSH2 Interaction | ΔPCs † | ΔSH2 | RMSD | CADD | SIFT | PPH2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p.M326I | M326I | gnomAD | 1.8 × 10−1 | nSH2 | 0.41 | n.s. | + | +PC2, −PC3 | Mod | - | 17.5 | T | B |
p.S393F | S393F | gnomAD | 5.9 × 10−4 | nSH2 | 0.93 | n.s. | n.s. | +PC2 | High | High | 33.0 | D | D |
p.R409Q | R409Q | Cancer * | 8.0 × 10−6 | nSH2 | 0.11 | + | − | −PC3 | Mod | Low | 28.2 | T | B |
p.F487S | F487S | SHORT | - | iSH2 | 2.82 | − | + | Mod | High | 32.0 | D | D | |
p.E489K | E489K | SHORT | - | iSH2 | −0.18 | − | n.s. | −PC3 | Mod | - | 26.7 | D | D |
p.N564D | N564D | Cancer/Overgrowth | - | iSH2 | 0.49 | − | + | −PC1, +PC2, −PC3 | High | High | 28.3 | D | B |
p.N564K | N564K § | Cancer/Overgrowth | - | iSH2 | 0.49 | n.s. | n.s. | −PC3 | Mod | Low | 28.1 | D | D |
p.K567E | K567E | Cancer/Overgrowth ^ | - | iSH2 | −0.32 | − | + | −PC3 | High | - | 30.0 | D | D |
p.(Gln579_Tyr580del) | DQYdel | Cancer Overgrowth | - | iSH2 | n.s. | n.s. | − | +PC1, −PC3 | High | Low | NA | NA | NA |
p.(Met582_Asp605delinsIle); Exon 14 skipping) | MWdel | Cancer/Overgrowth | - | iSH2 | n.s. | n.s. | + | +PC1 | High | Low | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dsouza, N.R.; Cottrell, C.E.; Davies, O.M.T.; Tollefson, M.M.; Frieden, I.J.; Basel, D.; Urrutia, R.; Drolet, B.A.; Zimmermann, M.T. Structural and Dynamic Analyses of Pathogenic Variants in PIK3R1 Reveal a Shared Mechanism Associated among Cancer, Undergrowth, and Overgrowth Syndromes. Life 2024, 14, 297. https://doi.org/10.3390/life14030297
Dsouza NR, Cottrell CE, Davies OMT, Tollefson MM, Frieden IJ, Basel D, Urrutia R, Drolet BA, Zimmermann MT. Structural and Dynamic Analyses of Pathogenic Variants in PIK3R1 Reveal a Shared Mechanism Associated among Cancer, Undergrowth, and Overgrowth Syndromes. Life. 2024; 14(3):297. https://doi.org/10.3390/life14030297
Chicago/Turabian StyleDsouza, Nikita R., Catherine E. Cottrell, Olivia M. T. Davies, Megha M. Tollefson, Ilona J. Frieden, Donald Basel, Raul Urrutia, Beth A. Drolet, and Michael T. Zimmermann. 2024. "Structural and Dynamic Analyses of Pathogenic Variants in PIK3R1 Reveal a Shared Mechanism Associated among Cancer, Undergrowth, and Overgrowth Syndromes" Life 14, no. 3: 297. https://doi.org/10.3390/life14030297
APA StyleDsouza, N. R., Cottrell, C. E., Davies, O. M. T., Tollefson, M. M., Frieden, I. J., Basel, D., Urrutia, R., Drolet, B. A., & Zimmermann, M. T. (2024). Structural and Dynamic Analyses of Pathogenic Variants in PIK3R1 Reveal a Shared Mechanism Associated among Cancer, Undergrowth, and Overgrowth Syndromes. Life, 14(3), 297. https://doi.org/10.3390/life14030297