Gut Microbiota Modulators Based on Polyphenols Extracted from Winery By-Products and Their Applications in the Nutraceutical Industry
Abstract
:1. Introduction
2. Effects of Polyphenol-Rich Winemaking By-Products on Gut Microbiota Composition and Function
2.1. Grape Pomace Extract
2.2. Grape Seed Extract, Oil and Flour
3. The Potential of Viticulture By-Products to Modulate Gut Microbiota Composition and Function
4. From Winery Waste to Health Products, a New Approach for the Nutraceutical Industry and a New Revenue Stream for Wineries
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bordiga, M.; Travaglia, F.; Locatelli, M.; Arlorio, M.; Coïsson, J.D. Spent grape pomace as a still potential by-product. Int. J. Food Sci. Technol. 2015, 50, 2022–2031. [Google Scholar] [CrossRef]
- Niculescu, V.-C.; Ionete, R.-E. An overview on management and valorisation of winery wastes. Appl. Sci. 2023, 13, 5063. [Google Scholar] [CrossRef]
- Sinrod, A.J.G.; Shah, I.M.; Surek, E.; Barile, D. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 2023, 9, e20499. [Google Scholar] [CrossRef]
- Plamada, D.; Vodnar, D.C. Polyphenols-gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients 2021, 14, 137. [Google Scholar] [CrossRef] [PubMed]
- Dinu, L.D.; Avram, I.; Pelinescu, D.R.; Vamanu, E. Mineral-enriched postbiotics: A new perspective for microbial therapy to prevent and treat gut dysbiosis. Biomedicines 2022, 10, 2392. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef] [PubMed]
- Kumar Singh, A.; Cabral, C.; Kumar, R.; Ganguly, R.; Kumar Rana, H.; Gupta, A.; Rosaria Lauro, M.; Carbone, C.; Reis, F.; Pandey, A.K. Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients 2019, 11, 2216. [Google Scholar] [CrossRef] [PubMed]
- Koudoufio, M.; Desjardins, Y.; Feldman, F.; Spahis, S.; Delvin, E.; Levy, E. Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders? Antioxidants 2020, 9, 982. [Google Scholar] [CrossRef]
- Vamanu, E.; Pop, M.I.; Pop, I.O.; Mishra, S.K.; Singh, K.S. Therapeutic potential of functional product based on wild edible mushrooms. AgroLife Sci. J. 2023, 12, 229–235. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef]
- Taladrid, D.; Rebollo-Hernanz, M.; Martin-Cabrejas, M.A.; Moreno-Arribas, M.V.; Bartolomé, B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants 2023, 12, 979. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Liu, F.; Zhou, Q.; Hu, X.; Zhang, Y. Effects of grape pomace and seed polyphenol extracts on the recovery of gut microbiota after antibiotic treatment in high-fat diet-fed mice. Food Sci. Nutr. 2019, 7, 2897–2906. [Google Scholar] [CrossRef]
- Gil-Sánchez, I.; Cueva, C.; Sanz-Buenhombre, M.; Guadarrama, A.; Moreno-Arribas, M.V.; Bartolomé, B. Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. J. Food Compos. Anal. 2018, 68, 41–52. [Google Scholar] [CrossRef]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Chacar, S.; Tarighi, M.; Fares, N.; Faivre, J.F.; Louka, N.; Maroun, R.G. Identification of Phenolic Compounds-Rich Grape Pomace Extracts Urine Metabolites and Correlation with Gut Microbiota Modulation. Antioxidants 2018, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Chacar, S.; Itani, T.; Hajal, J.; Saliba, Y.; Louka, N.; Faivre, J.F.; Maroun, R.; Fares, N. The impact of long-term intake of phenolic compounds-rich grape pomace on rat gut microbiota. J. Food Sci. 2018, 83, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Kafantaris, I.; Kotsampasi, B.; Christodoulou, V.; Kokka, E.; Kouka, P.; Terzopoulou, Z.; Gerasopoulos, K.; Stagos, D.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves antioxidant capacity and faecal microflora of lambs. J. Anim. Physiol. Anim. Nutr. 2017, 101, e108–e121. [Google Scholar] [CrossRef]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef]
- Castellanos-Gallo, L.; Ballinas-Casarrubias, L.; Espinoza-Hicks, J.C.; Hernández-Ochoa, L.R.; Muñoz-Castellanos, L.N.; Zermeño-Ortega, M.R.; Borrego-Loya, A.; Salas, E. Grape Pomace Valorization by Extraction of Phenolic Polymeric Pigments: A Review. Processes 2022, 10, 469. [Google Scholar] [CrossRef]
- Council Regulation (EC) No 479/2008 of 29 April 2008 on the Common Organisation of the Market in Wine, Amending Regulations (EC) No 1493/1999, (EC) No 1782/2003, (EC) No 1290/2005, (EC) No 3/2008 and Repealing Regulations (EEC) No 2392/86 and (EC) No 1493/1999 (Repealed). Available online: https://www.legislation.gov.uk/eur/2008/479/contents/adopted (accessed on 1 December 2023).
