Unveiling Drought-Resilient Latin American Popcorn Lines through Agronomic and Physiological Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genotypes
2.2. Experimental Conditions
2.3. Agronomic and Physiological Traits
2.4. Statistical Analysis
3. Results
3.1. Analysis of Variance, Mean Estimates, and Impact of Water Limitation on Morpho Agronomic Traits
3.2. Study of Genotypic Correlations between Agronomic Traits
3.3. Leaf Indices at Different Phenological Stages, from Pre-Anthesis to Physiological Maturity
4. Discussion
4.1. Impact of Soil Water Restriction on Agronomic Traits and Grain Size
4.2. Implications of Genetic Associations between Traits
4.3. Leaf Senescence Dynamics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The Effects of Climate Extremes on Global Agricultural Yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Abberton, M.; Batley, J.; Bentley, A.; Bryant, J.; Cai, H.; Cockram, J.; Costa de Oliveira, A.; Cseke, L.J.; Dempewolf, H.; De Pace, C.; et al. Global Agricultural Intensification during Climate Change: A Role for Genomics. Plant Biotechnol. J. 2016, 14, 1095–1098. [Google Scholar] [CrossRef]
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Shabani, F. Global Alterations in Areas of Suitability for Maize Production from Climate Change and Using a Mechanistic Species Distribution Model (CLIMEX). Sci. Rep. 2017, 7, 5910. [Google Scholar] [CrossRef] [PubMed]
- Leite, J.T.; Amaral Junior, A.T.D.; Kamphorst, S.H.; de Lima, V.J.; dos Santos Junior, D.R.; Schmitt, K.F.M.; de Souza, Y.P.; Santos, T. de O.; Bispo, R.B.; Mafra, G.S.; et al. Water Use Efficiency in Popcorn (Zea mays L. Var. Everta): Which Physiological Traits Would Be Useful for Breeding? Plants 2021, 10, 1450. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. The Physical Science Basis; Cambridge University Press: Cambrigde, UK, 2019. [Google Scholar]
- Knutti, R.; Rogelj, J.; Sedlácek, J.; Fischer, E.M. A Scientific Critique of the Two-Degree Climate Change Target. Nat. Geosci. 2016, 9, 13–18. [Google Scholar] [CrossRef]
- Simova-Stoilova, L.; Vassileva, V.; Feller, U. Selection and Breeding of Suitable Crop Genotypes for Drought and Heat Periods in a Changing Climate: Which Morphological and Physiological Properties Should Be Considered? Agriculture 2016, 6, 26. [Google Scholar] [CrossRef]
- Lunduka, R.W.; Mateva, K.I.; Magorokosho, C.; Manjeru, P. Impact of Adoption of Drought-Tolerant Maize Varieties on Total Maize Production in South Eastern Zimbabwe. Clim. Dev. 2019, 11, 35–46. [Google Scholar] [CrossRef]
- Fisher, M.; Abate, T.; Lunduka, R.W.; Asnake, W.; Alemayehu, Y.; Madulu, R.B. Drought Tolerant Maize for Farmer Adaptation to Drought in Sub-Saharan Africa: Determinants of Adoption in Eastern and Southern Africa. Clim. Change 2015, 133, 283–299. [Google Scholar] [CrossRef]
