The Influence of Fine Particulate Matter and Cold Weather on Emergency Room Interventions for Childhood Asthma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pediatric Asthma Emergency Room Visits and Air Pollution
2.2. Statistical Analysis
3. Results
AT | RH | PM2.5 | O3 | CO | SO2 | NO2 | CH4 | NMCHs | THC | |
---|---|---|---|---|---|---|---|---|---|---|
AT | 1 | −0.51 | −0.44 | −0.4 | −0.55 | 0.46 | −0.67 | −0.69 | −0.14 | −0.56 |
p | 0.02 * | 0.05 | 0.08 | 0.02 * | 0.04 * | <0.01 * | <0.01 * | 0.57 | 0.01 * | |
RH | −0.51 | 1 | 0.07 | 0.12 | 0.22 | −0.61 | 0.29 | 0.1 | −0.02 | 0.2 |
p | 0.02 * | 0.78 | 0.62 | 0.36 | <0.01 * | 0.22 | 0.67 | 0.94 | 0.4 | |
PM2.5 | −0.44 | 0.07 | 1 | 0.37 | 0.9 | 0.34 | 0.81 | 0.81 | 0.79 | 0.89 |
p | 0.05 | 0.78 | 0.2 | <0.01 * | 0.14 | <0.01 * | <0.01 * | <0.01 * | <0.01 * | |
O3 | −0.4 | 0.12 | 0.3 | 1 | 0.21 | −0.04 | 0.26 | 0.18 | −0.01 | 0.21 |
p | 0.08 | 0.62 | 0.2 | 0.37 | 0.85 | 0.26 | 0.45 | 0.98 | 0.37 | |
CO | −0.5 | 0.22 | 0.9 | 0.21 | 1 | 0.27 | 0.93 | 0.86 | 0.88 | 0.95 |
p | 0.02 * | 0.35 | <0.01 * | 0.37 | 0.25 | <0.01 * | <0.01 * | <0.01 * | <0.01 * | |
SO2 | 0.46 | −0.61 | 0.34 | −0.04 | 0.27 | 1 | 0.12 | 0.17 | 0.49 | 0.35 |
p | 0.04 * | <0.01 * | 0.14 | 0.85 | 0.25 | 0.6 | 0.48 | 0.03 * | 0.13 | |
NO2 | −0.67 | 0.29 | 0.81 | 0.26 | 0.93 | 0.12 | 1 | 0.89 | 0.75 | 0.96 |
p | <0.01 * | 0.22 | <0.01 * | 0.26 | <0.01 * | 0.6 | <0.01 * | <0.01 * | <0.01 * | |
CH4 | −0.69 | 0.1 | 0.8 | 0.18 | 0.86 | 0.17 | 0.89 | 1 | 0.67 | 0.97 |
p | <0.01 * | 0.67 | <0.01 * | 0.45 | <0.01 * | 0.48 | <0.01 * | <0.01 * | <0.01 * | |
NMCHs | −0.14 | −0.02 | 0.79 | −0.01 | 0.88 | 0.49 | 0.75 | 0.67 | 1 | 0.85 |
p | 0.576 | 0.94 | <0.01 * | 0.98 | <0.01 * | 0.03 * | <0.01 * | <0.01 * | <0.01 * | |
THC | −0.56 | 0.2 | 0.89 | 0.21 | 0.95 | 0.35 | 0.96 | 0.97 | 0.85 | 1 |
p | 0.01 * | 0.4 | <0.01 * | 0.37 | <0.01 * | 0.13 | <0.01 * | <0.01 * | <0.01 * |
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castillo, J.R.; Peters, S.P.; Busse, W.W. Asthma Exacerbations: Pathogenesis, Prevention, and Treatment. J. Allergy Clin. Immunol. Pract. 2017, 5, 918–927. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Chronic Respiratory Diseases Collaborators. Global burden of chronic respiratory diseases and risk factors, 1990–2019: An update from the Global Burden of Disease Study 2019. EClinicalMedicine 2023, 59, 101936. [Google Scholar] [CrossRef]
- Pate CA, Zahran HS, Qin X, Johnson C, Hummelman E, Malilay J. Asthma surveillance—United States, 2006–2018. MMWR Surveill. Summ. 2021, 70, 1–32. [CrossRef] [PubMed]