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordevi´c, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Boonchu, T.; Utama-ang, N. Optimization of extraction and microencapsulation of bioactive compounds from red grape (Vitis vinifera L.) pomace. J. Food Sci. Technol. 2015, 52, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Kannampilly, N.J.; Devadas, C.T. Kinetic modelling of anthocyanin extraction from grape (Vitis vinifera) using response surface methodology. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 3015–3019. [Google Scholar] [CrossRef]
- Onache, P.A.; Geana, E.-I.; Ciucure, C.T.; Florea, A.; Sumedrea, D.I.; Ionete, R.E.; Tița, O. Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. Separations 2022, 9, 395. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Sousa, A.M.; Gando-Ferreira, L.M.; Quina, M.J. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules 2023, 28, 2715. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- Troilo, M.; Difonzo, G.; Paradiso, V.; Summo, C.; Caponio, F. Bioactive Compounds from Vine Shoots, Grape Stalks, and Wine Lees: Their Potential Use in Agro-Food Chains. Foods 2021, 10, 342. [Google Scholar] [CrossRef]
- Souquet, J.-M.; Labarbe, B.; Le Guernevé, C.; Cheynier, V.; Moutounet, M. Phenolic Composition of Grape Stems. J. Agric. Food Chem. 2000, 48, 1076–1080. [Google Scholar] [CrossRef]
- Blackford, M.; Comby, M.; Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. A Review on Stems Composition and their Impact on Wine Quality. Molecules 2021, 26, 124. [Google Scholar] [CrossRef]
- Nash, V.; Ranadheera, C.S.; Georgousopoulou, E.N.; Mellor, D.D.; Panagiotakos, D.B.; McKune, A.J.; Kellett, J.; Naumovski, N. The effects of grape and red wine polyphenols on gut microbiota—A systematic review. Food Res. Int. 2018, 113, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Zorraquín, I.; Sánchez-Hernández, E.; Ayuda-Durán, B.; Silva, M.; González-Paramás, A.M.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolomé, B. Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. J. Sci. Food Agric. 2020, 100, 3789–3802. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopez, P.; Rueda-Robles, A.; Borrás-Linares, I.; Quirantes-Piné, R.M.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Grape and Grape-Based Product Polyphenols: A Systematic Review of Health Properties, Bioavailability, and Gut Microbiota Interactions. Horticulturae 2022, 8, 583. [Google Scholar] [CrossRef]
- Gil-Sánchez, I.; Ayuda-Durán, B.; González-Manzano, S.; Santos-Buelga, C.; Cueva, C.; Martín-Cabrejas, M.A.; Sanz-Buenhombre, M.; Guadarrama, A.; Moreno-Arribas, M.V.; Bartolomé, B. Chemical characterization and in vitro colonic fermentation of grape pomace extracts. J. Sci. Food Agric. 2017, 97, 3433–3444. [Google Scholar] [CrossRef]
- Gil-Sánchez, I.; Esteban-Fernández, A.; González de Llano, D.; Sanz-Buenhombre, M.; Guadarrana, A.; Salazar, N.; Gueimonde, M.; de los Reyes-Gavilánc, C.G.; Martín Gómez, L.; García Bermejo, M.L.; et al. Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. J. Funct. Food 2018, 45, 34–46. [Google Scholar] [CrossRef]
- Ramos-Romero, S.; Martínez-Maqueda, D.; Hereu, M.; Amézqueta, S.; Torres, J.L.; Pérez-Jiménez, J. Modifications of Gut Microbiota after Grape Pomace Supplementation in Subjects at Cardiometabolic Risk: A Randomized Cross-Over Controlled Clinical Trial. Foods 2020, 9, 1279. [Google Scholar] [CrossRef]
- Ramos-Romero, S.; Léniz, A.; Martínez-Maqueda, D.; Amézqueta, S.; Fernández-Quintela, A.; Hereu, M.; Torres, J.L.; Portillo, M.P.; Pérez-Jiménez, J. Inter-Individual Variability in Insulin Response after Grape Pomace Supplementation in Subjects at High Cardiometabolic Risk: Role of Microbiota and miRNA. Mol. Nutr. Food Res. 2021, 65, e2000113. [Google Scholar] [CrossRef]
- Williams, A.R.; Krych, L.; Fauzan Ahmad, H.; Nejsum, P.; Skovgaard, K.; Nielsen, D.S.; Thamsborg, S.M. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS ONE 2017, 12, e0186546. [Google Scholar] [CrossRef]
- Tian, X.; Li, D.; Zhao, X.; Xiao, Z.; Sun, J.; Yuan, T.; Wang, Y.; Zuo, X.; Yang, G.; Yu, T. Dietary grape pomace extract supplementation improved meat quality, antioxidant capacity, and immune performance in finishing pigs. Front. Microbiol. 2023, 14, 1116022. [Google Scholar] [CrossRef]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Animal 2018, 12, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yu, H.; Fang, H.; Jin, Y.; Zhao, Y.; Shen, J.; Zhou, C.; Li, R.; Wang, J.; Fu, Y.; et al. Effects of dietary grape pomace on the intestinal microbiota and growth performance of weaned piglets. Arch. Anim. Nutr. 2020, 74, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Du, X.; Liang, Y.; Degen, A.A.; Wu, X.; Ji, K.; Gao, Q.; Xin, G.; Cong, H.; Yang, G. Effect of grape pomace supplement on growth performance, gastrointestinal microbiota, and methane production in Tan lambs. Front. Microbiol. 2023, 14, 1264840. [Google Scholar] [CrossRef] [PubMed]
- Biscarini, F.; Palazzo, F.; Castellani, F.; Masetti, G.; Grotta, L.; Cichelli, A.; Martino, G. Rumen microbiome in dairy calves fed copper and grape-pomace dietary supplementations: Composition and predicted functional profile. PLoS ONE 2018, 13, e0205670. [Google Scholar] [CrossRef] [PubMed]
- Erinle, T.J.; Oladokun, S.; MacIsaac, J.; Rathgeber, B.; Adewole, D. Dietary grape pomace—Effects on growth performance, intestinal health, blood parameters, and breast muscle myopathies of broiler chickens. Poult. Sci. 2022, 101, 101519. [Google Scholar] [CrossRef] [PubMed]
