Association of Metallic and Nonmetallic Elements with Fibrin Clot Properties and Ischemic Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. The Clotting/Lysis Assay
2.3. Clotting/Lysis Data Analysis
2.4. APOE Genotyping
2.5. Metabolite Assays
Metallic and Nonmetallic Element Quantification
2.6. Statistics
3. Results
3.1. Levels of Metallic and Nonmetallic Elements in Ischemic Stroke Patients and Healthy Controls
3.2. Stroke Status Affects Correlations between Serum Elements
3.3. Fibrin Clot Properties in Ischemic Stroke Patients and Healthy Controls
3.4. Age
3.5. GFR
3.6. Determinants of Fibrin CLT and Absmax in Stroke Patients and Healthy Individuals
3.6.1. Bivariate Correlations
3.6.2. Multiple Regression Analysis
3.7. Associations of Metallic/Nonmetallic Elements and Fibrin Clot Properties with Ischemic Stroke
3.7.1. Bivariate Correlations
3.7.2. Logistic Regression
3.7.3. Contribution of Individual Elements to the Risk of Ischemic Stroke
4. Discussion
Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [PubMed]
- Feigin, V.L.; Norrving, B.; Mensah, G.A. Global Burden of Stroke. Circ. Res. 2017, 120, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.D. Cardioembolic stroke: Everything has changed. Stroke Vasc. Neurol. 2018, 3, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Zabczyk, M.; Ariens, R.A.S.; Undas, A. Fibrin clot properties in cardiovascular disease: From basic mechanisms to clinical practice. Cardiovasc. Res. 2023, 119, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Boehme, A.K.; Esenwa, C.; Elkind, M.S. Stroke Risk Factors, Genetics, and Prevention. Circ. Res. 2017, 120, 472–495. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Chen, Y.; Yang, B.; Yang, J.; Wahlqvist, M.L.; Li, D. Meta-analysis of B vitamin supplementation on plasma homocysteine, cardiovascular and all-cause mortality. Clin. Nutr. 2012, 31, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Ariens, R.A. Fibrin clot structure and function: A role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol. 2011, 31, e88–e99. [Google Scholar] [CrossRef]
- Zabczyk, M.; Natorska, J.; Undas, A. Fibrin Clot Properties in Atherosclerotic Vascular Disease: From Pathophysiology to Clinical Outcomes. J. Clin. Med. 2021, 10, 2999. [Google Scholar] [CrossRef]
- Undas, A.; Podolec, P.; Zawilska, K.; Pieculewicz, M.; Jedlinski, I.; Stepien, E.; Konarska-Kuszewska, E.; Weglarz, P.; Duszynska, M.; Hanschke, E.; et al. Altered fibrin clot structure/function in patients with cryptogenic ischemic stroke. Stroke 2009, 40, 1499–1501. [Google Scholar] [CrossRef]
- Undas, A.; Slowik, A.; Wolkow, P.; Szczudlik, A.; Tracz, W. Fibrin clot properties in acute ischemic stroke: Relation to neurological deficit. Thromb. Res. 2010, 125, 357–361. [Google Scholar] [CrossRef]
- Siegerink, B.; Meltzer, M.E.; de Groot, P.G.; Algra, A.; Lisman, T.; Rosendaal, F.R. Clot lysis time and the risk of myocardial infarction and ischaemic stroke in young women; results from the RATIO case-control study. Br. J. Haematol. 2012, 156, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.M.; Cymbalista, C.M.; Spector, T.D.; Grant, P.J.; Euro, C.I. Heritability of clot formation, morphology, and lysis: The EuroCLOT study. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2783–2789. [Google Scholar] [CrossRef]
- Versieck, J. Trace elements in human body fluids and tissues. Crit. Rev. Clin. Lab. Sci. 1985, 22, 97–184. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Ramond, A.; O’Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef] [PubMed]
