Blood Morphological and Biochemical Indicator Characteristics in Men Performing Different Physical Activities in the Cold—A Preliminary Report
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Blood Sample Collection
2.3. Morphological and Biochemical Assays
2.4. Statistical Analysis
3. Results
3.1. Morphological Indicators: RUN + WS vs. WS
3.2. Morphological Indicators: RUN + WS vs. Control
3.3. Morphological Indicators: WS vs. Control
3.4. Biochemical Indicators: RUN + WS vs. WS
3.5. Biochemical Indicators: RUN + WS vs. Control
3.6. Biochemical Indicators: WS vs. Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lateef, F. Post exercise ice water immersion: Is it a form of active recovery? J. Emerg. Trauma Shock 2010, 3, 302. [Google Scholar] [CrossRef]
- Knechtle, B.; Waśkiewicz, Z.; Sousa, C.V.; Hill, L.; Nikolaidis, P.T. Cold water swimming—Benefits and risks: A narrative review. Int. J. Environ. Res. Public Health 2020, 17, 8984. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-C.; Pate, R.R.; Lavie, C.J.; Sui, X.; Church, T.S.; Blair, S.N. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol. 2014, 64, 472–481. [Google Scholar] [CrossRef]
- Lee, D.-C.; Lavie, C.J.; Vedanthan, R. Optimal dose of running for longevity: Is more better or worse? J. Am. Coll. Cardiol. 2015, 65, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, P.; Løkke, A.; Jørgensen, N.; Jørgensen, A.; Rasmussen, M.; Sikjaer, M. Cold water swimming as an add-on treatment for depression. A feasibility study. Eur. Psychiatry 2022, 65, S559–S560. [Google Scholar] [CrossRef]
- Esperland, D.; de Weerd, L.; Mercer, J.B. Health effects of voluntary exposure to cold water—A continuing subject of debate. Int. J. Circumpolar Health 2022, 81, 2111789. [Google Scholar] [CrossRef]
- MultiSport Index 2022. Available online: https://prowly-uploads.s3.eu-west-1.amazonaws.com/uploads/landing_page_image/image/399651/2d8eef4560de8b374399a781ccfb19af.pdf (accessed on 14 November 2021).
- Grabus, M.; Szymański, M. Społeczno-ekonomiczny wymiar biegania amatorskiego w Polsce. Przestrz. Ekon. Społeczeństwo 2017, 11, 133–152. (In Polish) [Google Scholar]
- Tipton, M.J.; Collier, N.; Massey, H.; Corbett, J.; Harper, M. Cold water immersion: Kill or cure? Exp. Physiol. 2017, 102, 1335–1355. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, N.A. Adapted cold shower as a potential treatment for depression. Med. Hypotheses 2008, 70, 995–1001. [Google Scholar] [CrossRef]
- Teległów, A.; Romanovski, V.; Skowron, B.; Mucha, D.; Tota, Ł.; Rosińczuk, J.; Mucha, D. The effect of extreme cold on complete blood count and biochemical indicators: A case study. Int. J. Environ. Res. Public Health 2022, 19, 424. [Google Scholar] [CrossRef]