- Van Hul, M.; Geurts, L.; Plovier, H.; Druart, C.; Everard, A.; Ståhlman, M.; Rhimi, M.; Chira, K.; Teissedre, P.L.; Delzenne, N.M.; et al. Reduced obesity, diabetes, and steatosis upon cinnamon and grape pomace are associated with changes in gut microbiota and markers of gut barrier. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E334–E352. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Haminiuk, C.W.I.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Kato, C.G.; Correa, V.G.; Peralta, R.M.; Ferreira, I.C.F.R. Stability and biological activity of Merlot (Vitis vinifera) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. J. Funct. Foods 2017, 36, 410–417. [Google Scholar] [CrossRef]
- Costa, J.R.; Amorim, M.; Vilas-Boas, A.; Tonon, R.V.; Cabral, L.M.C.; Pastrana, L.; Pintado, M. Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract. Food Funct. 2019, 10, 1856–1869. [Google Scholar] [CrossRef]
- Jos´e Jara-Palacios, M.; Gonçalves, S.; Hernanz, D.; Heredia, F.J.; Romano, A. Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Res. Int. 2018, 109, 433–439. [Google Scholar] [CrossRef]
- Wang, S.; Amigo-Benavent, M.; Mateos, R.; Bravo, L.; Sarri´a, B. Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace. Int. J. Food Sci. Nutr. 2017, 68, 188–200. [Google Scholar] [CrossRef]
- Li, M.J.; Loo, Y.T.; Cheng, L.; Howell, K.; Zhang, P.Z. Impacts of supplementation of probiotics on the prevalence of grape marc derived polyphenols in colonic digesta using in vitro digestion model. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Annunziata, G.; Ciampaglia, R.; Maisto, M.; D’Avino, M.; Caruso, D.; Tenore, G.C.; Novellino, E. Taurisolo®, a Grape Pomace Polyphenol Nutraceutical Reducing the Levels of Serum Biomarkers Associated with Atherosclerosis. Front. Cardiovasc. Med. 2021, 8, 697272. [Google Scholar] [CrossRef]
- Urquiaga, I.; D’Acuña, S.; Pérez, D.; Dicenta, S.; Echeverría, G.; Rigotti, A.; Leighton, F. Wine grape pomace flour improves blood pressure, fasting glucose and protein damage in humans: A randomized controlled trial. Biol. Res. 2015, 48, 49. [Google Scholar] [CrossRef] [PubMed]
- D’Eusanio, V.; Malferrari, D.; Marchetti, A.; Roncaglia, F.; Tassi, L. Waste By-Product of Grape Seed Oil Production: Chemical Characterization for Use as a Food and Feed Supplement. Life 2023, 13, 326. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Costa, G.; Cabezudo, I.; da Silva-James, N.; Teles, A.; Cruz, A.; Mellinger-Silva, C.; Tonon, R.; Cabral, L.; Freitas, S. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yu, J.; Pohorly, J.; Young, J.C.; Bryan, M.; Wu, Y. Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Food Agric. Environ. 2003, 1, 42–47. [Google Scholar]
- De Souza, R.d.C.; Machado, B.A.S.; de Barreto, G.A.; Leal, I.L.; Anjos, J.P.D.; Umsza-Guez, M.A. Effect of Experimental Parameters on the Extraction of Grape Seed Oil Obtained by Low Pressure and Supercritical Fluid Extraction. Molecules 2020, 25, 1634. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, W.; Huang, J.; Ding, Y.; Pan, Z.; Zhao, Y.; Zhang, R.; Hu, B.; Zeng, X. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food Funct. 2016, 7, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Cueva, C.; Sánchez-Patán, F.; Monagas, M.; Walton, G.E.; Gibson, G.R.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. In vitro fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: Changes in microbial groups and phenolic metabolites. FEMS Microbiol. Ecol. 2013, 83, 792–805. [Google Scholar] [CrossRef]
- Sánchez-Patán, F.; Barroso, E.; van de Wiele, T.; Jiménez-Girón, A.; Martín-Alvarez, P.J.; Moreno-Arribas, M.V.; Martínez-Cuesta, M.C.; Peláez, C.; Requena, T.; Bartolomé, B. Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chem. 2015, 183, 273–282. [Google Scholar] [CrossRef]
- Yamakoshi, J.; Tokutake, S.; Kikuchi, M.; Kubota, Y.; Konishi, H.; Mitsuoka, T. Effect of Proanthocyanidin-Rich Extract from Grape Seeds on Human Fecal Flora and Fecal Odor. Microb. Ecol. Health Dis. 2001, 13, 25–31. [Google Scholar]
- Choy, Y.Y.; Quifer-Rada, P.; Holstege, D.M.; Frese, S.A.; Calvert, C.C.; Mills, D.A.; Lamuela-Raventos, R.M.; Waterhouse, A.L. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct. 2014, 5, 2298–2308. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, M.; Lencina, C.; Painteaux, L.; Viémon-Desplanque, J.; Phornlaphat, O.; Lambert, W.; Chalvon-Demersay, T. A mix of functional amino acids and grape polyphenols promotes the growth of piglets, modulates the gut microbiota in vivo and regulates epithelial homeostasis in intestinal organoids. Amino Acids. 2022, 54, 1357–1369. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Li, L.; Yan, H.; Li, Q.; Gao, J.; Hao, R. Grape seed procyanidins improve intestinal health by modulating gut microbiota and enhancing intestinal antioxidant capacity in weaned piglets. Livest. Sci. 2022, 264, 105066. [Google Scholar] [CrossRef]
- Grandhaye, J.; Douard, V.; Rodriguez-Mateos, A.; Xu, Y.; Cheok, A.; Riva, A.; Guabiraba, R.; Zemb, O.; Philippe, C.; Monnoye, M.; et al. Microbiota Changes Due to Grape Seed Extract Diet Improved Intestinal Homeostasis and Decreased Fatness in Parental Broiler Hens. Microorganisms 2020, 8, 1141. [Google Scholar] [CrossRef] [PubMed]
- Abu Hafsa, S.H.; Ibrahim, S.A. Effect of dietary polyphenol-rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. J. Anim. Physiol. Anim. Nutr. 2018, 102, 268–275. [Google Scholar] [CrossRef]