- Lundin, K.K.; Qadeer, Y.K.; Wang, Z.; Virani, S.; Leischik, R.; Lavie, C.J.; Strauss, M.; Krittanawong, C. Contaminant Metals and Cardiovascular Health. J. Cardiovasc. Dev. Dis. 2023, 10, 450. [Google Scholar] [CrossRef]
- Reunanen, A.; Knekt, P.; Marniemi, J.; Maki, J.; Maatela, J.; Aromaa, A. Serum calcium, magnesium, copper and zinc and risk of cardiovascular death. Eur. J. Clin. Nutr. 1996, 50, 431–437. [Google Scholar] [PubMed]
- Marniemi, J.; Alanen, E.; Impivaara, O.; Seppanen, R.; Hakala, P.; Rajala, T.; Ronnemaa, T. Dietary and serum vitamins and minerals as predictors of myocardial infarction and stroke in elderly subjects. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 188–197. [Google Scholar] [CrossRef]
- Cheek, J.; Fox, S.S.; Lehmler, H.J.; Titcomb, T.J. Environmental Nickel Exposure and Cardiovascular Disease in a Nationally Representative Sample of U.S. Adults. Expo. Health 2023, 16, 607–615. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Zhao, Q.; Du, H.; Gao, Y.; Bai, M.; Lv, J.; Guo, Y.; Li, L.; Sun, L.; et al. Urinary element profiles and associations with cardiometabolic diseases: A cross-sectional study across ten areas in China. Environ. Res. 2022, 205, 112535. [Google Scholar] [CrossRef]
- Shi, P.; Liu, S.; Xia, X.; Qian, J.; Jing, H.; Yuan, J.; Zhao, H.; Wang, F.; Wang, Y.; Wang, X.; et al. Identification of the hormetic dose-response and regulatory network of multiple metals co-exposure-related hypertension via integration of metallomics and adverse outcome pathways. Sci. Total Environ. 2022, 817, 153039. [Google Scholar] [CrossRef]
- Rodrigues, B.; Staff, I.; Fortunato, G.; McCullough, L.D. Hyponatremia in the prognosis of acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2014, 23, 850–854. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Yuan, Y.; Liu, Y.; Yu, Y.; Jia, N.; Zhou, L.; Wang, H.; Huang, S.; Zhang, Y.; Yang, H.; et al. Circulating Multiple Metals and Incident Stroke in Chinese Adults. Stroke 2019, 50, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Huang, S.; Zhang, Y.; Zhang, H.; Zhou, L.; Li, D.; Xie, C.; Lv, Z.; Guo, Y.; Ke, Y.; et al. Associations of multiple plasma metals with the risk of ischemic stroke: A case-control study. Environ. Int. 2019, 125, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Garbincius, J.F.; Elrod, J.W. Mitochondrial calcium exchange in physiology and disease. Physiol. Rev. 2022, 102, 893–992. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Colbert, G.; Clegg, D.J. Potassium Homeostasis, Chronic Kidney Disease, and the Plant-Enriched Diets. Kidney360 2020, 1, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Judge, C.; O’Donnell, M.J.; Hankey, G.J.; Rangarajan, S.; Chin, S.L.; Rao-Melacini, P.; Ferguson, J.; Smyth, A.; Xavier, D.; Lisheng, L.; et al. Urinary Sodium and Potassium, and Risk of Ischemic and Hemorrhagic Stroke (INTERSTROKE): A Case-Control Study. Am. J. Hypertens. 2021, 34, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Adebamowo, S.N.; Jimenez, M.C.; Chiuve, S.E.; Spiegelman, D.; Willett, W.C.; Rexrode, K.M. Plasma magnesium and risk of ischemic stroke among women. Stroke 2014, 45, 2881–2886. [Google Scholar] [CrossRef]
- Mattern, L.; Chen, C.; McClure, L.A.; Brockman, J.; Cushman, M.; Judd, S.; Kahe, K. Serum Zinc Levels and Incidence of Ischemic Stroke: The Reasons for Geographic and Racial Differences in Stroke Study. Stroke 2021, 52, 3953–3960. [Google Scholar] [CrossRef]