- Teległów, A.; Dąbrowski, Z.; Marchewka, A.; Tyka, A.; Krawczyk, M.; Głodzik, J.; Szyguła, Z.; Mleczko, E.; Bilski, J.; Tyka, A.; et al. The influence of winter swimming on the rheological properties of blood. Clin. Hemorheol. Microcirc. 2014, 57, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Badior, K.E.; Casey, J.R. Molecular mechanism for the red blood cell senescence clock. IUBMB Life 2018, 70, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Cluitmans, J.C.A.; Chokkalingam, V.; Janssen, A.M.; Brock, R.; Huck, W.T.S.; Bosman, G.J.C.G.M. Alterations in red blood cell deformability during storage: A microfluidic approach. Biomed Res. Int. 2014, 2014, 764268. [Google Scholar] [CrossRef]
- Teległów, A.; Marchewka, J.; Marchewka, A.; Kulpa, J. Changes in biochemical properties of the blood in winter swimmers. Folia Biol. 2016, 64, 285–290. [Google Scholar] [CrossRef]
- Wesołowski, R.; Mila-Kierzenkowska, C.; Szewczyk-Golec, K.; Woźniak, A. Wpływ “morsowania” na stężenie dialdehydu malonowego w erytrocytach i osoczu krwi u zdrowych osób—Doniesienie wstępne. Diagn. Lab. 2017, 53, 155–160. (In Polish) [Google Scholar] [CrossRef]
- Huttunen, P.; Kokko, L.; Ylijukuri, V. Winter swimming improves general well-being. Int. J. Circumpolar Health 2004, 63, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Van Tulleken, C.; Tipton, M.; Massey, H.; Harper, C.M. Open water swimming as a treatment for major depressive disorder. BMJ Case Rep. 2018, 2018, bcr2018225007. [Google Scholar] [CrossRef] [PubMed]
- Checinska-Maciejewska, Z.; Miller-Kasprzak, E.; Checinska, A.; Korek, E.; Gibas-Dorna, M.; Adamczak-Ratajczak, A.; Bogdanski, P.; Krauss, H. Gender-related effect of cold water swimming on the seasonal changes in lipid profile, ApoB/ApoA-I ratio, and homocysteine concentration in cold water swimmers. J. Physiol. Pharmacol. 2017, 68, 887–896. [Google Scholar] [PubMed]
- Seiler, S.; Tønnessen, E. Intervals, thresholds, and long slow distance: The role of intensity and duration in endurance training. Sportscience 2009, 13, 32–53. [Google Scholar]
- Kozdroń, E. Aktywność rekreacyjna w procesie pomyślnego starzenia się. Zesz. Nauk. WSKFiT 2014, 9, 75–84. (In Polish) [Google Scholar]
- Grzanka-Tykwińska, A.; Kędziora-Kornatowska, K. Znaczenie wybranych form aktywności w życiu osób w podeszłym wieku. Gerontol. Pol. 2010, 18, 29–32. (In Polish) [Google Scholar]
- Bilski, J.; Teległów, A.; Pokorski, J.; Nitecki, J.; Pokorska, J.; Nitecka, E.; Marchewka, A.; Dabrowski, Z.; Marchewka, J. Effects of a meal on the hemorheologic responses to exercise in young males. Biomed Res. Int. 2014, 2014, 862968. [Google Scholar] [CrossRef] [PubMed]
- Pournot, H.; Bieuzen, F.; Louis, J.; Mounier, R.; Fillard, J.-R.; Barbiche, E.; Hausswirth, C. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise. PLoS ONE 2011, 6, e22748. [Google Scholar] [CrossRef]
