Advancements in Trauma-Induced Acute Kidney Injury: Diagnostic and Therapeutic Innovations
Abstract
:1. Introduction
2. Epidemiology, Risk Factors, and Predictive Measures
3. Renal Diagnostic Approaches in Trauma Patients
3.1. Biomarkers
3.2. Diagnostic Imaging
3.2.1. Direct Kidney Trauma
3.2.2. Trauma-Induced Kidney Injury
4. Strategies for Mitigating AKI Impact in Trauma Management
5. Holistic Trauma Care Dynamics
5.1. Team-Based Precision: A Multidisciplinary Approach to Trauma Care
5.2. Infusing AKI Management into Comprehensive Trauma Protocols
- -
- Standardized Protocols: Implementing standardized protocols for AKI risk assessment, early detection, and management. This includes routine monitoring of renal function markers, such as serum creatinine and urine output, coupled with risk stratification based on injury severity and comorbidities [43];
- -
- -
- Evidence-Based Interventions: When indicated, incorporate evidence-based interventions for managing established AKI, including renal replacement therapy. Timely initiation of appropriate interventions can mitigate the progression of AKI, improve renal recovery, and ultimately enhance patient outcomes [53,54];
- -
- Education and Quality Improvement: Ensuring adherence to AKI management protocols through ongoing education and quality improvement initiatives. This includes regular training sessions, performance feedback, and continuous evaluation of protocol effectiveness and adherence [66].
6. Frontiers in Trauma Research
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Perkins, Z.B.; Captur, G.; Bird, R.; Gleeson, L.; Singer, B.; O’Brien, B. Trauma induced acute kidney injury. PLoS ONE 2019, 14, e0211001. [Google Scholar] [CrossRef] [PubMed]
- Søvik, S.; Isachsen, M.S.; Nordhuus, K.M.; Tveiten, C.K.; Eken, T.; Sunde, K.; Brurberg, K.G.; Beitland, S. Acute kidney injury in trauma patients admitted to the ICU: A systematic review and meta-analysis. Intensive Care Med. 2019, 45, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Petejova, N.; Martinek, A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: A critical review. Crit. Care 2014, 18, 224. [Google Scholar] [CrossRef] [PubMed]
- Messerer, D.A.C.; Halbgebauer, R.; Nilsson, B.; Pavenstädt, H.; Radermacher, P.; Huber-Lang, M. Immunopathophysiology of trauma-related acute kidney injury. Nat. Rev. Nephrol. 2021, 17, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijs-Moeke, G.J.; Pischke, S.E.; Berger, S.P.; Sanders, J.S.F.; Pol, R.A.; Struys, M.M.R.F.; Ploeg, R.J.; Leuvenink, H.G.D. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J. Clin. Med. 2020, 9, 253. [Google Scholar] [CrossRef] [PubMed]
- Devarajan, P. Review: Neutrophil gelatinase-associated lipocalin: A troponin-like biomarker for human acute kidney injury. Nephrology 2010, 15, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Hakobyan, K.; Gaddam, M.; Ojinnaka, U.; Ahmed, Z.; Kannan, A.; Quadir, H.; Mostafa, J.A. Contrast-Enhanced Ultrasound as a Main Radiological Diagnostic Method for Primary Liver Neoplasms and Hemangiomas. Cureus 2021, 13, e18288. [Google Scholar] [CrossRef] [PubMed]
- Corradi, F.; Bell, M.; De Rosa, S. Kidney Doppler ultrasonography in critical care nephrology. Nephrol. Dial. Transplant. 2024. [Google Scholar] [CrossRef]
- Kwiatkowska, E.; Kwiatkowski, S.; Dziedziejko, V.; Tomasiewicz, I.; Domański, L. Renal Microcirculation Injury as the Main Cause of Ischemic Acute Kidney Injury Development. Biology 2023, 12, 327. [Google Scholar] [CrossRef]
- McMahon, G.M.; Zeng, X.; Waikar, S.S. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern. Med. 2013, 173, 1821–1828. [Google Scholar] [CrossRef]
- Tarazona, V.; Figueiredo, S.; Hamada, S.; Pochard, J.; Haines, R.W.; Prowle, J.R.; Duranteau, J.; Vigué, B.; Harrois, A. Admission serum myoglobin and the development of acute kidney injury after major trauma. Ann. Intensive Care 2021, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Tae, B.S.; Jang, H.A.; Yu, J.; Oh, K.-J.; Moon, K.H.; Park, J.Y. Epidemiology and Management Trend of Renal Trauma: Results of a Nationwide Population-Based Study. J. Korean Med. Sci. 2022, 37, e333. [Google Scholar] [CrossRef] [PubMed]