- Du, H.; Guo, T.; Ye, H.; Bao, Y.; Qiu, Z.; Sun, Y.; You, S.; Liu, Y.; Xu, Y.; Zhang, C.; et al. The association between serum phosphorus and common carotid artery intima-media thickness in ischemic stroke patients. Front. Neurol. 2023, 14, 1172488. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Klimenko, L.L.; Turna, A.A.; Budanova, M.N.; Baskakov, I.S.; Savostina, M.S.; Mazilina, A.N.; Deyev, A.I.; Skalnaya, M.G.; Tinkov, A.A. Serum trace elements are interrelated with hormonal imbalance in men with acute ischemic stroke. J. Trace Elem. Med. Biol. 2017, 43, 142–147. [Google Scholar] [CrossRef]
- Feigin, V.; Norrving, B.; Sudlow, C.L.M.; Sacco, R.L. Updated Criteria for Population-Based Stroke and Transient Ischemic Attack Incidence Studies for the 21st Century. Stroke 2018, 49, 2248–2255. [Google Scholar] [CrossRef]
- Sikora, M.; Skrzydlewski, P.; Perla-Kajan, J.; Jakubowski, H. Homocysteine thiolactone contributes to the prognostic value of fibrin clot structure/function in coronary artery disease. PLoS ONE 2022, 17, e0275956. [Google Scholar] [CrossRef] [PubMed]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetactable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Sumaya, W.; Wallentin, L.; James, S.K.; Siegbahn, A.; Gabrysch, K.; Bertilsson, M.; Himmelmann, A.; Ajjan, R.A.; Storey, R.F. Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: A PLATO substudy. Eur. Heart J. 2018, 39, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Sumaya, W.; Wallentin, L.; James, S.K.; Siegbahn, A.; Gabrysch, K.; Himmelmann, A.; Ajjan, R.A.; Storey, R.F. Impaired Fibrinolysis Predicts Adverse Outcome in Acute Coronary Syndrome Patients with Diabetes: A PLATO Sub-Study. Thromb. Haemost. 2020, 120, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Leander, K.; Blomback, M.; Wallen, H.; He, S. Impaired fibrinolytic capacity and increased fibrin formation associate with myocardial infarction. Thromb. Haemost. 2012, 107, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Cole, N.I.; Suckling, R.J.; Swift, P.A.; He, F.J.; MacGregor, G.A.; Hinton, W.; van Vlymen, J.; Hayward, N.; Jones, S.; de Lusignan, S. The association between serum sodium concentration, hypertension and primary cardiovascular events: A retrospective cohort study. J. Hum. Hypertens. 2019, 33, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.S.; Mattsson, N.; Sajadieh, A.; Wollmer, P.; Soderholm, M. Serum Potassium Is Positively Associated With Stroke and Mortality in the Large, Population-Based Malmo Preventive Project Cohort. Stroke 2017, 48, 2973–2978. [Google Scholar] [CrossRef]
- Ding, C.; Bi, C.; Lin, T.; Liu, L.; Song, Y.; Wang, B.; Wang, P.; Fang, C.; Ma, H.; Huang, X.; et al. Association between serum calcium levels and first stroke: A community-based nested case-control study. Front. Neurol. 2022, 13, 938794. [Google Scholar] [CrossRef]
- Wang, W.; Lu, D.; Shi, Y.; Wang, Y. Exploring the Neuroprotective Effects of Lithium in Ischemic Stroke: A literature review. Int. J. Med. Sci. 2024, 21, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, M.; Ji, M.; Zhang, D.; Chen, B.; Gong, W.; Li, X.; Zhou, Y.; Dong, C.; Wen, G.; et al. The neuroprotective mechanism of lithium after ischaemic stroke. Commun. Biol. 2022, 5, 105. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yu, Q.; Xu, K.; Cai, L.; Felicia, B.M.; Wang, L.; Zhang, A.; Dai, Q.; Geng, W.; Wang, J.; et al. Electroacupuncture pretreatment prevents ischemic stroke and inhibits Wnt signaling-mediated autophagy through the regulation of GSK-3beta phosphorylation. Brain Res. Bull. 2020, 158, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Peran, D.; Pukovcova, K.; Pekara, J.; Nesvadba, M.; Nedved, V.; Cmorej, P.C.; Bohm, P.; Mamova, A. Lithium intoxication in the pre-hospital care with stroke symptoms—Case report. Neuro Endocrinol. Lett. 2019, 40, 17–21. [Google Scholar] [PubMed]