- Nan, S.; Yao, M.; Zhang, X.; Wang, H.; Li, J.; Niu, J.; Chen, C.; Zhang, W.; Nie, C. Fermented grape seed meal promotes broiler growth and reduces abdominal fat deposition through intestinal microorganisms. Front. Microbiol. 2022, 10, 994033. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, S.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Hong, J.; Liu, R. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol. Nutr. Food Res. 2017, 61, 61. [Google Scholar] [CrossRef]
- Sheng, K.; Yang, J.; Xu, Y.; Kong, X.; Wang, J.; Wang, Y. Alleviation effects of grape seed proanthocyanidin extract on inflammation and oxidative stress in a D-galactose-induced aging mouse model by modulating the gut microbiota. Food Funct. 2022, 13, 1348–1359. [Google Scholar] [CrossRef]
- Arreaza-Gil, V.; Escobar-Martínez, I.; Muguerza, B.; Aragonès, G.; Suárez, M.; Torres-Fuentes, C.; Arola-Arnal, A. The Effects of Grape Seed Proanthocyanidins in Cafeteria Diet-Induced Obese Fischer 344 Rats Are Influenced by Faecal Microbiota in a Photoperiod Dependent Manner. Food Funct. 2022, 13, 8363–8374. [Google Scholar] [CrossRef]
- Du, H.; Wang, Q.; Li, T.; Ren, D.; Yang, X. Grape Seed Proanthocyanidins Reduced the Overweight of C57BL/6J Mice through Modulating Adipose Thermogenesis and Gut Microbiota. Food Funct. 2021, 12, 8467–8477. [Google Scholar] [CrossRef]
- Wu, Y.; Mo, R.; Zhang, M.; Zhou, W.; Li, D. Grape Seed Proanthocyanidin Alleviates Intestinal Inflammation Through Gut Microbiota-Bile Acid Crosstalk in Mice. Front. Nutr. 2022, 8, 786682. [Google Scholar] [CrossRef] [PubMed]
- Mokrani, M.; Charradi, K.; Limam, F.; Aouani, E.; Urdaci, M.C. Grape seed and skin extract, a potential prebiotic with anti-obesity effect through gut microbiota modulation. Gut Pathog. 2022, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Martí, À.; Serrano, J.; Portune, K.J.; Sanz, Y.; Blay, M.T.; Terra, X.; Ardévol, A.; Pinent, M. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food Funct. 2018, 9, 1672–1682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Mo, R.; Wang, H.; Liu, T.; Zhang, G.; Wu, Y. Grape seed proanthocyanidin improves intestinal inflammation in canine through regulating gut microbiota and bile acid compositions. FASEB J. 2023, 37, e23285. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Z.; Wen, Y.; Wu, Q.; Zhang, L.; Li, S.; Yang, H. The Action Potential of Antioxidant Grape Seed Proanthocyanidin as a Rumen Modifier to Mitigate Rumen Methanogenesis In Vitro. Fermentation 2023, 9, 513. [Google Scholar] [CrossRef]
- Çetin, E.S.; Altinöz, D.; Tarçan, E.; Göktürk Baydar, N. Chemical composition of grape canes. Ind. Crops Prod. 2011, 34, 994–998. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.; Ladas, D.; Mavromatis, A. Potential uses and applications of treated wine waste: A review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic Profile of Grape Canes: Novel Compounds Identified by LC-ESI-LTQ-Orbitrap-MS. Molecules 2019, 24, 3763. [Google Scholar]
- Escobar-Avello, D.; Mardones, C.; Saéz, V.; Riquelme, S.; von Baer, D.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Pilot-plant scale extraction of phenolic compounds from grape canes: Comprehensive characterization by LC-ESI-LTQ-Orbitrap-MS. Food Res. Int. 2021, 143, 110265. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Richard, T.; Cantos-Villar, E. Grapevine Cane Extracts: Raw Plant Material, Extraction Methods, Quantification, and Applications. Biomolecules 2020, 10, 1195. [Google Scholar] [CrossRef]
- Rätsep, R.; Karp, K.; Maante-Kuljus, M.; Aluvee, A.; Kaldmäe, H.; Bhat, R. Recovery of Polyphenols from Vineyard Pruning Wastes—Shoots and Cane of Hybrid Grapevine (Vitis sp.) Cultivars. Antioxidants 2021, 10, 1059. [Google Scholar] [CrossRef]
- Gorena, T.; Saez, V.; Mardones, C.; Vergara, C.; Winterhalter, P.; von Baer, D. Influence of post-pruning storage on stilbenoid levels in Vitis vinifera L. canes. Food Chem. 2014, 155, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Soural, I.; Vrchotová, N.; Tříska, J.; Balík, J. Changes in the grape cane stilbene content under various conditions of storage. ACS Sustain. Chem. Eng. 2019, 7, 19584–19590. [Google Scholar] [CrossRef]
- Piñeiro, Z.; Marrufo-Curtido, A.; Vela, C.; Palma, M. Microwave-assisted extraction of stilbenes from woody vine material. Food Bioprod. Process 2017, 103, 18–26. [Google Scholar] [CrossRef]
- Dorosh, O.; Moreira, M.M.; Pinto, D.F.; Peixoto, A.; Freire, C.; Costa, P.; Rodrigues, F.; Delerue-Matos, C. Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis vinifera) Subcritical Water Extracts. Foods. 2020, 9, 872. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Rasane, P.; Kaur, R.; Kaur, H.; Garg, R.; Kaur, S.; Ercisli, S.; Choudhary, R.; Skrovankova, S.; Mlcek, J. Valorization of grape (Vitis vinifera) leaves for bioactive compounds: Novel green extraction technologies and food-pharma applications. Front. Chem. 2023, 11, 1290619. [Google Scholar] [CrossRef] [PubMed]
- Baroi, A.M.; Popitiu, M.; Fierascu, I.; Sărdărescu, I.-D.; Fierascu, R.C. Grapevine Wastes: A Rich Source of Antioxidants and Other Biologically Active Compounds. Antioxidants 2022, 11, 393. [Google Scholar] [CrossRef]
- Banjanin, T.; Uslu, N.; Vasic, Z.R.; Özcan, M.M. Effect of grape varieties on bioactive properties, phenolic composition, and mineral contents of different grape-vine leaves. J. Food Process. Preserv. 2021, 45, 15159. [Google Scholar] [CrossRef]
- Khan, Y.; Khan, S.M.; ul Haq, I.; Farzana, F.; Abdullah, A.; Abbasi, A.M.; Alamri, S.; Hashem, M.; Sakhi, S.; Asif, M.; et al. Antioxidant potential in the leaves of grape varieties (Vitis vinifera L.) grown in different soil compositions. Arab. J. Chem. 2021, 14, 103412. [Google Scholar] [CrossRef]
- Goufo, P.; Singh, R.K.; Cortez, I. A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.). Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef]