- Chatkin, J.; Correa, L.; Santos, U. External Environmental Pollution as a Risk Factor for Asthma. Clin. Rev. Allergy Immunol. 2022, 62, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Šulc, L.; Gregor, P.; Kalina, J.; Mikeš, O.; Janoš, T.; Čupr, P. City-scale assessment of long-term air quality impacts on the respiratory and cardiovascular health. Front. Public Health 2022, 10, 1006536. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Tseng, Y.L.; Huang, K.C.; Chiu, I.M.; Pan, H.Y.; Cheng, F.J. Association between Ambient Air Pollution and Emergency Room Visits for Pediatric Respiratory Diseases: The Impact of COVID-19 Pandemic. Toxics 2022, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Varghese, D.; Ferris, K.; Lee, B.; Grigg, J.; Pinnock, H.; Cunningham, S. Outdoor air pollution and near-fatal/fatal asthma attacks in children: A systematic review. Pediatr. Pulmonol. 2024. [Google Scholar] [CrossRef]
- Orellano, P.; Quaranta, N.; Reynoso, J.; Balbi, B.; Vasquez, J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. PLoS ONE 2017, 12, e0174050. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.G.; Yen, S.Y.; Hsiao, C.C.; Lin, Y.Y.; Chang, Y.H.; Chen, Y.H.; Cheng, C.A. Short-Term Exposure Effect of Ambient Fine Particulate Matter, Ozone and Cold Temperature on Emergency Room Visits for Asthma Patients. Toxics 2023, 11, 94. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Chang, J.-W.; Lee, C.-L.; Huang, W.-C.; Hsu, Y.-P.; Liu, C.-T.; Jean, S.-S.; Huang, S.-K.; Hsu, C.-W. Differential time-lag effects of ambient PM2.5 and PM2.5-PAHs on asthma emergency department visits. Environ. Sci. Pollut. Res. Int. 2020, 27, 43117–43124. [Google Scholar] [CrossRef]
- Chankaew, K.; Sinitkul, R.; Manuyakorn, W.; Roekworachai, K.; Kamalaporn, H. Spatial Estimation of PM2.5 Exposure and its Association with Asthma Exacerbation: A Prospective Study in Thai Children. Ann. Glob. Health 2022, 88, 15. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, C.; Chen, R.; Zhou, Y.; Meng, X.; Hong, J.; Cao, L.; Lu, Y.; Dong, X.; Xia, M.; et al. Associations of short-term exposure to air pollution and emergency department visits for pediatric asthma in Shanghai, China. Chemosphere 2021, 263, 127856. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wu, J.; Lin, X. Ozone Exposure and Asthma Attack in Children. Front. Pediatr. 2022, 10, 830897. [Google Scholar] [CrossRef] [PubMed]
- Khatri, S.B.; Newman, C.; Hammel, J.P.; Dey, T.; Van Laere, J.J.; Ross, K.A.; Rose, J.A.; Anderson, T.; Mukerjee, S.; Smith, L.; et al. Associations of Air Pollution and Pediatric Asthma in Cleveland, Ohio. Sci. World J. 2021, 2021, 8881390. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.D.; Steele, A.R.; Parent, E.C.; Steinback, C.D. Cold air exercise screening for exercise induced bronchoconstriction in cold weather athletes. Respir. Physiol. Neurobiol. 2019, 269, 103262. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.M.; Lin, Y.C.; Tsai, F.J.; Lee, K.Y.; Chang, J.H.; Chung, C.L.; Chung, K.F.; Chuang, K.J.; Chuang, H.C. Short-term mediating effects of PM2.5 on climate-associated COPD severity. Sci. Total Environ. 2023, 903, 166523. [Google Scholar] [CrossRef] [PubMed]
- Taiwanese National Health Insurance Admiration. Healthcare Quality. Available online: https://www.nhi.gov.tw/Content_List.aspx?n=9ABC74CDF4F839F6&topn=23C660CAACAA159D (accessed on 1 September 2023).