- Dawson, E.B.; Frey, M.J.; Moore, T.D.; McGanity, W.J. Relationship of metal metabolism to vascular disease mortality rates in Texas. Am. J. Clin. Nutr. 1978, 31, 1188–1197. [Google Scholar] [CrossRef]
- Mao, L.; Xia, L.; Chang, J.; Liu, J.; Jiang, L.; Wu, C.; Fang, B. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater. 2017, 61, 217–232. [Google Scholar] [CrossRef]
- Lis, G.J.; Czapla-Masztafiak, J.; Kwiatek, W.M.; Gajda, M.; Jasek, E.; Jasinska, M.; Czubek, U.; Borchert, M.; Appel, K.; Nessler, J.; et al. Distribution of selected elements in calcific human aortic valves studied by microscopy combined with SR-muXRF: Influence of lipids on progression of calcification. Micron 2014, 67, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Broday, L.; Costa, M. Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. Mutat. Res. 1998, 415, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Li, X.; Wang, C.; Li, X.; Liu, J. Nickel induces mitochondrial damage in renal cells in vitro and in vivo through its effects on mitochondrial biogenesis, fusion, and fission. Chem. Biol. Interact. 2024, 394, 110975. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Wang, C.; Guo, H.; Li, X.; Liu, J. The mechanism of nickel-induced autophagy and its role in nephrotoxicity. Ecotoxicol. Environ. Saf. 2024, 273, 116150. [Google Scholar] [CrossRef]
- Su, L.; Deng, Y.; Zhang, Y.; Li, C.; Zhang, R.; Sun, Y.; Zhang, K.; Li, J.; Yao, S. Protective effects of grape seed procyanidin extract against nickel sulfate-induced apoptosis and oxidative stress in rat testes. Toxicol. Mech. Methods 2011, 21, 487–494. [Google Scholar] [CrossRef]
- Zou, L.; Su, L.; Sun, Y.; Han, A.; Chang, X.; Zhu, A.; Liu, F.; Li, J.; Sun, Y. Nickel sulfate induced apoptosis via activating ROS-dependent mitochondria and endoplasmic reticulum stress pathways in rat Leydig cells. Environ. Toxicol. 2017, 32, 1918–1926. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, J.; Yao, Z.; Zhang, H.; Wang, Z.; Lei, J.; Guo, H. The relationship between plasma nickel concentrations and type 2 diabetes mellitus risk: A protective effect within a specific range. J. Trace Elem. Med. Biol. 2024, 82, 127362. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, G.; Chen, S.; Jin, H.; Liu, X.; Zhang, L.; Zhang, Z. Hydrogen sulfide alleviates beryllium sulfate-induced ferroptosis and ferritinophagy in 16HBE cells. J. Appl. Toxicol. 2023, 43, 1169–1182. [Google Scholar] [CrossRef] [PubMed]
- Jakubowski, H.; Ziola-Frankowska, A.; Frankowski, M.; Perla-Kajan, J.; Refsum, H.; de Jager, C.A.; Smith, A.D. B Vitamins Prevent Iron-Associated Brain Atrophy and Domain-Specific Effects of Iron, Copper, Aluminum, and Silicon on Cognition in Mild Cognitive Impairment. J. Alzheimers Dis. 2021, 84, 1039–1055. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, J.; Ma, C.; Cai, Q.; Wu, S.; Hu, W.; Yang, J.; Xue, J.; Chen, J.; Liu, X. Wnt5a/Ca2+ signaling regulates silica-induced ferroptosis in mouse macrophages by altering ER stress-mediated redox balance. Toxicology 2023, 490, 153514. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; Hardcastle, A.C.; Jugdaohsingh, R.; Fraser, W.D.; Reid, D.M.; Powell, J.J. Dietary silicon interacts with oestrogen to influence bone health: Evidence from the Aberdeen Prospective Osteoporosis Screening Study. Bone 2012, 50, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Barel, A.; Calomme, M.; Timchenko, A.; De Paepe, K.; Demeester, N.; Rogiers, V.; Clarys, P.; Vanden Berghe, D. Effect of oral intake of choline-stabilized orthosilicic acid on skin, nails and hair in women with photodamaged skin. Arch. Dermatol. Res. 2005, 297, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Saraf, S.; Christopoulos, C.; Salha, I.B.; Stott, D.J.; Gorog, D.A. Impaired endogenous thrombolysis in acute coronary syndrome patients predicts cardiovascular death and nonfatal myocardial infarction. J. Am. Coll. Cardiol. 2010, 55, 2107–2115. [Google Scholar] [CrossRef]
Variable | Stroke Patients (n = 260) | Healthy Controls (n = 291) | PstrokeF | PstrokeM | ||||
---|---|---|---|---|---|---|---|---|
Women | Men | Psex | Women | Men | Psex | |||
Fibrin clot properties | ||||||||
(n = 85) | (n = 106) | (n = 173) | (n = 118) | |||||
CLT, s | 508 ± 264 | 405 ± 177 | 0.001 | 401 ± 161 | 377 ± 177 | 0.187 | 0.000 | 0.188 |
Absmax, A340 | 0.124 ± 0.75 | 0.122 ± 56 | 0.844 | 0.100 ± 0.035 | 0.104 ± 0.037 | 0.339 | 0.000 | 0.003 |
Metallic elements | ||||||||
(n = 151) | (n = 109) | (n = 173) | (n = 118) | |||||
Fe, μM | 23.1 ± 14.0 | 25.1 ± 19.4 | 0.510 | 31.4 ± 13.2 | 36.1 ± 19.4 | 0.039 | 0.000 | 0.000 |
Cu, μM | 18.7 ± 4.0 | 16.3 ± 3.6 | 0.000 | 20.3 ± 4.3 | 16.4 ± 3.6 | 0.000 | 0.001 | 0.828 |
Zn, μM | 10.7 ± 2.9 | 11.4 ± 4.0 | 0.161 | 11.9 ± 1.6 | 12.2 ± 4.0 | 0.171 | 0.000 | 0.043 |
Ni, μM | 0.28 ± 0.19 | 0.33 ± 0.70 | 0.524 | 0.62 ± 0.25 | 0.63 ± 0.70 | 0.786 | 0.000 | 0.000 |
Ca, mM | 2.32 ± 0.25 | 2.27 ± 0.18 | 0.098 | 2.53 ± 0.16 | 2.51 ± 0.18 | 0.569 | 0.000 | 0.000 |
Sr, μM | ↑0.41 ± 0.29 | ↑0.36 ± 0.21 | 0.091 | 0.31 ± 0.14 | 0.30 ± 0.21 | 0.635 | 0.000 | 0.000 |
Mg, mM | 0.83 ± 0.11 | 0.84 ± 0.09 | 0.413 | 0.86 ± 0.06 | 0.86 ± 0.09 | 0.696 | 0.001 | 0.031 |
Li, μM | 1.36 ± 1.33 | 1.43 ± 2.26 | 0.788 | 1.78 ± 1.00 | 1.60 ± 2.26 | 0.100 | 0.003 | 0.454 |
Na, mM | 132 ± 20 | 131 ± 15 | 0.588 | 159 ± 9 | 156 ± 15 | 0.010 | 0.000 | 0.000 |
K, mM | 5.03 ± 1.27 | 4.40 ± 1.59 | 0.001 | 4.86 ± 0.47 | 4.79 ± 1.59 | 0.412 | 0.094 | 0.019 |
Be, μM | 0.83 ± 0.23 | ↑0.84 ± 0.22 | 0.643 | 0.77 ± 0.34 | 0.70 ± 0.22 | 0.093 | 0.089 | 0.000 |
Al, μM | 3.98 ± 2.58 | 4.06 ± 2.70 | 0.709 | 5.05 ± 5.38 | 4.82 ± 2.70 | 0.711 | 0.042 | 0.112 |
Nonmetallic elements | ||||||||
B, μM | 51.0 ± 155.7 | 28.0 ± 76.1 | 0.127 | 27.2 ± 76.8 | 26.0 ± 76.1 | 0.896 | 0.127 | 0.896 |
P, mM | 3.83 ± 0.89 | 3.58 ± 0.64 | 0.006 | 4.00 ± 0.49 | 3.64 ± 0.64 | 0.000 | 0.065 | 0.397 |
S, mM | 28.8 ± 4.1 | 29.0 ± 3.3 | 0.594 | 28.6 ± 2.0 | 29.0 ± 3.3 | 0.082 | 0.613 | 0.967 |
Si, μM | 3.82 ± 1.04 | 3.66 ± 9.0 | 0.153 | 6.04 ± 2.49 | 5.79 ± 0.90 | 0.403 | 0.000 | 0.000 |
Other variables | ||||||||
Creatinine, μM | ↑78 ± 24 | ↑94 ± 38 | 0.000 | 64 ± 9 | 81 ± 38 | 0.000 | 0.000 | 0.000 |
GFR, mL/min/1.73 m2 | 70.5 ± 18.4 | 74.5 ± 17.6 | 0.106 | 85.6 ± 8.1 | 87.6 ± 17.6 | 0.034 | 0.000 | 0.000 |
Age, years | 71 ± 12 | 66 ± 12 | 0.000 | 53 ± 16 | 46 ± 12 | 0.000 | 0.000 | 0.000 |
Elements | Healthy Controls | Stroke Patients | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | Sex | GFR | CLT | Absmax | Age | Sex | GFR | CLT | Absmax | |
p values * | ||||||||||