- Aslam, M.; Maqbool, M.A.; Cengiz, R. Drought Stress in Maize (Zea mays L.); Springer: Cham, Switzerland, 2015; pp. 5–17. [Google Scholar] [CrossRef]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of Water Deficit Stress in Maize: Phenology and Yield Components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; Amaral Júnior, A.T.D.; de Lima, V.J.; Guimarães, L.J.M.; Schmitt, K.F.M.; Leite, J.T.; Santos, P.H.A.D.; Chaves, M.M.; Mafra, G.S.; dos Santos Junior, D.R.; et al. Can Genetic Progress for Drought Tolerance in Popcorn Be Achieved by Indirect Selection? Agronomy 2019, 9, 792. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; He, Q.; Zhou, H. Stomatal Limitations to Photosynthesis and Their Critical Water Conditions in Different Growth Stages of Maize under Water Stress. Agric. Water Manag. 2020, 241, 106330. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting Maize Production to Climate Change in Sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef]
- Wang, C.; Linderholm, H.W.; Song, Y.; Wang, F.; Liu, Y.; Tian, J.; Xu, J.; Song, Y.; Ren, G. Impacts of Drought on Maize and Soybean Production in Northeast China during the Past Five Decades. Int. J. Environ. Res. Public Health 2020, 17, 2459. [Google Scholar] [CrossRef] [PubMed]
- Araus, J.L.; Kefauver, S.C. Breeding to Adapt Agriculture to Climate Change: Affordable Phenotyping Solutions. Curr. Opin. Plant Biol. 2018, 45, 237–247. [Google Scholar] [CrossRef]
- Kaur, H.; Kohli, S.K.; Khanna, K.; Bhardwaj, R. Scrutinizing the Impact of Water Deficit in Plants: Transcriptional Regulation, Signaling, Photosynthetic Efficacy, and Management. Physiol. Plant 2021, 172, 935–962. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, K.F.M.; do Amaral Junior, A.T.; Kamphorst, S.H.; Pinto, V.B.; de Lima, V.J.; de Oliveira, U.A.; Viana, F.N.; Leite, J.T.; Gomes, L.P.; de Souza Silva, J.G.; et al. Decoding the Effects of Drought Stress on Popcorn (Zea Mays Var. Everta) Flowering Combining Proteomics and Physiological Analysis. Plant Physiol. Biochem. 2024, 208, 108444. [Google Scholar] [CrossRef]
- Kosová, K.; Vítámvás, P.; Prášil, I.T.; Renaut, J. Plant Proteome Changes under Abiotic Stress—Contribution of Proteomics Studies to Understanding Plant Stress Response. J. Proteom. 2011, 74, 1301–1322. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Ahsan, M.; Ali, Q.; Kanwal, N. Phenotypic Stability of Zea Mays Grain Yield and Its Attributing Traits under Drought Stress. Front. Plant Sci. 2017, 8, 269808. [Google Scholar] [CrossRef]
- Xu, Z.; Lai, X.; Ren, Y.; Yang, H.; Wang, H.; Wang, C.; Xia, J.; Wang, Z.; Yang, Z.; Geng, H.; et al. Impact of Drought Stress on Yield-Related Agronomic Traits of Different Genotypes in Spring Wheat. Agronomy 2023, 13, 2968. [Google Scholar] [CrossRef]
- Balbaa, M.G.; Osman, H.T.; Kandil, E.E.; Javed, T.; Lamlom, S.F.; Ali, H.M.; Kalaji, H.M.; Wróbel, J.; Telesiñski, A.; Brysiewicz, A.; et al. Determination of Morpho-Physiological and Yield Traits of Maize Inbred Lines (Zea mays L.) under Optimal and Drought Stress Conditions. Front. Plant Sci. 2022, 13, 959203. [Google Scholar] [CrossRef]
- Shirvani, H.; Mehrabi, A.A.; Farshadfar, M.; Safari, H.; Arminian, A.; Fatehi, F.; Pouraboughadareh, A.; Poczai, P. Investigation of the Morphological, Physiological, Biochemical, and Catabolic Characteristics and Gene Expression under Drought Stress in Tolerant and Sensitive Genotypes of Wild Barley [Hordeum Vulgare Subsp. Spontaneum (K. Koch) Asch. & Graebn.]. BMC Plant Biol. 2024, 24, 214. [Google Scholar] [CrossRef] [PubMed]