- Taiwan Ministry of Environment. Air Pollutants Monthly Report. 2024. Available online: https://airtw.moenv.gov.tw/CHT/Query/Month_Value.aspx (accessed on 15 December 2023).
- Taipei Weather Administration. Climate Monthly Report in Taipei. 2023. Available online: https://tsis.dbas.gov.taipei/statis/webMain.aspx?k=tpemain. (accessed on 15 December 2023).
- WHO. Air Pollution Guideline Values. 2022. Available online: https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf (accessed on 1 September 2023).
- Dondi, A.; Carbone, C.; Manieri, E.; Zama, D.; Del Bono, C.; Betti, L.; Biagi, C.; Lanari, M. Outdoor Air Pollution and Childhood Respiratory Disease: The Role of Oxidative Stress. Int. J. Mol. Sci. 2023, 24, 4345. [Google Scholar] [CrossRef] [PubMed]
- Taiwanese National Health Insurance Admiration. Healthcare Improvement Plan in Asthma. Available online: https://www.nhi.gov.tw/Content_List.aspx?n=3D98B91375362414&topn=5FE8C9FEAE863B46 (accessed on 1 September 2023).
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Mohr, L.B.; Luo, S.; Mathias, E.; Tobing, R.; Homan, S.; Sterling, D. Influence of season and temperature on the relationship of elemental carbon air pollution to pediatric asthma emergency room visits. J. Asthma. 2008, 45, 936–943. [Google Scholar] [CrossRef]
- Sly, P.D.; Cormier, S.A.; Lomnicki, S.; Harding, J.N.; Grimwood, K. Environmentally Persistent Free Radicals: Linking Air Pollution and Poor Respiratory Health? Am. J. Respir. Crit. Care Med. 2019, 200, 1062–1063. [Google Scholar] [CrossRef]
- Perez, L.; Declercq, C.; Iñiguez, C.; Aguilera, I.; Badaloni, C.; Ballester, F.; Bouland, C.; Chanel, O.; Cirarda, F.B.; Forastiere, F.; et al. Chronic burden of near-roadway traffic pollution in 10 European cities (APHEKOM network). Eur. Respir. J. 2013, 42, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Fan, L.C.; Mao, B.; Yang, J.W.; Choi, A.M.K.; Cao, W.J.; Xu, J.F. Short-term Exposure to Ambient Fine Particulate Matter Increases Hospitalizations and Mortality in COPD: A Systematic Review and Meta-analysis. Chest 2016, 149, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Altman, M.C.; Kattan, M.; O’Connor, G.T.; Murphy, R.C.; Whalen, E.; LeBeau, P.; Calatroni, A.; Gill, M.A.; Gruchalla, R.S.; Liu, A.H.; et al. Associations between outdoor air pollutants and non-viral asthma exacerbations and airway inflammatory responses in children and adolescents living in urban areas in the USA: A retrospective secondary analysis. Lancet Planet Health 2023, 7, e33–e44. [Google Scholar] [CrossRef] [PubMed]
- Saffari, A.; Daher, N.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Global perspective on the oxidative potential of airborne particulate matter: A synthesis of research findings. Environ. Sci. Technol. 2014, 48, 7576–7583. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Thompson, L.A.; Gross, H.E.; Shenkman, E.A.; DeWalt, D.A.; Huang, I.C. Longitudinal Effect of Ambient Air Pollution and Pollen Exposure on Asthma Control: The Patient-Reported Outcomes Measurement Information System (PROMIS) Pediatric Asthma Study. Acad. Pediatr. 2019, 19, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Eckel, S.P.; Hosseini, A.; Van Vliet, E.D.S.; Dzubur, E.; Dunton, G.; Chang, S.Y.; Craig, K.; Rocchio, R.; Bastain, T.; et al. Daily Associations of Air Pollution and Pediatric Asthma Risk Using the Biomedical REAI-Time Health Evaluation (BREATHE) Kit. Int. J. Environ. Res. Public Health 2022, 19, 3578. [Google Scholar] [CrossRef] [PubMed]