- Voelzke, B.B.; Leddy, L. The epidemiology of renal trauma. Transl. Androl. Urol. 2014, 3, 143–149. [Google Scholar] [CrossRef]
- Goicochea-Rios, E.; Chian-García, A.; Yupari-Azabache, I.; Gómez Goicochea, N. Factors Associated with the Development of Chronic Kidney Disease in Patients with Arterial Hypertension. Int. J. Nephrol. Renovasc. Dis. 2024, 17, 113–123. [Google Scholar] [CrossRef]
- Yasrebi-de Kom, I.A.R.; Dongelmans, D.A.; Abu-Hanna, A.; Schut, M.C.; De Lange, D.W.; Van Roon, E.N.; De Jonge, E.; Bouman, C.S.C.; De Keizer, N.F.; Jager, K.J.; et al. Acute kidney injury associated with nephrotoxic drugs in critically ill patients: A multicenter cohort study using electronic health record data. Clin. Kidney J. 2023, 16, 2549–2558. [Google Scholar] [CrossRef] [PubMed]
- Kisat, M.; Villegas, C.V.; Onguti, S.; Zafar, S.N.; Latif, A.; Efron, D.T.; Haut, E.R.; Schneider, E.B.; Lipsett, P.A.; Zafar, H.; et al. Predictors of sepsis in moderately severely injured patients: An analysis of the National Trauma Data Bank. Surg. Infect. 2013, 14, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Gomez Coral, M.I. Recent Advances and Updates in Rhabdomyolysis: A Comprehensive Review. JOJ Urol. Nephrol. 2024, 8, 555744. [Google Scholar] [CrossRef]
- Golino, G.; Greco, M.; Rigobello, A.; Danzi, V.; De Cal, M.; Malchiorna, N.; Zannella, M.; Navalesi, P.; Costa-Pinto, R.; Ronco, C.; et al. Incidence of Acute Kidney Injury in Polytrauma Patients and Predictive Performance of TIMP2 × IGFBP7 Biomarkers for Early Identification of Acute Kidney Injury. Diagnostics 2022, 12, 2481. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef]
- Makris, K.; Spanou, L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. Clin. Biochem. Rev. 2016, 37, 85–98. [Google Scholar]
- Selby, N.M.; Fluck, R.J.; Kolhe, N.V.; Taal, M.W. International Criteria for Acute Kidney Injury: Advantages and Remaining Challenges. PLoS Med. 2016, 13, e1002122. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw. Open 2020, 3, e2019209. [Google Scholar] [CrossRef]
- Koyawala, N.; Reese, P.P.; Hall, I.E.; Jia, Y.; Thiessen-Philbrook, H.R.; Mansour, S.G.; Doshi, M.D.; Akalin, E.; Bromberg, J.S.; Harhay, M.N.; et al. Urine Injury Biomarkers Are Not Associated with Kidney Transplant Failure. Transplantation 2020, 104, 1272–1279. [Google Scholar] [CrossRef]
- Tsigou, E.; Psallida, V.; Demponeras, C.; Boutzouka, E.; Baltopoulos, G. Role of New Biomarkers: Functional and Structural Damage. Crit. Care Res. Pract. 2013, 2013, 361078. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Huang, Q.; Yang, Y.; Liu, M.; Chen, Q.; Huang, J.; Xiang, Y.; Long, X.; Zhao, T.; Wang, X.; et al. Emerging early diagnostic methods for acute kidney injury. Theranostics 2022, 12, 2963–2986. [Google Scholar] [CrossRef]
- Haase, M.; Devarajan, P.; Haase-Fielitz, A.; Bellomo, R.; Cruz, D.N.; Wagener, G.; Krawczeski, C.D.; Koyner, J.L.; Murray, P.; Zappitelli, M.; et al. The Outcome of Neutrophil Gelatinase-Associated Lipocalin-Positive Subclinical Acute Kidney Injury. J. Am. Coll. Cardiol. 2011, 57, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xie, Y.; Shao, X.; Ni, Z.; Mou, S. L-FABP: A novel biomarker of kidney disease. Clin. Chim. Acta 2015, 445, 85–90. [Google Scholar] [CrossRef]
- MacPherson, S.; Arbuckle, T.E.; Fisher, M. Adjusting urinary chemical biomarkers for hydration status during pregnancy. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Mayeux, R. Biomarkers: Potential uses and limitations. Neurotherapeutics 2004, 1, 182–188. [Google Scholar] [CrossRef]
- Chang, C.; Obeid, W.; Thiessen-Philbrook, H.; Parikh, C.R. Sample Processing and Stability for Urine Biomarker Studies. J. Appl. Lab. Med. 2021, 6, 1628–1634. [Google Scholar] [CrossRef]
- Sakyi, S.A.; Ephraim, R.K.D.; Adoba, P.; Amoani, B.; Buckman, T.; Mantey, R.; Eghan, B.A. Tissue inhibitor metalloproteinase 2 (TIMP-2) and insulin-like growth factor binding protein 7 (IGFBP7) best predicts the development of acute kidney injury. Heliyon 2021, 7, e07960. [Google Scholar] [CrossRef] [PubMed]