- Kamphorst, S.H.; de Lima, V.J.; Schimitt, K.F.M.; Leite, J.T.; Azeredo, V.C.; Pena, G.F.; Santos, P.H.A.D.; Júnior, D.R.S.; Júnior, S.B.D.S.; Bispo, R.B.; et al. Water Stress Adaptation of Popcorn Roots and Association with Agronomic Traits. Genet. Mol. Res. 2018, 17, gmr18078. [Google Scholar] [CrossRef]
- de Lima, V.J.; Amaral Júnior, A.T.D.; Kamphorst, S.H.; dos Santos, A.; Schmidt, K.F.M.; Azeredo, V.C.; Leite, J.T.; dos Santos Junior, D.R.; Santos, T.D.O.; Bispo, R.B.; et al. UENF WS01: Popcorn Hybrid with Water Use Efficiency for the State of Rio de Janeiro. Crop Breed. Appl. Biotechnol. 2021, 21, e375821411. [Google Scholar] [CrossRef]
- Zagatto Paterniani, M.E.A.G.; Bernini, C.S.; Guimarães, P.D.S.; Rodrigues, C.S. Estratégias de Melhoramento Para Tolerância à Seca Em Germoplasma de Milho Tropical. Singul. Meio Ambiente E Agrárias 2019, 1, 19–24. [Google Scholar] [CrossRef]
- Teixeira, F.F.; Gomide, R.L.; de Albuquerque, P.E.P.; de Andrade, C.L.T.; Leite, C.E.P.; Parentoni, S.N.; Guimarães, P.E.D.O.; Guimarães, L.J.M.; Silva, A.R.; Bastos, E.A.; et al. Evaluation of Maize Core Collection for Drought Tolerance. Crop Breed. Appl. Biotechnol. 2010, 10, 312–320. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; do Amaral Júnior, A.T.; Vergara-Diaz, O.; Gracia-Romero, A.; Fernandez-Gallego, J.A.; Chang-Espino, M.C.; Buchaillot, M.L.; Rezzouk, F.Z.; de Lima, V.J.; Serret, M.D.; et al. Heterosis and Reciprocal Effects for Physiological and Morphological Traits of Popcorn Plants under Different Water Conditions. Agric. Water Manag. 2022, 261, 107371. [Google Scholar] [CrossRef]
- Bispo, R.B.; Junior, A.T.D.A.; Kamphorst, S.H.; de Lima, V.J.; Pena, G.F.; Santos, T.D.O.; Leite, J.T.; Viana, F.N.; Júnior, D.R.D.S.; Lamêgo, D.L.; et al. Assessing Combining Abilities of Popcorn Inbred Lines for Agronomic and Root Traits under Contrasting Water Conditions: Towards Developing Drought-Tolerant Genotypes. Stresses 2023, 3, 586–604. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; de Lima, V.J.; Júnior, A.T.D.A.; Schmitt, K.F.M.; Leite, J.T.; Carvalho, C.M.; Silva, R.M.R.; Xavier, K.B.; Fereira, F.R.A.; Santos, P.H.A.D.; et al. Popcorn Breeding for Water-Stress Tolerance or for Agronomic Water-Use Efficiency? Genet. Mol. Res. 2018, 17, gmr18184. [Google Scholar] [CrossRef]
- Carvalho, C.M.; Khan, S.; Teixeira do Amaral Junior, A.; de Lima, V.J.; de Souza Silva, J.G.; Catarino Fuly, L.M.; Leite, J.T.; dos Santos Junior, D.R.; Viana, F.N.; de Souza, R.; et al. Early Selection for Drought Tolerance in Popcorn Based on Gene Effects Estimated in Seedlings. Front Plant Sci 2023, 14, 1203972. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; do Amaral Junior, A.T.; de Lima, V.J.; Carena, M.J.; Azeredo, V.C.; Mafra, G.S.; Santos, P.H.A.D.; Leite, J.T.; Schmitt, K.F.M.; dos Santos Junior, D.R.; et al. Driving Sustainable Popcorn Breeding for Drought Tolerance in Brazil. Front. Plant Sci. 2021, 12, 732285. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; do Amaral Júnior, A.T.; de Lima, V.J.; Santos, P.H.A.D.; Rodrigues, W.P.; Vivas, J.M.S.; Gonçalves, G.M.B.; Schmitt, K.F.M.; Leite, J.T.; Vivas, M.; et al. Comparison of Selection Traits for Effective Popcorn (Zea mays L. Var. Everta) Breeding Under Water Limiting Conditions. Front. Plant Sci. 2020, 11, 575907. [Google Scholar] [CrossRef] [PubMed]