- Strickland, M.J.; Hao, H.; Hu, X.; Chang, H.H.; Darrow, L.A.; Liu, Y. Pediatric Emergency Visits and Short-Term Changes in PM2.5 Concentrations in the U.S. State of Georgia. Environ. Health Perspect. 2016, 124, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Nenna, R.; Evangelisti, M.; Frassanito, A.; Scagnolari, C.; Pierangeli, A.; Antonelli, G.; Nicolai, A.; Arima, S.; Moretti, C.; Papoff, P.; et al. Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: An observational study. Environ. Res. 2017, 158, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Wu, X.; Geng, X.; Zhao, X.; Liu, Q.; Liu, T. The short-term effects of air pollutants on influenza-like illness in Jinan, China. BMC Public Health 2019, 19, 1319. [Google Scholar] [CrossRef]
- Su, Y.T.; Lin, Y.T.; Yang, C.C.; Tsai, S.S.; Wang, J.Y.; Huang, Y.L.; Lin, T.I.; Lin, T.M.; Tsai, Y.C.; Yu, H.R.; et al. High correlation between human rhinovirus type C and children with asthma exacerbations in Taiwan. J. Microbiol. Immunol. Infect. 2020, 53, 561–568. [Google Scholar] [CrossRef]
- Bhavnani, D.; Wilkinson, M.; Zárate, R.A.; Balcer-Whaley, S.; Katz, D.S.W.; Rathouz, P.J.; Matsui, E.C. Do upper respiratory viruses contribute to racial and ethnic disparities in emergency department visits for asthma? J. Allergy Clin. Immunol. 2023, 151, 778–782.e1. [Google Scholar] [CrossRef]
- Gebski, E.B.; Parikh, V.; Lam, H.; Kim, N.; Bochkov, Y.A.; Cao, G.; Panettieri RAJr Kurten, R.; Gern, J.; An, S.S.; Koziol-White, C.J. Rhinovirus C15 Attenuates Relaxation and cAMP Production in Human Airways and Smooth Muscle. Am. J. Respir. Cell Mol. Biol. 2023, 69, 172–181. [Google Scholar] [CrossRef]
- Sharma, R.; Humphrey, J.L.; Frueh, L.; Kinnee, E.J.; Sheffield, P.E.; Clougherty, J.E. Neighborhood violence and socioeconomic deprivation influence associations between acute air pollution and temperature on childhood asthma in New York city. Environ. Res. 2023, 231 Pt 3, 116235. [Google Scholar] [CrossRef] [PubMed]
- Zafirah, Y.; Lin, Y.K.; Andhikaputra, G.; Deng, L.W.; Sung, F.C.; Wang, Y.C. Mortality and morbidity of asthma and chronic obstructive pulmonary disease associated with ambient environment in metropolitans in Taiwan. PLoS ONE 2021, 16, e0253814. [Google Scholar] [CrossRef] [PubMed]
- Kadhim Yousif, M.; Al Muhyi, A.A. Impact of weather conditions on childhood admission for wheezy chest and bronchial asthma. Med. J. Islam. Repub. Iran 2019, 33, 89. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.K.; Chang, C.K.; Chang, S.C.; Chen, P.S.; Lin, C.; Wang, Y.C. Temperature, nitrogen dioxide, circulating respiratory viruses and acute upper respiratory infections among children in Taipei, Taiwan: A population-based study. Environ. Res. 2013, 120, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Ming, T.; de Richter, R.; Shen, S.; Caillol, S. Fighting global warming by greenhouse gas removal: Destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies. Environ. Sci. Pollut. Res. Int. 2016, 23, 6119–6138. [Google Scholar] [CrossRef] [PubMed]