- Chen, M.L.; Yi, L.; Zhang, Y.; Zhou, X.; Ran, L.; Yang, J.; Zhu, J.D.; Zhang, Q.Y.; Mi, M.T. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio 2016, 7, e02210-15. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Carres, L.; Essenmacher, L.A.; Racine, K.C.; Neilson, A.P. Development of a High-Throughput Method to Study the Inhibitory Effect of Phytochemicals on Trimethylamine Formation. Nutrients 2021, 13, 1466. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Armenta, F.J.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; González-Aguilar, G.A.; Nazzaro, F.; Fratianni, F.; Ayala-Zavala, J.F. Antibacterial and antioxidant properties of grape stem extract applied as disinfectant in fresh leafy vegetables. J. Food Sci. Technol. 2017, 54, 3192–3200. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Jiao, Y.; Zhou, X.; Liang, C.; Yan, K.; Zhao, Y.; Deng, X.; Han, X.; Yang, Y.; Liu, H.; et al. Leaf extract from Vitis vinifera L. reduces high fat diet-induced obesity in mice. Food Funct. 2021, 12, 6452. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Oliboni, L.S.; Agostini, F.; Funchal, C.; Serafini, L.; Henriques, J.A.; Salvador, M. Phenolic content of grapevine leaves (Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage. Toxicol. Vitro 2010, 24, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Selma, F.; Chahinez, T.; Salim, G.; Sakina, Z.; Guy, D.; Rozzo, M.C. Antioxidant and Anti-Cancer Effects of Crude Extracts from (Vitis vinifera L.) Leaves on Melanoma Cells (SK-Mel and A375). Emir. J. Food Agric. 2021, 33, 691–698. [Google Scholar] [CrossRef]
- Quero, J.; Jiménez-Moreno, N.; Esparza, I.; Osada, J.; Cerrada, E.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Grape stem extracts with potential anticancer and antioxidant properties. Antioxidants 2021, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Empl, M.T.; Cai, H.; Wang, S.; Junginger, J.; Kostka, T.; Hewicker-Trautwein, M.; Brown, K.; Gescher, A.J.; Steinberg, P. Effects of agrapevine shoot extract containing resveratrol and resveratrol oligomers on intestinal adenoma development in mice: In vitro and in vivo studies. Mol. Nutr. Food Res. 2018, 62, 1700450. [Google Scholar] [CrossRef]
- Shirahigue, L.D.; Plata-Oviedo, M.; De Alencar, S.M.; D’Arce, M.A.B.R.; De SouzaVieira, T.M.F.; Oldoni, T.L.C.; Contreras-Castillo, C.J. Wine industry residue as antioxidant in cooked chicken meat. Int. J. Food Sci. Technol. 2010, 45, 863–870. [Google Scholar] [CrossRef]
- Marchiani, R.; Bertolino, M.; Ghirardello, D.; McSweeney, P.L.; Zeppa, G. Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. J. Food Sci. Technol. 2016, 53, 1585–1596. [Google Scholar] [CrossRef]
- Pereira, P.; Palma, C.; Ferreira-Pêgo, C.; Amaral, O.; Amaral, A.; Rijo, P.; Gregório, J.; Palma, L.; Nicolai, M. Grape pomace: A potential ingredient for the human diet. Foods 2020, 9, 1772. [Google Scholar] [CrossRef]
- Martelli, A.; Flori, L.; Gorica, E.; Piragine, E.; Saviano, A.; Annunziata, G.; Di Minno, M.N.D.; Ciampaglia, R.; Calcaterra, I.; Maione, F.; et al. Vascular Effects of the Polyphenolic Nutraceutical Supplement Taurisolo®: Focus on the Protection of the Endothelial Function. Nutrients 2021, 13, 1540. [Google Scholar] [CrossRef]
- Allaw, M.; Manca, M.L.; Caddeo, C.; Recio, M.C.; Pérez-Brocal, V.; Moya, A.; Fernàndez-Busquets, X.; Manconi, M. Advanced strategy to exploit wine-making waste by manufacturing antioxidant and prebiotic fibre-enriched vesicles for intestinal health. Colloids Surf. B Biointerfaces 2020, 193, 111146. [Google Scholar] [CrossRef]
- Manca, M.L.; Casula, E.; Marongiu, F.; Bacchetta, G.; Sarais, G.; Zaru, M.; Escribano-Ferrer, E.; Peris, J.E.; Usach, I.; Fais, S.; et al. From waste to health: Sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy. Sci. Rep. 2020, 10, 14184. [Google Scholar] [CrossRef]
- Perra, M.; Manca, M.L.; Tuberoso, C.I.; Caddeo, C.; Marongiu, F.; Peris, J.E.; Orrù, G.; Ibba, A.; Fernandez-Busquets, X.; Fattouch, S.; et al. A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification. Innov. Food Sci. Emerg. Technol. 2022, 80, 103103. [Google Scholar] [CrossRef]
Source/Polyphenol/Quantity | Model/Conditions/ Control | Impact on Microbiota Composition and Metabolites Profile/Health Benefits | Ref. |
---|---|---|---|
Humans | |||
GP extract rich in gallic and ellagic acids, catechins, and flavonols from red grapes | In vitro human feces fermentation | Promotes the growth of gut microbiota, especially the Enterococcus group; Sixteen phenolic bacterial metabolites produced. | [36] |
GP extract from red grapes (Eminol®) in 2 experiments: acute feeding of 700 mg and continuous feeding of 700 mg/day for 14 days | In vitro colonic microbiota simulation (dynamic) | After continuous treatment: Increases Lactobacillus and Bacteroides group; Increases SCFAs (acetic, propionic, and butyric acids); Main bioaccessible phenolic metabolites: different benzoic, phenylacetic, and phenylpropionic acids. | [14] |
Red GP extract (Eminol®) (1.4 g/day)-supplemented diet for 21 days | Human trial with healthy women (n = 10 subjects) | No significant changes in fecal bacterial population or urine phenolic metabolites; Changes in SCFAs and medium-chain fatty acid profiles; Inter-individual variability observed; Lowers the glucose level and miRNA modulation of glucose metabolism. | [37] |