Na | 0.000 (+) | 0.010 (−) | 0.006 (−) | ns | ns | ns | ns | ns | ns | 0.054 (−) |
Li | 0.000 (+) | ns | 0.024 (−) | ns | ns | ns | ns | ns | ns | ns |
Cu | 0.000 (+) | 0.000 (−) | 0.049 (−) | 0.019 (+) | ns | ns | 0.000 (−) | 0.039 (−) | ns | ns |
Be | 0.000 (+) | ns | ns | ns | ns | ns | ns | ns | 0.037 (−) | ns |
Fe | 0.011 (+) | 0.038 (+) | ns | ns | ns | ns | ns | ns | ns | ns |
Al | 0.040 (+) | ns | 0.009 (−) | 0.014 (+) | 0.029 (+) | ns | ns | ns | ns | 0.044 (−) |
Si | 0.003 (−) | ns | 0.052 (+) | ns | ns | 0.015 (+) | ns | 0.009 (−) | ns | ns |
Sr | ns | ns | 0.001 (−) | ns | ns | 0.035 (+) | ns | 0.003 (−) | ns | ns |
K | ns | ns | 0.011 (−) | 0.005 (+) | 0.023 (+) | ns | ns | ns | ns | ns |
Ca | ns | ns | ns | ns | ns | ns | ns | ns | ns | 0.002 (−) |
Mg | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Zn | ns | ns | ns | ns | ns | ns | ns | 0.047 (+) | ns | 0.007 (−) |
Ni | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
B | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
P | 0.000 (+) | 0.000 (−) | 0.049 (−) | 0.025 (+) | ns | 0.014 (−) | 0.006(−) | ns | ns | ns |
S | 0.000 (−) | ns | ns | 0.041 (−) | 0.000 (−) | 0.015 (−) | ns | ns | ns | 0.000 (−) |
Stroke Patients (n = 191) | Healthy Controls (n = 291) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | CLT | Absmax | CLT | Absmax | ||||||||||||
Pearson Correlation | Multiple Regression * | Pearson Correlation | Multiple Regression * | Pearson Correlation | Multiple Regression * | Pearson Correlation | Multiple Regression * | |||||||||
β | P | β | P | β | P | β | P | β | P | β | P | β | P | β | P | |
Metals | ||||||||||||||||
Fe | ns | −0.11 | 0.117 | |||||||||||||
Cu | 0.10 | 0.161 | ns | 0.14 | 0.019 | 0.07 | 0.230 | |||||||||
Zn | ns | −0.19 | 0.007 | −0.15 | 0.025 | −0.09 | 0.115 | ns | ||||||||
Ni | ns | ns | ns | ns | ||||||||||||
Ca | ns | 0.15 | 0.044 | −0.22 | 0.002 | −0.40 | 0.000 | ns | ns | |||||||
Sr | ns | ns | ns | ns | ||||||||||||
Mg | ns | ns | ns | ns | ||||||||||||
Li | ns | ns | ns | ns | ||||||||||||
Na | ns | −0.14 | 0.054 | ns | −0.08 | 0.157 | −0.14 | 0.003 | ||||||||
K | ns | ns | 0.23 | 0.003 | 0.17 | 0.005 | 0.10 | 0.048 | 0.13 | 0.023 | ||||||
Be | −0.15 | 0.037 | −0.22 | 0.005 | ns | 0.39 | 0.000 | −0.09 | 0.118 | −0.13 | 0.020 | ns | ||||
Al | −0.11 | 0.134 | −0.15 | 0.044 | −0.17 | 0.022 | 0.14 | 0.014 | 0.10 | 0.046 | 0.13 | 0.029 | ||||
Nonmetals | ||||||||||||||||
Si | ns | −0.10 | 0.204 | 0.12 | 0.107 | 0.23 | 0.003 | ns | ns | |||||||
B | ns | ns | ||||||||||||||
P | ns | −0.11 | 0.134 | 0.13 | 0.025 | 0.10 | 0.084 | |||||||||
S | ns | −0.26 | 0.000 | −0.12 | 0.041 | −0.22 | 0.000 | |||||||||
Fibrin clot properties | ||||||||||||||||
Fibrin Absmax | 0.29 | 0.000 | 0.32 | 0.000 | 0.55 | 0.000 | 0.50 | 0.000 | ||||||||
Fibrin CLT | 0.29 | 0.000 | 0.30 | 0.000 | 0.55 | 0.000 | 0.48 | 0.000 | ||||||||
Other variables | ||||||||||||||||
Glucose | 0.16 | 0.031 | 0.19 | 0.006 | ns | ns | 0.10 | 0.085 | ||||||||
Total cholesterol | −0.13 | 0.076 | −0.16 | 0.025 | ns | 0.18 | 0.002 | 0.22 | 0.000 | |||||||
LDL−C | ns | ns | 0.14 | 0.013 | 0.22 | 0.000 | ||||||||||
HDL−C | ns | ns | ns | ns | ||||||||||||
Triglycerides | ns | −0.14 | 0.063 | −0.14 | 0.032 | 0.11 | 0.049 | 0.14 | 0.013 | |||||||
GFR | ns | 0.17 | 0.024 | ns | ns | ns | ||||||||||
BMI | NA | NA | 0.20 | 0.000 | 0.31 | 0.000 | 0.10 | 0.048 | ||||||||
Earlier CVD | 0.16 | 0.031 | ns | 0.12 | 0.040 | ns | ||||||||||
Hypertension | ns | ns | 0.17 | 0.003 | 0.14 | 0.015 | ||||||||||