- Pelinski da Silveira, M.; da Silva Fagundes, K.K.; Ribeiro Bizuti, M.; Starck, É.; Calciolari Rossi, R.; Tavares de Resende e Silva, D. Physical exercise as a tool to help the immune system against COVID-19: An integrative review of the current literature. Clin. Exp. Med. 2021, 21, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Siems, W.G.; Brenke, R.; Sommerburg, O.; Grune, T. Improved antioxidative protection in winter swimmers. QJM 1999, 92, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Ricci, C.; Banfi, G. Effects of winter swimming on haematological parameters. Biochem. Med. 2011, 21, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Janský, L.; Pospísilová, D.; Honzová, S.; Ulicný, B.; Srámek, P.; Zeman, V.; Kamínková, J. Immune system of cold-exposed and cold-adapted humans. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 72, 445–450. [Google Scholar] [CrossRef] [PubMed]
- D’Alesandro, M.M.; Reed, H.L.; Lopez, A. Hematological parameters are altered during cold air exposure. Arctic Med. Res. 1992, 51, 16–22. [Google Scholar]
- Banffi, G.; Krajewska, M.; Melegati, G.; Patacchini, M. Effects of whole-body cryotherapy on haematological values in athletes. Br. J. Sports Med. 2008, 42, 858. [Google Scholar]
- Wcisło, M.; Teległów, A.; Marchewka, J. Wpływ zimowych kąpieli na parametry morfologii krwi i ocenę termowizyjną ciała—Badania “morsów”. Med. Rehabil. 2014, 18, 4–10. (In Polish) [Google Scholar]
Month | Mean Air Temperature in Poland | Mean Water Temperature in Poland |
---|---|---|
November | 5.6 °C | 7 °C |
December | 1.9 °C | 4 °C |
January | −0.5 °C | 4 °C |
February | 0.1 °C | 4 °C |
March | 5.1 °C | 4 °C |
April | 6.0 °C | 4 °C |
Parameter | RUN + WS Group (n = 10) M (Min–Max) ± SD | WS Group (n = 10) M (Min–Max) ± SD | Control Group (n = 10) M (Min–Max) ± SD | p (ANOVA on Ranks) | Post Hoc Analysis | ||
---|---|---|---|---|---|---|---|
RUN + WS /WS | WS/CON | RUN + WS /CON | |||||
Age [years] | 38.5 (27–46) ± 3.79 | 40.0 (34–44) ± 1.57 | 41.0 (35–45) ± 0.34 | 0.07 | n.s. | ||
Body height [cm] | 177.5 (176–178) ± 1.04 | 177.5 (173–183) ± 2.26 | 176.5 (175–186) ± 2.27 | 0.97 | n.s. | ||
Body mass [kg] | 71.5 (70–74) ± 6.44 | 77.5 (74–96) ± 5.84 | 76.7 (68–80) ± 2.32 | 0.06 | n.s. |
Parameter | RUN + WS Group (n = 10) M (Min–Max) ± SD | WS Group (n = 10) M (Min–Max) ± SD | Control Group (n = 10) M (Min–Max) ± SD | p (ANOVA on Ranks) | Post Hoc Analysis | ||
---|---|---|---|---|---|---|---|
RUN + WS/ WS | WS/CON | RUN + WS /CON | |||||
RBC [×1012/L] | 5.05 (4.58–5.25) ± 0.14 | 5.11 (4.9–5.22) ± 0.13 | 5.23 (4.88–5.32) ± 0.11 | 0.58 | n.s. | ||
Hb [g/dL] | 15.15 (14–15.4) ± 0.22 | 14.75 (14.4–15.8) ± 0.42 | 15.50 (14.9–16) ± 0.33 | 0.31 | n.s. | ||
HCT [%] | 45.60 (42.9–46.2) ± 0.68 | 44.30 (42.4–47) ± 1.16 | 46.75 (45.7–49.2) ± 0.98 | 0.12 | n.s. | ||
MCV [fL] | 90.85 (87.7–94.3) ± 1.29 | 87.25 (85.3–89.1) ± 1.2 | 90.40 (89.4–93.2) ± 0.76 | 0.03 * | 0.09 | 0.008 * | 0.67 |
MCH [pg] | 30.50 (29.2–31.1) ± 0.5 | 29.35 (28.7–29.7) ± 0.35 | 29.95 (29.8–30.4) ± 0.14 | 0.06 | n.s. | ||