GP seasoning (2 g/day) for 6 weeks | Human trial with high-risk cardiovascular disease (n = 17 subjects) and normal subjects (n = 12 subjects) | Bacterial composition modulation (16S rRNA sequencing); Decreases Peptoniphilus, Clostridiaceae I, Ezakiella, Streptococcus, Lachospiraceae ND3007, Paraprevotella, Senegalimassilia, Streptococcaceae, and Eggerthellaceae, Corinebacteriales; Increases protocatechuic acid and decrease propionic acid; Blood pressure and glycemia decreased; GP extract could be a promising additive in food. | [11] |
Red GP from Tempranillo grape variety, freeze-dried and milled (8 g/day) for 6 weeks | Human trial with overweight subjects at cardiometabolic risk (n = 49 subjects); cross-over design study | No significant modifications in the microbiota profile or SCFA; Reduction in insulin levels in half of the subjects (responders), which was reported to be not induced by changes in the gut microbiota; Decreases Lactobacilliales and increases Bacteroides in non-responder subjects. | [38] |
Red GP from Tempranillo grape variety, freeze-dried and milled (8 g/day) for 6 weeks | Human trial with overweight subjects at cardiometabolic risk (n = 49 subjects) divided into responders (n = 23) and non-responders (n = 26) based on the variation rate in fasting insulin after GP supplementation | Lower levels of Prevotella and Firmicutes, while miR-222 levels increased in responder subjects; Fecal microbiota and miRNA expression may be related to inter-individual variability in clinical trials with polyphenols. | [39] |
Pigs and piglets | |||
5% GP proanthocyanidin-rich extract (industrial product) for 14 days | Danish Landrace–Yorkshire pigs, 7–8 weeks old, infected with Ascaris suum (n = 6 animals/group) Groups: 2 groups fed with basal diet, barley and soybean meal (control), and 2 groups with basal diet + GP 5% | Changes the composition of the prokaryotic gut microbiota; Decreases concentrations of isobutyric and isovaleric acids (branched-chain SCFAs) in the colon; Improves the immune response but does not decrease the number of parasite larvae. | [40] |
6% GP powder (dried) in basal diet for 75 days | Guanzhong Black Pig × Landrace pigs (n = 12 animals/group) Groups: basal diet (control) and group fed with 6% wheat bran and 6% dried GP powder | No differences between the control and the treatment group at the phylum level; Decreases the relative abundance of Treponema and Streptococcus, but no changes for other bacterial genera (Prevotella). | [41] |
4% red GP-supplemented diet for 30 days | Landrace–large white Duroc piglets (n = 12 animals/group) Groups: basal diet (control); diet + GP silage | Enhances the growth of facultative probiotic bacteria and lactic acid bacteria; Inhibits Enterobacteriaceae and Campylobacter jejuni; Increases antioxidant activity, beneficial impact on piglet welfare, and improves productivity and meat quality. | [42] |
5% red GP-supplemented diet for 4 weeks | Songliao black pigs, 28-day old (n = 6 animals/group) Groups: basal diet (control), diet + GP | Increases Lactobacillus delbrueckii, Olsenella umbonata, and Selenomonas bovis Improves the disease resistance potential of piglets | [43] |
Lambs | |||
45% GP-supplemented diet for 55 days | Chios lambs, 15 days old (n = 12 animals/group) Groups: basal diet (control); diet + GP | Enhances the growth of facultative probiotic bacteria; Inhibits pathogen populations (Enterobacteriaceae and E. coli); Increases antioxidant mechanisms in blood and tissues. | [18] |
8% red GP-supplemented diet for 46 days | Tan lambs, 3 months old (n = 10/group) Groups: basal diet (control); diet + GP | Increases the abundance of Prevotella 1, Prevotella 7, Ruminococcus 2, Sharpea, and microbial propionate production; Decreases the acetate-producing Ruminococcaceae and methane-producing Methanobrevibacter; Improves lamb performance. | [44] |
Calves | |||
Red GP (10% dry matter)-supplemented diet for 75 days | Holstein–Friesian calves, 7 months old (n = 5/group) Groups: basal diet (control), diet + GP; diet + copper supplementation | Increases the diversity of the lumen microbiota and alters gene functions; Abundant taxa are uncultured Bacteroidales, genus Sarcina, and taxa related to degradation of GP constituents (Eubacterium sp., Ruminiclostridium sp.). | [45] |
Chickens | |||
GP concentrate (60 g/kg) for 21 days | Cobb broiler chickens (n = 25 animals/group) Groups: antibiotic-free (control), antibiotic-included, and GP included | Increases the biodiversity; Increases Enterococcus and decreases Clostridium (ileum); Increases E. coli, Lactobacillus, Enterococcus, and Clostridium (cecum). | [15] |
2.5% GP-supplemented diet for 42 days | Cobb-500 broiler chickens, 1 day old (n = 192 animals/group) Groups: antibiotic-free (control), antibiotic included, and GP included | Increases Bacteroidetes, Bacteroides, and Lactobacillus (cecum); Decreases Firmicutes; SCFA (cecum) does not change; Increases feed intake, but feed conversion ratio does not change; No adverse effects on animal growth or meat quality. | [46] |
Rodents | |||
GP phenolic extract mix of Cabernet Sauvignon, Marselan, and Syrah varieties (2.5–20 mg/kg body weight/day) for 6–14 months | Wistar rats, 2 months old (n = 6 animals/group) Groups: 0.1% DMSO (control); GP included | Increases Bifidobacterium (only treatment with 2.5 and 5 mg/kg body weight/day); Decreases Lactobacillus; No changes in Bacteroides, Enterococcus, or Clostridium leptum subgroup (Clostridium cluster IV) but abolished the increase in Clostridium Cluster I; Long-term treatment modulates rat gut microbiota into a healthier phenotype within age. | [16] |