- Boguslavsky, D.V.; Sharova, N.P.; Sharov, K.S. Evolutionary Challenges to Humanity Caused by Uncontrolled Carbon Emissions: The Stockholm Paradigm. Int. J. Environ. Res. Public Health 2022, 19, 16920. [Google Scholar] [CrossRef] [PubMed]
- Di Cicco, M.E.; Ferrante, G.; Amato, D.; Capizzi, A.; De Pieri, C.; Ferraro, V.A.; Furno, M.; Tranchino, V.; La Grutta, S. Climate Change and Childhood Respiratory Health: A Call to Action for Paediatricians. Int. J. Environ. Res. Public Health 2020, 17, 5344. [Google Scholar] [CrossRef]
- Thurston, G.D.; Balmes, J.R.; Garcia, E.; Gilliland, F.D.; Rice, M.B.; Schikowski, T.; Van Winkle, L.S.; Annesi-Maesano, I.; Burchard, E.G.; Carlsten, C.; et al. Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2020, 17, 387–398. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, J.; Tan, Z.; Liu, T.; Zeng, W.; Li, X.; Huang, C.; Wang, S.; Huang, Z.; Ma, W. Ambient carbon monoxide and increased risk of daily hospital outpatient visits for respiratory diseases in Dongguan, China. Sci. Total Environ. 2019, 668, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Ciencewicki, J.; Jaspers, I. Air pollution and respiratory viral infection. Inhal. Toxicol. 2007, 19, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, M. Low-to-moderate atmospheric ozone levels are negatively correlated with hospital visits by asthma patients. Medicine 2022, 101, e31737. [Google Scholar] [CrossRef] [PubMed]
- Sokolowska, M.; Quesniaux, V.F.J.; Akdis, C.A.; Chung, K.F.; Ryffel, B.; Togbe, D. Acute Respiratory Barrier Disruption by Ozone Exposure in Mice. Front. Immunol. 2019, 10, 2169. [Google Scholar] [CrossRef] [PubMed]
- McHugh, E.G.; Grady, S.T.; Collins, C.M.; Moy, M.L.; Hart, J.E.; Coull, B.A.; Schwartz, J.D.; Koutrakis, P.; Zhang, J.; Garshick, E. Pulmonary, inflammatory, and oxidative effects of indoor nitrogen dioxide in patients with COPD. Environ. Epidemiol. 2023, 7, e271. [Google Scholar] [CrossRef] [PubMed]
- Solanki, N.; Bruckman, D.; Wang, X.; Tang, A.; Attaway, A.; Khatri, S. Nitrogen dioxide, an EPA parameter, may forecast the incidence of asthma exacerbations across urban areas: An observational study. Pediatr. Pulmonol. 2023, 58, 262–270. [Google Scholar] [CrossRef]
- Zhao, Y.; Kong, D.; Fu, J.; Zhang, Y.; Chen, Y.; Liu, Y.; Chang, Z.; Liu, Y.; Liu, X.; Xu, K.; et al. Increased Risk of Hospital Admission for Asthma in Children From Short-Term Exposure to Air Pollution: Case-Crossover Evidence From Northern China. Front. Public Health 2021, 9, 798746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ni, H.; Bai, L.; Cheng, Q.; Zhang, H.; Wang, S.; Xie, M.; Zhao, D.; Su, H. The short-term association between air pollution and childhood asthma hospital admissions in urban areas of Hefei City in China: A time-series study. Environ. Res. 2019, 169, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.E.; Jacobson, K.W.; House, J.M.; Glovsky, M.M. Links between pollen, atopy and the asthma epidemic. Int. Arch. Allergy Immunol. 2007, 144, 162–170. [Google Scholar] [CrossRef]
- WHO. Sustainable Development Goals. Available online: https://www.who.int/data/gho/data/themes/sustainable-development-goals (accessed on 1 September 2023).