- Viana, F.N.; Chaves, M.M.; Kamphorst, S.H.; do Amaral Junior, A.T.; de Lima, V.J.; Leite, J.T.; Schmidt, K.F.M.; de Oliveira, U.A.; Lamego, D.L.; Pereira, J.L.; et al. Heritability of Morphophysiological Traits in Popcorn for Drought Tolerance and Their Use as Breeding Indicators of Superior Genotypes. Agronomy 2022, 12, 1517. [Google Scholar] [CrossRef]
- Leite, J.T.; do Amaral Junior, A.T.; Kamphorst, S.H.; de Lima, V.J.; dos Santos Junior, D.R.; Alves, U.O.; Azeredo, V.C.; Pereira, J.L.; Bispo, R.B.; Schmidt, K.F.M.; et al. All Are in a Drought, but Some Stand Out: Multivariate Analysis in the Selection of Agronomic Efficient Popcorn Genotypes. Plants 2022, 11, 2275. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.D.O.; do Amaral Junior, A.T.; Bispo, R.B.; de Lima, V.J.; Kamphorst, S.H.; Leite, J.T.; dos Santos Júnior, D.R.; Santos, P.H.A.D.; de Oliveira, U.A.; Schmitt, K.F.M.; et al. Phenotyping Latin American Open-Pollinated Varieties of Popcorn for Environments with Low Water Availability. Plants 2021, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Mode, C.J.; Robinson, H.F. Pleiotropism and the Genetic Variance and Covariance. Biometrics 1959, 15, 518–537. [Google Scholar] [CrossRef]
- R Core Team. R: Integrated Development for R; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Schwartz, M. Gplots: Various R Programming Tools for Plotting Data. 2016. Available online: https://cran.r-project.org/web/packages/gplots/index.html (accessed on 2 February 2024).
- Cairns, J.E.; Sanchez, C.; Vargas, M.; Ordoñez, R.; Araus, J.L. Dissecting Maize Productivity: Ideotypes Associated with Grain Yield under Drought Stress and Well-Watered Conditions. J. Integr. Plant Biol. 2012, 54, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fountain, J.C.; Ji, P.; Ni, X.; Chen, S.; Lee, R.D.; Kemerait, R.C.; Guo, B. Deciphering Drought-Induced Metabolic Responses and Regulation in Developing Maize Kernels. Plant Biotechnol. J. 2018, 16, 1616–1628. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, J. Grain Filling of Cereals under Soil Drying. New Phytol. 2006, 169, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef]
- Yang, H.; Gu, X.; Ding, M.; Lu, W.; Lu, D. Activities of Starch Synthetic Enzymes and Contents of Endogenous Hormones in Waxy Maize Grains Subjected to Post-Silking Water Deficit. Sci. Rep. 2019, 9, 7059. [Google Scholar] [CrossRef]
- Zinselmeier, S.A.; Lauer, M.J.; Boyer, J.S. Reversing Drought-Induced Losses in Grain Yield: Sucrose Maintains Embryo Growth in Maize. Crop Sci. 1995, 35, 1390. [Google Scholar] [CrossRef]
- Maazou, A.-R.S.; Tu, J.; Qiu, J.; Liu, Z. Breeding for Drought Tolerance in Maize (Zea mays L.). Am. J. Plant Sci. 2016, 07, 1858–1870. [Google Scholar] [CrossRef]