GP red extract powder (2.5–20 mg/kg body weight/day) in drinking water for 14 months | Wistar rats (n = 6 animals/group) Groups: 0.1% DMSO (control); GP-included | Long-term intake of GP seems to be related to specific metabolites produced; Sixteen polyphenol-derived metabolites detected; Increases Bifidobacterium correlated with the presence of two metabolites (3-hydroxyphenylacetic acid and 2-(4-hydroxyphenyl) propionic acid); Clostridium perfringens (Cluster I) inhibition with Daidzedin. | [17] |
Red GP extract (8.2 g/kg body weight) | C57BL/6J mice, 9 weeks old, fed a high-fat diet for 8 weeks (n = 14 animals/group) Groups: control, high-fat diet, and high-fat + GP diet | Decreases in Desulfovibrio and Lactococcus; Increases Allobaculum and Roseburia; Improvement of gut barrier function; Increases antimicrobial peptide; Reduction in fat mass gain and adipose tissue inflammation; Improves glucose tolerance and lowers insulin resistance index. | [47] |
GP extract from Kyoho blake grape (200 mg/kg body weight) after a 3-week antibiotic treatment | C57BL/6J mice, 9 weeks old, fed a high-fat diet and antibiotic treatment (n = 10 animals/group) Groups: saline solution (control) | Contributes to the recovery of gut microbiota after antibiotic treatment, increasing its composition and improving its complexity on the genus level; Increases relative abundance of Akkermansia, and Alloprevotella Does not restore Bifidobacterium, Lactococcus, or Lactobacillus. | [13] |
Source/Polyphenol/Quantity | Model/Conditions/ Control | Impact on Microbiota Composition and Metabolites Profile/Health Benefits | Ref. |
---|---|---|---|
Humans | |||
GS extract polyphenols obtained by pressurized liquid extraction and purification with macroporous resin | In vitro human feces fermentation for 36 h | Increases Bifidobacterium spp. and Lactobacillus–Enterococcus group changes in SCFA profiles; Inhibits Clostridium histolyticum group and the Bacteroides–Prevotella group; No significant effect on the population of total bacteria. | [59] |
Two purified fractions from GE extract: GSE-M (70% monomers and 28% procyanidins) and GSE-O (21% monomers and 78% procyanidins) | In vitro human feces fermentation for 48 h | During the first 10 h of fermentation, GSE-M fractions significantly promote growth of Lactobacillus–Enterococcus, and GSE-O decreases in the Clostridium histolyticum group; Microbial precursor flavan-3-ol could affect the microbiota composition and its catabolic activity. | [60] |
GS and cranberry extracts | In vitro colonic microbiota simulation | Antimicrobial effect of GS polyphenols on Bacteroides, Prevotella, and Blautia coccoides–Eubacterium rectale | [61] |
Proanthocyanidin-rich GS extract | Human fecal flora and odor (healthy adults) | Increases Bifidobacterium | [62] |
Pig and piglets | |||
Proanthocyanidin-rich GS extract—MegaNatural® Gold (1% (w/w) for 6 days | Pigs, crossbred, female (n = 6 animals) Groups: basal diet (control); diet + GSE | Increases Lachnospiraceae, Clostridales, Lactobacillus and Ruminococcacceae Phenolic metabolites 4-hydroxyphenylvaleric acid and 3-hydroxybenzoic acid major increased | [63] |
GS and skin polyphenol-rich extract (100 ppm) and a low dose of functional amino acids (0.1%) during the first 2 weeks | Landrace x large white x Duroc piglets, 25 days old (n = 6 animals/group) Groups: basal diet (control), diet + GSE, and diet + amino acids mix | Reduces microbiota diversity; Highly increased Lactobacillaceae in the jejunum; Reduces the abundance of Proteobacteria in the caecum; Increases the production of SCFAs (butyrate and propionate) and of metabolites derived from amino acids (branched-chain fatty acids, valerate, and putrescine) and polyphenols (3-phenylpropionate); Improves growth and feed efficiency. | [64] |
GS procyanidin extract (50, 100, and 150 mg/kg body weight) for 28 days | Duroc × Landrace × Yorkshine piglets, 21 days old (n = 24 animals/group) Groups: basal diet (control); diet + GSE (50, 100, and 150 mg/kg) | Increases diversity indices (Ace, Chao1) of cecal, colonic, and rectal microflora (100 mg/kg body weight dose); Increases Prevotellaceae NK3B31 and Prevotella I Decreases Proteobacteria and Anaerovibrio Increases SCFAs: propionic acid and, especially, acetic acid and butyric in the cecum and colon (100 mg/kg body weight dose); Increases antioxidant capacity. | [65] |
Chickens and hens | |||
GS extract (1–2%)-supplemented diet for 40 weeks | Cobb 500-broiled hens, 40 weeks old (n = 12/group) Groups: basal diet (control), diet + GSE 1%, and diet + GSE 2% | Increases relative abundance of Bifidobacteriaceae, Lactobacilliaceae, and Lachnospiraceae; Improves metabolic and laying parameters (decreases fat tissue; improves fertility; and makes eggs more resistant). | [66] |
GS extract (7.2 g/kg) for 21 days | Cobb broiler chickens (n = 25 animals/group), Groups: antibiotic-free (control), antibiotic-included, and GP included | Increases biodiversity; Increases Enterococcus and Lactobacillus, and decreases Clostridium (ileum); Increases E. coli, Lactobacillus, Enterococcus, and Clostridium (cecum); Decreases weight gain. | [15] |
GS extract (10, 20, and 40 g/kg of diet), daily for 42 days | Cobb-500 broiler chicks, 1 day old (n = 300/group) Groups: basal diet (control); diet + GSE (10, 20, and 40 g/kg) | Decreases detrimental bacteria in the ileum, E. coli, and Streptococcus; Increases Lactobacillus; Improves performance; increases body weight. | [67] |
Fermented GS meal (2–6%) for 56 days | Broiler chicks, 14 days old (n = 80/group) Groups: basal diet (control); diet + GSE (2%, 4%, and 6%) | Increases biodiversity indices (Shannon and Simpson); Reduces relative abundance of Bacteroidetes (cecum); Increases relative abundance of Firmicutes (cecum); Increases butyric acid content after a 4% fermented GS-meal-supplemented diet; Strong correlation between broiler growth performance, abdominal fat percentage, SCFAs, and gut microbiota; Improves broiler growth performance and reduces fat deposition. | [68] |