Acute myocardial infarction | ||||||||||||||||
Diabetes | ns | ns | ns | ns | ||||||||||||
Other heart disease | ns | ns | ns | 0.12 | 0.040 | |||||||||||
Age | ns | ns | ns | ns | 0.22 | 0.000 | ns | 0.33 | 0.000 | 0.25 | 0.000 | |||||
Sex | −0.23 | 0.001 | −0.24 | 0.001 | ns | ns | ns | −0.10 | 0.039 | ns | 0.10 | 0.047 | ||||
F = 6.1, 6.4 $, 7.5 #; p = 0.000, Adjust R2 = 0.21, 0.18 $, 0.18 # | F = 7.7, 4.5 $, 4.8 #; p = 0.000, Adjust R2 = 0.27, 0.09 $, 0.08 # | F = 23.9, 42.9 $; p = 0.000; Adjust R2 = 0.32, 0.30 $ | F = 36.5, 42.2 $; p = 0.000; Adjust R2 = 0.38, 0.36 $ |
Variable | Bivariate Correlations | Logistic Regression * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |||||||
β | P | B | P | B | P | B | P | B | P | |
Li | −0.09 | 0.032 | 0.09 | 0.015; 0.017 $ | 0.12 | 0.068; 0.018 # | ||||
Na | −0.69 | 0.000 | −0.06 | 0.000 | −0.09 | 0.000 | ||||
K | −0.15 | 0.000 | ns | −0.03 | 0.007; 0.151 # | |||||
Ca | −0.50 | 0.000 | −0.09; −0.12 $ | 0.059; 0.010 $ | −0.17 | 0.027 | ||||
Sr | 0.19 | 0.000 | 0.03 | 0.027; 0.021 $ | 0.05 | 0.033 | ||||
Ni | −0.31 | 0.000 | −0.01 | 0.042; 0.022 $ | −0.02 | 0.001 | ||||
Be | 0.15 | 0.000 | ns | 0.32 | 0.035 | |||||
Al | −0.11 | 0.008 | ns | −0.01 | 0.009; 0.091 # | |||||
Mg | −0.15 | 0.000 | ns | ns | ||||||
Fe | −0.25 | 0.000 | ns | ns | ||||||
Cu | −0.17 | 0.000 | ns | ns | ||||||
Zn | −0.16 | 0.000 | ns | ns | ||||||
Si | −0.47 | 0.000 | 0.00 | 0.006; 0.004 $ | 0.00 | 0.022 | −0.01 | 0.000 | ||
B | 0.06 | 0.187 | 0.00 | 0.048; 0.098 $ | 0.00 | 0.023 | ns | |||
P | −0.12 | 0.004 | ns | ns | ns | |||||
S | 0.03 | 0.529 | ns | ns | ns | |||||
Fibrin CLT | 0.15 | 0.001 | ns | ns | ns | ns | ||||
Fibrin Absmax | 0.21 | 0.000 | ns | ns | 7.06 | 0.033 | 9.61 | 0.026 | ||
Glucose | 0.24 | 0.000 | ns | 0.14 | 0.130 | ns | ||||
LDL−C | −0.19 | 0.000 | −0.02 | 0.048 | −0.01 | 0.008 | −0.01 | 0.015 | ||
HDL−C | −0.28 | 0.000 | −0.03 | 0.001 | −0.01 | 0.123 | −0.01 | 0.030 | ||
TG | 0.12 | 0.006 | ns | ns | 0.01 | 0.079 | ||||
APOE112 | −0.00 | 0.456 | 1.94 | 0.005 | ns | ns | ||||
GFR | −0.44 | 0.000 | −0.11 | 0.006 | −0.03 | 0.006 | −0.06 | 0.000 | ||
Early CAD | 0.47 | 0.000 | 3.49 | 0.008 | 1.30 | 0.029 | 0.94 | 0.176 | ||
Early MI | 0.19 | 0.000 | 2.51 | 0.075 | ns | ns | ||||
Hypertension | 0.51 | 0.000 | 1.54 | 0.034 | 1.05 | 0.001 | 1.17 | 0.002 | ||
Diabetes | 0.31 | 0.000 | ns | ns | ns | |||||
Other heart disease | 0.28 | 0.000 | 4.07 | 0.000 | 0.68 | 0.137 | 1.05 | 0.052 | ||
Age | 0.52 | 0.000 | 0.11 | 0.000 | 0.08 | 0.012 | 0.06 | 0.000 | 0.07 | 0.000 |
Sex | 0.16 | 0.000 | 0.97 | 0.036; 0.051 $ | ns | 0.82 | 0.010 | 0.61 | 0.111 | |
−2 log likelihood = 194.9; Cox and Snell R2 = 0.61; Nagelkerke R2 = 0.82; % Correct 91.0 | −2 log likelihood = 97.6; Cox and Snell R2 = 0.67; Nagelkerke R2 = 0.91; % Correct 96.0 | −2 log likelihood = 339.1; Cox and Snell R2 = 0.44; Nagelkerke R2 = 0.60; % Correct 84.3 | −2 log likelihood = 241.0; Cox and Snell R2 = 0.55; Nagelkerke R2 = 0.75; % Correct 88.3 |
Variable | Logistic Regression * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 5 | Model 6, -Li, -Na, -Ca, -Al | Model 7, +Li | Model 8, +Na | Model 9, +Ca | Model 10, +Al | |||||||
β | P | B | P | B | P | B | P | B | P | B | P | |
Li | 0.12 | 0.068 | −0.05 | 0.141 | ||||||||
Na | −0.09 | 0.000 | −0.08 | 0.000 | ||||||||
K | −0.03 | 0.007 | −0.02 | 0.002 | −0.02 | 0.003 | ns | ns | −0.02 | 0.016 | ||
Ca | −0.17 | 0.027 | −0.34 | 0.000 | ||||||||