- de Lima, V.J.; do Amaral Júnior, A.T.; Kamphorst, S.H.; Bispo, R.B.; Leite, J.T.; Santos, T.D.O.; Schmitt, K.F.M.; Chaves, M.M.; de Oliveira, U.A.; Santos, P.H.A.D.; et al. Combined Dominance and Additive Gene Effects in Trait Inheritance of Drought-Stressed and Full Irrigated Popcorn. Agronomy 2019, 9, 782. [Google Scholar] [CrossRef]
- da Silva, W.J.; Vidal, B.C.; Martins, M.E.Q.; Vargas, H.; Pereira, C.; Zerbetto, M.; Miranda, L.C.M. What Makes Popcorn Pop. Nature 1993, 362, 417. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Carena, M.J.; Miranda Filho, J.B. Quantitative Genetics in Maize Breeding; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-0765-3. [Google Scholar]
- Cruz, C.D.C.D.; Regazzi, A.J.; Carneiro, P.C.S.P.C.S.; Regazzi, I.A.J.; Carneiro, P.C.S.P.C.S. Modelos Biométricos Aplicados Ao Melhoramento Genético; UFV: Viçosa, Brazil, 2012; Volume 1, ISBN 9788572694339. [Google Scholar]
- Cabral, P.D.S.; do Amaral Júnior, A.T.; Freitas, I.L.D.J.; Ribeiro, R.M.; Silva, T.R.D.C. Cause and Effect of Quantitative Characteristics on Grain Expansion Capacity in Popcorn. Rev. Ciência Agronômica 2016, 47, 108–117. [Google Scholar] [CrossRef]
- Broccoli, A.M.; Burak, R. Effect of Genotype x Environment Interactions in Popcorn Maize Yield and Grain Quality. Span. J. Agric. Res. 2004, 2, 85. [Google Scholar] [CrossRef]
- Gregersen, P.L.; Holm, P.B.; Krupinska, K. Leaf Senescence and Nutrient Remobilisation in Barley and Wheat. Plant Biol. 2008, 10, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Chalker-Scott, L. Environmental Significance of Anthocyanins in Plant Stress Responses. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Steyn, W.J.; Wand, S.J.E.; Holcroft, D.M.; Jacobs, G. Anthocyanins in Vegetative Tissues: A Proposed Unified Function in Photoprotection. New Phytol. 2002, 155, 349–361. [Google Scholar] [CrossRef]
- Combe, L.; Escobar-Gutiérrez, A.J. Sénescence d’un Pied de Maïs: Évolution de La Floraison à La Récolte. Botany 2009, 87, 1036–1053. [Google Scholar] [CrossRef]
- De Castro, F.A.; Campostrini, E.; Netto, A.T.; De Menezes De Assis Gomes, M.; Ferraz, T.M.; Glenn, D.M. Portable Chlorophyll Meter (PCM-502) Values Are Related to Total Chlorophyll Concentration and Photosynthetic Capacity in Papaya (Carica papaya L.). Theor. Exp. Plant Physiol. 2014, 26, 201–210. [Google Scholar] [CrossRef]
Days after Sowing | Rainfall (mm) | Amount of Water (mm) | |||
---|---|---|---|---|---|
WW | WS | ||||
Irrigation Applied (mm) | Total | Irrigation Applied (mm) | Total | ||
1 | 0.00 | 2.65 | 2.65 | 2.53 | 2.53 |
7 | 2.00 | 4.53 | 6.53 | 4.41 | 6.41 |
14 | 6.20 | 27.07 | 33.27 | 20.24 | 26.44 |
21 | 24.60 | 3.70 | 28.30 | 3.55 | 28.15 |
28 | 12.60 | 3.88 | 16.48 | 1.01 | 13.61 |
35 | 30.00 | 7.01 | 37.01 | 4.33 | 34.33 |
42 | 0.60 | 8.06 | 8.66 | 10.82 | 11.42 |
49 (CODE 61, state 6, BBCH Scale) | 0.60 | 5.38 | 5.98 | 5.43 | 6.03 |
56 | 5.40 | 4.68 | 10.08 | 0.00 | 5.40 |
63 | 1.60 | 13.71 | 15.31 | 0.00 | 1.60 |
70 | 2.20 | 15.00 | 17.20 | 0.00 | 2.20 |
77 | 8.20 | 5.48 | 13.68 | 0.00 | 8.20 |
84 | 1.20 | 7.29 | 8.49 | 0.00 | 1.20 |
91 | 0.40 | 7.66 | 8.06 | 0.00 | 0.20 |
98 | 0.80 | 15.06 | 15.86 | 0.00 | 0.80 |
105 | 20.40 | 2.42 | 22.82 | 0.00 | 20.40 |