MCHC [g/dL] | 33.0 (32.9–33.3) ± 0.08 | 33.70 (33.1–34.1) ± 0.21 | 32.95 (32.6–33.4) ± 0.16 | 0.04 * | 0.04 * | 0.03 * | 0.7 |
RDW [%] | 15.20 (13.3–15.6) ± 0.43 | 12.85 (12.6–13.3) ± 0.15 | 12.80 (12.4–13) ± 0.15 | 0.003 * | 0.008 * | 0.003 * | 0.38 |
WBC [×109/L] | 4.23 (3.99–5.99) ± 0.49 | 5.09 (3.77–6.08) ± 0.49 | 6.35 (5.98–6.89) ± 0.39 | 0.04 * | 0.79 | 0.053 | 0.02 * |
Neutrocytes [×109/L] | 1.85 (1.6–3.03) ± 0.33 | 2.69 (1.82–2.75) ± 0.3 | 3.07 (2.56–3.6) ± 0.32 | 0.09 | n.s. | ||
Eosinocytes [×109/L] | 0.12 (0.07–0.16) ± 0.03 | 0.16 (0.12–0.21) ± 0.02 | 0.16 (0.03–0.06) ± 0.05 | 0.63 | n.s. | ||
Basophils [×109/L] | 0.04 (0.03–0.05) ± 0.01 | 0.03 (0.03–0.04) ± 0.003 | 0.04 (0.03–0.06) ± 0.01 | 0.2 | n.s. | ||
Lymphocytes [×109/L] | 1.92 (1.56–2.43) ± 0.15 | 1.61 (1.37–2.69) ± 0.22 | 2.26 (1.73–2.46) ± 0.21 | 0.25 | n.s. | ||
Monocytes [×109/L] | 0.41 (0.28–0.47) ± 0.03 | 0.36 (0.3–0.49) ± 0.03 | 0.50 (0.43–0.63) ± 0.05 | 0.04 * | 0.96 | 0.02 * | 0.04 * |
PLT [×109/L] | 204.0 (193–263) ± 15.97 | 252.5 (200–262) ± 16.6 | 218.5 (181–243) ± 18.96 | 0.4 | n.s. | ||
MPV [fL] | 8.40 (7.2–9) ± 0.67 | 9.16 (8.6–10.2) ± 0.32 | 9.30 (8.7–9.9) ± 0.01 | 0.21 | n.s. | ||
PCT [%] | 0.20 (0.18–0.25) ± 0.09 | 0.21 (0.19–0.25) ± 0.01 | 0.19 (0.18–0.21) ± 0.01 | 0.59 | n.s. | ||
PDW [%] | 19.10 (17.2–48.9) ± 5.45 | 57.90 (48.6–60.6) ± 2.22 | 55.05 (52–56) ± 1.98 | 0.004 * | 0.006 * | 0.38 | 0.005 * |
Parameter | RUN + WS Group (n = 10) M (Min–Max) ± SD | WS Group (n = 10) M (Min–Max) ± SD | Control Group (n = 10) M (Min–Max) ± SD | p (ANOVA on Ranks) | Post Hoc Analysis | ||
---|---|---|---|---|---|---|---|
RUN + WS /WS | WS /CON | RUN + WS /CON | |||||
Na+ [mmol/L] | 141.00 (139–142) ± 0.54 | 139.50 (139–140) ± 0.45 | 138.00 (137–139) ± 0.37 | 0.009 * | 0.13 | 0.06 | 0.005 * |
K+ [mmol/L] | 4.71 (4.49–4.96) ± 0.12 | 4.37 (4.15–4.49) ± 0.07 | 4.25 (4.02–4.6) ± 0.11 | 0.09 | n.s. | ||
Cl− [mmol/L] | 101.05 (100.6–102.4) ± 0.46 | 101.45 (99–102.8) ± 0.68 | 99.50 (98.4–101.1) ± 0.41 | 0.059 * | 0.94 | 0.07 | 0.02 * |
Urea [mmol/L] | 5.51 (4.21–6.43) ± 0.45 | 4.60 (3.77–5.21) ± 0.38 | 4.34 (4.13–5.22) ± 0.26 | 0.44 | n.s. | ||
Creatinine [µmol/L] | 78.30 (73.8–84.8) ± 3.09 | 90.75 (77.7–96) ± 0.33 | 85.40 (77.7–97.4) ± 4.31 | 0.3 | n.s. | ||
eGFR [ml/min/1.73 m2] | 90.00 (90–90) ± 1.39 | 82.00 (78–90) ± 2.15 | 90.00 (86–90) ± 1.78 | 0.05 | 0.02 * | 0.11 | 0.32 |
Uric acid [µmol/L] | 318.80 (273.1–344.5) ± 12.79 | 398.20 (332.1–422.8) ± 20.76 | 333.20 (275.5–370.7) ± 18.83 | 0.04 * | 0.01 * | 0.14 | 0.38 |
Total bilirubin [µmol/L] | 11.60 (9.6–15) ± 2.49 | 7.20 (5.1–10.4) ± 2.15 | 9.90 (6.2–12.7) ± 3.49 | 0.13 | n.s. | ||
ALP [U/L] | 70.60 (63.5–90.1) ± 4.05 | 59.60 (67.3–70.7) ± 6.24 | 99.30 (73.1–110.7) ± 7.2 | 0.01 | 0.05 | 0.02 * | 0.04 * |
AST [U/L] | 26.50 (20.7–29.6) ± 1.73 | 23.05 (21.4–28) ± 1.57 | 22.15 (18.4–25.7) ± 3.5 | 0.36 | n.s. | ||
ALT [U/L] | 23.50 (19.9–28) ± 2.02 | 29.00 (22.5–49.3) ± 5.36 | 25.75 (17.2–32.4) ± 8.66 | 0.3 | n.s. | ||