- Gleason, J.A.; Bielory, L.; Fagliano, J.A. Associations between ozone, PM2.5, and four pollen types on emergency department pediatric asthma events during the warm season in New Jersey: A case-crossover study. Environ. Res. 2014, 132, 421–429. [Google Scholar] [CrossRef]
- Juskiene, I.; Prokopciuk, N.; Franck, U.; Valiulis, A.; Valskys, V.; Mesceriakova, V.; Kvedariene, V.; Valiulyte, I.; Poluzioroviene, E.; Sauliene, I.; et al. Indoor air pollution effects on pediatric asthma are submicron aerosol particle-dependent. Eur. J. Pediatr. 2022, 181, 2469–2480. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Zou, M.L.; Chen, Y.H.; Jiang, C.B.; Wu, C.D.; Lung, S.C.; Chien, L.C.; Lo, Y.C.; Chao, H.J. Effects of indoor air quality and home environmental characteristics on allergic diseases among preschool children in the Greater Taipei Area. Sci. Total Environ. 2023, 897, 165392. [Google Scholar] [CrossRef] [PubMed]
- Abdelzaher, H.; Tawfik, S.M.; Nour, A.; Abdelkader, S.; Elbalkiny, S.T.; Abdelkader, M.; Abbas, W.A.; Abdelnaser, A. Climate change, human health, and the exposome: Utilizing OMIC technologies to navigate an era of uncertainty. Front. Public Health 2022, 10, 973000. [Google Scholar] [CrossRef] [PubMed]
- Abernethy, S.; O’Connor, F.M.; Jones, C.D.; Jackson, R.B. Methane removal and the proportional reductions in surface temperature and ozone. Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20210104. [Google Scholar] [CrossRef] [PubMed]
- Cordero, E.C.; Centeno, D.; Todd, A.M. The role of climate change education on individual lifetime carbon emissions. PLoS ONE 2020, 15, e0206266. [Google Scholar] [CrossRef]
Quarter | 1 | 2 | 3 | 4 | p |
---|---|---|---|---|---|
Pediatric asthma ERVs | 631 ± 53.83 | 618 ± 117.09 | 463 ± 65.93 | 725 ± 118.87 | 0.004 * |
PM2.5 | 18.87 ± 2.47 | 18.4 ± 1.69 | 13.47 ± 1.95 | 14.27 ± 1.59 | 0.001 * |
PM10 | 38.47 ± 3.57 | 36.47 ± 3.23 | 26.27 ± 3.12 | 29.8 ± 4.77 | <0.001 * |
NO2 | 22.14 ± 1.78 | 20.49 ± 2.27 | 15.57 ± 2.04 | 18.04 ± 0.7 | <0.001 * |
O3 | 27.75 ± 2.66 | 28.74 ± 2.98 | 23.59 ± 2.11 | 27.57 ± 2.56 | 0.03 * |
Ambient temperature | 17.72 ± 0.93 | 26.22 ± 0.61 | 29.42 ± 0.59 | 22.34 ± 0.56 | <0.001 * |
Relative humidity | 75.4 ± 2.82 | 72.53 ± 4.03 | 70.47 ± 4.26 | 75.07 ± 2.19 | 0.119 |
Relative Ratio | p | Adjusted Relative Ratio | p | |
---|---|---|---|---|
PM2.5 highest quarter | 1.162 (95% C.I.: 1.105–1.221) | <0.001 * | 1.102 (95% C.I.: 1.037–1.172) | 0.002 * |
PM2.5 middle quarter | 1.051 (95% C.I.: 1.005–1.1) | 0.03 * | 1.037 (95% C.I.: 0.982–1.095) | 0.191 |
PM2.5 lowest quarter | reference | reference | ||
Ozone | 1.006 (1–1.012) | 0.049 * | 0.981 (95% C.I.: 0.972–0.99) | <0.001 * |