112 | 0.20 | 4.26 | 4.46 | 0.00 | 0.20 |
119 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 117.00 | 137.84 | 254.84 | 52.31 | 169.31 |
Traits | WC | MS | Mean + Standard Deviations | CVe (%) | Joint Analyses | ||
---|---|---|---|---|---|---|---|
Genotype (G) | G | WC | G * WC | ||||
(DF = 42) | |||||||
AEL | WW | 7.09 ** | 11.09 ± 1.25 | 11.27 | ** | ** | ** |
WS | 5.38 ** | 9.37 ± 1.39 | 14.83 | ||||
AED | WW | 14.71 ** | 27.90 ± 1.54 | 5.52 | ** | ** | ** |
WS | 28.37 ** | 24.99 ± 1.71 | 6.84 | ||||
NGR | WW | 42.96 ** | 22.86 ± 3.01 | 13.17 | ** | ** | ** |
WS | 25.92 ** | 18.73 ± 3.44 | 18.37 | ||||
NRE | WW | 5.30 ** | 13.14 ± 1.22 | 9.28 | ** | ** | ** |
WS | 7.50 ** | 11.66 ± 1.22 | 10.46 | ||||
100 W | WW | 8.06 ** | 10.73 ± 1.29 | 11.67 | ** | ** | * |
WS | 8.79 ** | 9.32 ± 1.43 | 16.51 | ||||
GY | WW | 910,769.10 ** | 1560.43 ± 266.23 | 16.74 | ** | ** | ** |
WS | 150,730.26 ** | 420.03 ± 102.59 | 26.46 | ||||
EC | WW | 64.50 ** | 21.73 ± 1.50 | 6.90 | ** | ** | ** |
WS | 69.87 ** | 16.68 ± 1.64 | 9.83 | ||||
VP | WW | 541.98 ** | 33.58 ± 6.37 | 18.97 | ** | ** | ** |
WS | 78.03 ** | 7.67 ± 4.76 | 62.06 | ||||
GL | WW | 1.28 ** | 7.19 ± 0.52 | 7.23 | ** | ** | ** |
WS | 1.01 ** | 6.80 ± 0.33 | 4.85 | ||||
GW | WW | 0.72 ** | 5.73 ± 0.31 | 5.41 | ** | ** | ** |
WS | 0.59 ** | 5.49 ± 0.21 | 3.82 | ||||
GT | WW | 0.59 ** | 4.34 ± 0.26 | 5.75 | ** | ns | ** |
WS | 0.49 ** | 4.29 ± 0.26 | 5.99 | ||||
CCI | WW | 0.005 ** | 0.34 ± 0.03 | 8.82 | ** | * | ** |
WS | 0.004 ** | 0.35 ± 0.03 | 8.57 | ||||
TWR | WW | 0.020 ** | 0.77 ± 0.06 | 7.79 | ** | * | ** |
WS | 0.014 ** | 0.79 ± 0.05 | 6.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, U.A.; do Amaral Junior, A.T.; Leite, J.T.; Kamphorst, S.H.; de Lima, V.J.; Bispo, R.B.; Ribeiro, R.M.; Viana, F.N.; Lamego, D.L.; Carvalho, C.M.; et al. Unveiling Drought-Resilient Latin American Popcorn Lines through Agronomic and Physiological Evaluation. Life 2024, 14, 743. https://doi.org/10.3390/life14060743
de Oliveira UA, do Amaral Junior AT, Leite JT, Kamphorst SH, de Lima VJ, Bispo RB, Ribeiro RM, Viana FN, Lamego DL, Carvalho CM, et al. Unveiling Drought-Resilient Latin American Popcorn Lines through Agronomic and Physiological Evaluation. Life. 2024; 14(6):743. https://doi.org/10.3390/life14060743
Chicago/Turabian Stylede Oliveira, Uéliton Alves, Antônio Teixeira do Amaral Junior, Jhean Torres Leite, Samuel Henrique Kamphorst, Valter Jário de Lima, Rosimeire Barboza Bispo, Rodrigo Moreira Ribeiro, Flávia Nicácio Viana, Danielle Leal Lamego, Carolina Macedo Carvalho, and et al. 2024. "Unveiling Drought-Resilient Latin American Popcorn Lines through Agronomic and Physiological Evaluation" Life 14, no. 6: 743. https://doi.org/10.3390/life14060743
APA Stylede Oliveira, U. A., do Amaral Junior, A. T., Leite, J. T., Kamphorst, S. H., de Lima, V. J., Bispo, R. B., Ribeiro, R. M., Viana, F. N., Lamego, D. L., Carvalho, C. M., Simão, B. R., de Oliveira Santos, T., Gonçalves, G. R., & Campostrini, E. (2024). Unveiling Drought-Resilient Latin American Popcorn Lines through Agronomic and Physiological Evaluation. Life, 14(6), 743. https://doi.org/10.3390/life14060743