Sr | 0.05 | 0.033 | 0.04 | 0.019 | 0.04 | 0.013 | 0.04 | 0.027 | 0.05 | 0.006 | 0.03 | 0.031 |
Ni | −0.02 | 0.001 | −0.02 | 0.001 | −0.02 | 0.001 | −0.02 | 0.001 | −0.02 | 0.001 | −0.02 | 0.001 |
Be | 0.32 | 0.035 | 0.25 | 0.007 | 0.25 | 0.007 | 0.40 | 0.000 | 0.34 | 0.001 | ||
Al | −0.01 | 0.009 | −0.01 | 0.008 | ||||||||
Mg | ns | ns | ns | ns | ns | ns | ||||||
Fe | ns | 0.00 | 0.033 | 0.00 | 0.034 | 0.00 | 0.046 | ns | ns | |||
Cu | ns | ns | ns | ns | ns | ns | ||||||
Zn | ns | ns | ns | ns | ns | ns | ||||||
Si | 0.00 | 0.022 | −0.01 | 0.000 | −0.01 | 0.000 | 0.00 | 0.001 | 0.00 | 0.000 | −0.01 | 0.000 |
B | 0.00 | 0.023 | ns | ns | 0.00 | 0.026 | ns | ns | ||||
P | ns | ns | ns | ns | ns | ns | ||||||
S | ns | ns | ns | ns | 0.02 | 0.000 | ns | |||||
Fibrin CLT | ns | ns | ns | ns | ns | ns | ||||||
Fibrin Absmax | ns | 10.72 | 0.037 | 8.89 | 0.094 | −1.85 | 0.796 | 4.14 | 0.489 | 8.30 | 0.110 | |
−2 log likelihood = 97.8; Cox and Snell R2 = 0.67; Nagelkerke R2 = 0.91; % Correct 96.0 | −2 log likelihood = 199.2; Cox and Snell R2 = 0.59; Nagelkerke R2 = 0.80; % Correct 90.8 | −2 log likelihood = 196.8; Cox and Snell R2 = 0.59; Nagelkerke R2 = 0.81; % Correct 90.8 | −2 log likelihood = 130.3; Cox and Snell R2 = 0.65; Nagelkerke R2 = 0.88; % Correct 95.2 | −2 log likelihood = 154.6; Cox and Snell R2 = 0.63; Nagelkerke R2 = 0.86; % Correct 93.9 | −2 log likelihood = 197.5; Cox and Snell R2 = 0.59; Nagelkerke R2 = 0.81; % Correct 91. |
Cox and Snell | Nagelkerke | Avg Risk, % | |||
---|---|---|---|---|---|
R2 | Stroke Risk *, % | R2 | Stroke Risk *, % | ||
Model 1 | 63 | 84 | |||
-Ni | 63 | <1 | 83 | 1 | <1 |
-Ca | 63 | <1 | 84 | <1 | <1 |
-Li | 63 | <1 | 84 | <1 | <1 |
-Na | 57 | 6 | 76 | 8 | 7 |
-Sr | 62 | 1 | 83 | 1 | 1 |
-metals | 49 | 14 | 66 | 18 | 16 |
-B | 63 | <1 | 84 | <1 | <1 |
-Si | 62 | 1 | 82 | 2 | 1.5 |
-nonmetals | 61 | 2 | 82 | 2 | 2 |
Model 2 | 67 | 90 | |||
-Ni | 66 | 1 | 90 | <1 | <1 |
-Ca | 66 | 1 | 90 | <1 | <1 |
-Li | 66 | 1 | 90 | <1 | <1 |
-Na | 62 | 3 | 85 | 5 | 4 |
-K | 66 | 1 | 90 | <1 | <1 |
-Be | 66 | 1 | 90 | <1 | <1 |
-Al | 66 | 1 | 89 | 1 | 1 |
-Sr | 66 | 1 | 89 | 1 | 1 |
-metals | 55 | 12 | 75 | 15 | 13.5 |
-B | 66 | 1 | 90 | <1 | <1 |
-Si | 65 | 2 | 89 | 1 | 1.5 |
-nonmetals | 65 | 2 | 89 | 1 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubowski, H.; Sikora, M.; Bretes, E.; Perła-Kaján, J.; Utyro, O.; Wojtasz, I.; Kaźmierski, R.; Frankowski, M.; Zioła-Frankowska, A. Association of Metallic and Nonmetallic Elements with Fibrin Clot Properties and Ischemic Stroke. Life 2024, 14, 634. https://doi.org/10.3390/life14050634
Jakubowski H, Sikora M, Bretes E, Perła-Kaján J, Utyro O, Wojtasz I, Kaźmierski R, Frankowski M, Zioła-Frankowska A. Association of Metallic and Nonmetallic Elements with Fibrin Clot Properties and Ischemic Stroke. Life. 2024; 14(5):634. https://doi.org/10.3390/life14050634
Chicago/Turabian StyleJakubowski, Hieronim, Marta Sikora, Ewa Bretes, Joanna Perła-Kaján, Olga Utyro, Izabela Wojtasz, Radosław Kaźmierski, Marcin Frankowski, and Anetta Zioła-Frankowska. 2024. "Association of Metallic and Nonmetallic Elements with Fibrin Clot Properties and Ischemic Stroke" Life 14, no. 5: 634. https://doi.org/10.3390/life14050634
APA StyleJakubowski, H., Sikora, M., Bretes, E., Perła-Kaján, J., Utyro, O., Wojtasz, I., Kaźmierski, R., Frankowski, M., & Zioła-Frankowska, A. (2024). Association of Metallic and Nonmetallic Elements with Fibrin Clot Properties and Ischemic Stroke. Life, 14(5), 634. https://doi.org/10.3390/life14050634