GGT [U/L] | 24.00 (18–40) ± 4.41 | 27.50 (18–45) ± 5.7 | 24.50 (17–29) ± 3.18 | 0.68 | n.s. | ||
LDH [U/L] | 184.35 (147.5–220) ± 14.94 | 179.5 (163–185.1) ± 10.01 | 155.05 (143.6–209.7) ± 12.02 | 0.39 | n.s. | ||
CK [U/L] | 188.15 (129.7–303.1) ± 31.64 | 146 (100.4–216.7) ± 57.18 | 115.35 (106–268.3) ± 26.14 | 0.41 | n.s. | ||
Total protein [g/L] | 72.2 (67.6–72.8) ± 1.33 | 72 (68.2–72.7) ± 1.03 | 70.25 (68.1–72.2) ± 0.75 | 0.57 | n.s. | ||
Albumin [g/L] | 46.00 (44.4–47.3) ± 0.51 | 45.05 (43.7–46.9) ± 0.64 | 44.85 (44–46.2) ± 0.47 | 0.61 | n.s. | ||
Alpha-1-globulin [g/L] | 2.30 (2.2–2.7) ± 0.08 | 2.40 (2.3–2.8) ± 0.1 | 2.70 (2.6–2.7) ± 0.04 | 0.17 | n.s. | ||
Alpha-2-globulin [g/L] | 5.20 (4.9–6) ± 0.29 | 5.00 (4.6–5.3) ± 0.26 | 5.75 (5.2–6.4) ± 0.2 | 0.09 | n.s. | ||
Beta-1-globulin [g/L] | 4.15 (2.5–4.3) ± 0.27 | 4.55 (4.1–4.7) ± 0.16 | 3.95 (3.6–4.2) ± 0.11 | 0.05 | 0.12 | 0.02 * | 0.59 |
Beta-2-globulin [g/L] | 3.30 (2.9–4.4) ± 0.32 | 3.70 (3.3–4.1) ± 0.18 | 3.25 (2.9–3.6) ± 0.18 | 0.18 | n.s. | ||
Gamma-globulin [g/L] | 9.90 (8.8–11.2) ± 0.66 | 11.15 (9.4–12.2) ± 6.84 | 9.10 (8.2–10.8) ± 0.59 | 0.14 | n.s. | ||
A/G | 1.925 (1.58–2.03) ± 0.12 | 1.715 (1.68–1.78) ± 0.04 | 1.815 (1.75–2.02) ± 0.06 | 0.32 | n.s. | ||
IgA [g/L] | 2.40 (1.6–2.7) ± 0.33 | 2.40 (2.2–3) ± 0.21 | 1.90 (1.4–2.2) ± 0.24 | 0.12 | n.s. | ||
IgG [g/L] | 11.15 (10–12.2) ± 0.65 | 11.90 (10.5–12.2) ± 0.49 | 11.25 (9.2–13.9) ± 0.77 | 0.93 | n.s. | ||
IgM [g/L] | 0.80 (0.6–1) ± 0.13 | 0.95 (0.5–1.5) ± 0.16 | 0.80 (0.7–1) ± 0.11 | 0.94 | n.s. | ||
CRP [mg/L] | 0.46 (0.23–0.64) ± 0.3 | 0.93 (0.48–1.08) ± 0.26 | 0.39 (0.28–0.67) ± 0.16 | 0.26 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teległów, A.; Mirek, W.; Ptaszek, B.; Maciejczyk, M.; Godawska, D.; Marchewka, J. Blood Morphological and Biochemical Indicator Characteristics in Men Performing Different Physical Activities in the Cold—A Preliminary Report. Life 2024, 14, 474. https://doi.org/10.3390/life14040474
Teległów A, Mirek W, Ptaszek B, Maciejczyk M, Godawska D, Marchewka J. Blood Morphological and Biochemical Indicator Characteristics in Men Performing Different Physical Activities in the Cold—A Preliminary Report. Life. 2024; 14(4):474. https://doi.org/10.3390/life14040474
Chicago/Turabian StyleTeległów, Aneta, Wacław Mirek, Bartłomiej Ptaszek, Marcin Maciejczyk, Dorota Godawska, and Jakub Marchewka. 2024. "Blood Morphological and Biochemical Indicator Characteristics in Men Performing Different Physical Activities in the Cold—A Preliminary Report" Life 14, no. 4: 474. https://doi.org/10.3390/life14040474
APA StyleTeległów, A., Mirek, W., Ptaszek, B., Maciejczyk, M., Godawska, D., & Marchewka, J. (2024). Blood Morphological and Biochemical Indicator Characteristics in Men Performing Different Physical Activities in the Cold—A Preliminary Report. Life, 14(4), 474. https://doi.org/10.3390/life14040474