Rodents | |||
Proanthocyanidin-rich GS extract (300 mg/kg body weight) for 7 weeks | Mice fed a high-fat diet (HFD) (n = 10–12) Groups: HFD + PBS (control); HFD + GSE | Modulate Clostridium XIVa, Roseburia, and Prevotella; Decreases plasma inflammatory factors, reduces epidydimal fat mass, and improves insulin sensitivity; Link between gut microbiota alterations and metabolic benefits of GS extract supplementation. | [69] |
Proanthocyanidin-rich GS extract for 8 weeks | D-galactose (500 mg/kg)-induced aging mice Groups: basal diet (control); diet + GSE | Increases Lachnospiraceae NK4A136, Lactobacillus, Bifidobacterium, and Akkermansia; Decreases Helicobacter and Alistipes; Improves antioxidant capacity and inflammation levels in the liver and brain; High-dose extract has greater potential to delay aging process via the gut microbiota–liver axis and gut–microbiota–brain axis. | [70] |
Proanthocyanidin-rich GS extract (25 mg/kg body weight/day) for 9 weeks | Cafeteria-diet-induced obese Fischer 344 rats exposed to photoperiod conditions (6 h, 12 h, and 18 h) (n = 10 animals/group) | GS extract decreases body weight gain and fat deposits, and GM strongly altered under 18 h of light; GS extract functionality is modulated by the GM in a photoperiod-dependent manner. | [71] |
Proanthocyanidin-rich GS extract (200 mg/kg body weight/day) for 8 weeks | C57BL/6J mice fed with high-fat diet (n = 10 animals/group) Groups: HFD (control); HFD + GSE | Improves diversity; Normalized Firmicutes/Bacteroidetes ratio; Reverses the relative abundance of Weissella, Faecalibaculum, Bacteroides, Akkermansia, and Ruminococcus 1 induced by high-fat diet; Increases acetic acid, propionic acid; and butyric acid in the colon; Reduces the final body weight and associated metabolic complications. | [72] |
Proanthocyanidin-rich GS extract (250 mg/kg body weight/day) for 20 days | C57BL/6J mice, 7–8 weeks old, injected with LPS to induce intestinal inflammation Groups: basal diet (control), diet + GSE | Alters gut microbiota; Increases abundance of hydroxysteroid dehydrogenase-producing microbes; Extract shows an intestinal protection role in the inflammation induced by LPS; effect mediated by regulating the GM. | [73] |
GS extract after a 3-week antibiotic treatment | C57BL/6J mice, 9 weeks old, fed a high-fat diet and antibiotic treatment (n = 10 animals/group) Groups: saline solution (control) | Contributes to the recovery of gut microbiota after antibiotic treatment; Increases relative abundance of Akkermansia, Alloprevotella, and Prevotella; Does not restore beneficial bacteria (Bifidobacterium, Lactococcus, and Lactobacillus). | [13] |
GS and skin extract (GSSE) (4 g/kg body weight for 3 months) GSSE + orlistat (medication used to treat obesity)—GSOR treatment | Rats (obese), 12 weeks old, fed with high-fat diet (n = 24 animals/group) Groups: standard diet and HFD (controls); GSSE, GSOR, and GSSE + GSOR groups | Biodiversity restores with GSSE and GSOR treatments; Increases beneficial microbes (Methanobrevibacter, Ruminococcus 2, Lachnospiraceae NK4A136); Decreases pathobionts, especially Streptococcus alactolyticus/gallolyticus, Enterobacteriaceae (Escherichia genus), Allobaculum, Turicibacter, and Tyzzerella 3; Partially restores dysbiosis produced by obesity; Decreases body weight and fat accumulation and improves serum lipid parameters, especially the GSOR treatment. | [74] |
Proanthocyanidin-rich GS extract—GSPE (0.5 g/kg body weight/day) for 8 days | Wistar rats (female) (n = 9 animals/group) Groups: control, diet + GSPE, and diet + gallic acid | Increases Bacteroidetes; Reduces Firmicutes and cecal butyrate; Correlation between microbiota modulation and plasma triacylglycerol, adiposity, and enterohormone secretion. | [75] |
Canine | |||
Proanthocyanidin-rich GS extract (30 mg/kg body weight) for 28 days | Canine adult Labrador retrievers with inflammatory bowel disease (IBD) (n = 12 healthy subjects, n = 24 subjects with IBD) | Increases Ruminococcaceae, Faecalibacterium, Ruminococcus torques group, and Lachnospiraceae NK4A136 group; Improves inflammatory index and reduces intestinal permeability; Extract’s effect on canine inflammation is related to alteration of GM and microbiota-derived bile acids. | [76] |
Animal in vitro studies | |||
Proanthocyanidin–GS extract (15–120 mg/g of substrate) | In vitro rumen | Decreases the ratio of methanogens to total bacteria, especially for Methanobrevibacter; Extract decreases methane emissions. | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, L.-D.; Vamanu, E. Gut Microbiota Modulators Based on Polyphenols Extracted from Winery By-Products and Their Applications in the Nutraceutical Industry. Life 2024, 14, 414. https://doi.org/10.3390/life14030414
Dinu L-D, Vamanu E. Gut Microbiota Modulators Based on Polyphenols Extracted from Winery By-Products and Their Applications in the Nutraceutical Industry. Life. 2024; 14(3):414. https://doi.org/10.3390/life14030414
Chicago/Turabian StyleDinu, Laura-Dorina, and Emanuel Vamanu. 2024. "Gut Microbiota Modulators Based on Polyphenols Extracted from Winery By-Products and Their Applications in the Nutraceutical Industry" Life 14, no. 3: 414. https://doi.org/10.3390/life14030414
APA StyleDinu, L. -D., & Vamanu, E. (2024). Gut Microbiota Modulators Based on Polyphenols Extracted from Winery By-Products and Their Applications in the Nutraceutical Industry. Life, 14(3), 414. https://doi.org/10.3390/life14030414