Air temperature highest quarter | 0.844 (95% C.I.: 0.8–0.89) | <0.001 * | 0.813 (95% C.I.: 0.745–0.887) | <0.001 * |
Air temperature middle quarter | 1.064 (95% C.I.: 1.02–1.11) | 0.004 | 1.1 (95% C.I.: 1.049–1.153) | <0.001 * |
Air temperature lowest quarter | reference | reference | ||
Relative humidity | 1.011 (95% C.I.: 1.005–1.016) | <0.001 * | 0.977 (95% C.I.: 0.99–1.003) | 0.288 |
First Quarter | p | Second Quarter | p | Third Quarter | p | Fourth Quarter | p | |
---|---|---|---|---|---|---|---|---|
PM2.5 | 0.98 (95% C.I.: 0.939–1.023) | 0.356 | 1.188 (95% C.I.: 1.114–1.268) | <0.001 * | 0.896 (95% C.I.: 0.727–1.103) | 0.3 | 0.893 (95% C.I.: 0.833–0.957) | 0.001 * |
O3 | 1.108 (95% C.I.: 1.019–1.205) | 0.016 * | 1.053 (95% C.I.: 1.012–1.096) | 0.011 * | 1.157 (95% C.I.: 1.008–1.329) | 0.038 * | 0.941 (95% C.I.: 0.92–0.963) | <0.001 * |
AT | 0.726 (95% C.I.: 0.56–0.943) | 0.016 * | 0.952 (95% C.I.: 0.885–1.023) | 0.181 | 1.03 (95% C.I.: 0.88–1.205) | 0.714 | 0.937 (95% C.I.: 0.849–1.034) | 0.195 |
RH | 1 (95% C.I.: 0.974–1.027) | 0.983 | 1.04 (95% C.I.: 1.018–1.062) | <0.001 * | 0.96 (95% C.I.: 0.897–1.028) | 0.241 | 1.107 (95% C.I.: 1.056–1.16) | <0.001 * |
Reference | Finding | Outcome | Place | Year |
---|---|---|---|---|
Present study | PM2.5: RR of 1.102 (95% C.I.: 1.037–1.1722) Air temperature: RR of 0.813 (95% CI: 0.745–0.887) | Pediatric asthma emergency room visits | Taipei, Taiwan | 2015–2019 |
[8] | NO2: OR: 1.04 (95% C.I.: 1.001, 1.081) SO2: OR 1.047 (95% C.I.: 1.009, 1.086) PM2.5: OR 1.022 (95% C.I.: 1.000, 1.045) | Pediatric asthma exacerbations in high-income cities | Meta-analysis | 2000–2016 |
[9] | 10 units PM2.5: RR 1.195 (95% C.I.: 1.001–1.426) at a 2-day lag | Pediatric asthma emergency room visits | Taoyuan, Taiwan | 2016–2019 |
[10] | 10 units PM2.5: RR 1.310 (95% C.I.: 1.069–1.606) 10 units PM2.5-PAH: RR 1.576 (95% C.I.: 1.371–1.810) on 1-day lag | Pediatric asthma emergency room visits | Taipei, Taiwan | 2012–2015 |
[11] | 10 units PM2.5: 0.2 events increasing | Pediatric asthma exacerbation | Bangkok and Chiang Mai, Thailand | 2020–2021 |
[12] | 10 units PM2.5: RR 1.011 (95% C.I.: 1.002–1.021), 10 units NO2: 1.030 (95% C.I.: 1.017–1.043), 10 units SO2: 1.106 (95% C.I.: 1.041–1.174), 10 units O3: 1.009 (95% C.I.: 1.001, 1.017) | Pediatric asthma ERVs | Shanghai, China | 2016–2018 |
[13] | 10 units O3-8 h increased 6.33% in ≥100 μg/m3 O3-8 h 10 units O3-8 h increased 2.36% in 80–99 μg/m3 O3-8 h PM2.5: OR: 1.0503 (95% C.I.: 1.0277–1.073) in ≥100 μg/m3 O3-8 h | Pediatric asthma attacks | Xiamen, China | 2016–2019 |
[14] | Higher quartile TRAPs-PM2.5: RR 1.789 (1.517–2.109) Higher quartile TRAPs-NO2:1.893 (1.589–2.256) | Pediatric asthma emergency room visits | Cleveland, OH, USA | 2009–2010 |
[31] | O3: rate ratio 1.52 (95% C.I.: 1.02–2.27) NOx: rate ratio 1.61 (95% C.I.: 1.23–2.11) NO: rate ratio 1.80 (95%C.I.: 1.37–2.35) | Rescue inhaler use | Los Angeles, CA, USA | 2019 |
[38] | Cold season PM2.5: 4.90% (95% C.I.: 3.77–6.04) on 1-day lag SO2: 8.57% (5.99–11.21) on 1-day lag Warm season NO2: 7.86% (95% C.I.: 6.66–9.07) on 1-day lag O3: 4.75% (95% C.I.: 3.53–5.97) on 2 days lag Minimum air temperature: 2.26% (95% C.I.: 1.25–3.28) in the cold season | Pediatric asthma emergency room visits | New York, NY, USA | 2005–2011 |
[32] | 10 units PM2.5: OR 1.013 (95% C.I.: 1.003–1.023) | Pediatric asthma or wheeze | GA, USA | 2002–2010 |
[40] | Relative humidity: correlation coefficients of 0.795 Rain days: 0.890 Wind speed: −0.763 Air temperature: −0.837 | Pediatric asthma hospitalization | Basra, Iraq | 2014–2016 |
[51] | NO2 correlation coefficient: 0.4619 in Buffalo; −0.543 in Detroit, 0.1924–0.3113 Phoenix, 0.2244 in Tucso | Pediatric asthma hospitalization | Buffalo, NY, Detroit, MI, Phoenix, AZ and Tucson, AZ, USA | 2009–2011 |
[52] | NO2: RR 1.25 (95% C.I.: 1.06–1.48) at lag06 SO2: RR 1.17 (95% C.I.: 1.05–1.31) at lag05 | Pediatric asthma hospitalization, | Beijing, China | 2013–2016 |
[53] | NO2: cumulative effects 1.580 (95% C.I.: 1.315–1.899, lag 0–3 days | Pediatric asthma hospitalization | Hefei, China | 2015–2016 |
[56] | O3: rate ratio 1.05 (95% C.I.: 1.04–1.06) PM2.5: rate ratio 1.03 (95% C.I.: 1.02–1.04) The 5-day average values of tree and weed pollen: rate ratio 1.23 (95% C.I.: 1.21–1.25) | Pediatric asthma emergency room visits | NJ, USA | 2004–2007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, C.-C.; Cheng, C.-G.; Hong, Z.-T.; Chen, Y.-H.; Cheng, C.-A. The Influence of Fine Particulate Matter and Cold Weather on Emergency Room Interventions for Childhood Asthma. Life 2024, 14, 570. https://doi.org/10.3390/life14050570
Hsiao C-C, Cheng C-G, Hong Z-T, Chen Y-H, Cheng C-A. The Influence of Fine Particulate Matter and Cold Weather on Emergency Room Interventions for Childhood Asthma. Life. 2024; 14(5):570. https://doi.org/10.3390/life14050570
Chicago/Turabian StyleHsiao, Chih-Chun, Chun-Gu Cheng, Zih-Tai Hong, Yu-Hsuan Chen, and Chun-An Cheng. 2024. "The Influence of Fine Particulate Matter and Cold Weather on Emergency Room Interventions for Childhood Asthma" Life 14, no. 5: 570. https://doi.org/10.3390/life14050570
APA StyleHsiao, C. -C., Cheng, C. -G., Hong, Z. -T., Chen, Y. -H., & Cheng, C. -A. (2024). The Influence of Fine Particulate Matter and Cold Weather on Emergency Room Interventions for Childhood Asthma. Life, 14(5), 570. https://doi.org/10.3390/life14050570