- Kane-Gill, S.L.; Peerapornratana, S.; Wong, A.; Murugan, R.; Groetzinger, L.M.; Kim, C.; Smithburger, P.L.; Then, J.; Kellum, J.A. Use of tissue inhibitor of metalloproteinase 2 and insulin-like growth factor binding protein 7 [TIMP2]•[IGFBP7] as an AKI risk screening tool to manage patients in the real-world setting. J. Crit. Care 2020, 57, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, A.; Sandler, C.M.; Corl, F.M.; West, O.C.; Tamm, E.P.; Fishman, E.K.; Goldman, S.M. Imaging of Renal Trauma: A Comprehensive Review. RadioGraphics 2001, 21, 557–574. [Google Scholar] [CrossRef]
- Morey, A.F.; Brandes, S.; Dugi, D.D.; Armstrong, J.H.; Breyer, B.N.; Broghammer, J.A.; Erickson, B.A.; Holzbeierlein, J.; Hudak, S.J.; Pruitt, J.H.; et al. Urotrauma: AUA guideline. J. Urol. 2014, 192, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Ringen, A.H.; Fatland, A.; Skaga, N.O.; Gaarder, C.; Naess, P.A. Pediatric renal trauma: 17 years of experience at a major Scandinavian trauma center. Trauma. Surg. Acute Care Open 2023, 8, e001207. [Google Scholar] [CrossRef] [PubMed]
- Regine, G.; Atzori, M.; Miele, V.; Buffa, V.; Galluzzo, M.; Luzietti, M.; Adami, L. Second-generation sonographic contrast agents in the evaluation of renal trauma. Radiol. Med. 2007, 112, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Zhi, H.J.; Cui, J.; Yuan, M.W.; Zhao, Y.N.; Zhao, X.W.; Zhu, T.T.; Jia, C.M.; Li, Y. Predictive performance of renal resistive index, semiquantitative power Doppler ultrasound score and renal venous Doppler waveform pattern for acute kidney injury in critically ill patients and prediction model establishment: A prospective observational study. Ren. Fail. 2023, 45, 2258987. [Google Scholar] [CrossRef]
- Haitsma Mulier, J.L.G.; Rozemeijer, S.; Röttgering, J.G.; Spoelstra-de Man, A.M.E.; Elbers, P.W.G.; Tuinman, P.R.; De Waard, M.C.; Oudemans-van Straaten, H.M. Renal resistive index as an early predictor and discriminator of acute kidney injury in critically ill patients; A prospective observational cohort study. PLoS ONE 2018, 13, e0197967. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Zhao, Q.; Qu, Y.; Liu, G. Renal Doppler Ultrasound in the Evaluation of Renal Function in Patients with Sepsis. Appl. Bionics Biomech. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Corradi, F.; Brusasco, C.; Vezzani, A.; Palermo, S.; Altomonte, F.; Moscatelli, P.; Pelosi, P. Hemorrhagic shock in polytrauma patients: Early detection with renal Doppler resistive index measurements. Radiology 2011, 260, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Glenn, T.C.; Martin, N.A.; Horning, M.A.; McArthur, D.L.; Hovda, D.A.; Vespa, P.; Brooks, G.A. Lactate: Brain Fuel in Human Traumatic Brain Injury: A Comparison with Normal Healthy Control Subjects. J. Neurotrauma 2015, 32, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Rehn, M.; Weaver, A.; Brohi, K.; Eshelby, S.; Green, L.; Røislien, J.; Lockey, D.J. Effect of Prehospital Red Blood Cell Transfusion on Mortality and Time of Death in Civilian Trauma Patients. Shock 2019, 51, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Owattanapanich, N.; Chittawatanarat, K.; Benyakorn, T.; Sirikun, J. Risks and benefits of hypotensive resuscitation in patients with traumatic hemorrhagic shock: A meta-analysis. Scand. J. Trauma. Resusc. Emerg. Med. 2018, 26, 107. [Google Scholar] [CrossRef] [PubMed]
- Coccolini, F.; Moore, E.E.; Kluger, Y.; Biffl, W.; Leppaniemi, A.; Matsumura, Y.; Kim, F.; Peitzman, A.B.; Fraga, G.P.; Sartelli, M.; et al. Kidney and uro-trauma: WSES-AAST guidelines. World J. Emerg. Surg. 2019, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.; Davenport, R.; Mak, M.; Brohi, K. The Evolving Science of Trauma Resuscitation. Emerg. Med. Clin. N. Am. 2018, 36, 85–106. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.G.; Nantais, J.; Rezende-Neto, J.B.; Yazdani, S.; Vegas, P.; Rizoli, S. Crystalloid resuscitation in trauma patients: Deleterious effect of 5L or more in the first 24h. BMC Surg. 2018, 18, 93. [Google Scholar] [CrossRef] [PubMed]
- Coons, B.E.; Tam, S.; Rubsam, J.; Stylianos, S.; Duron, V. High volume crystalloid resuscitation adversely affects pediatric trauma patients. J. Pediatr. Surg. 2018, 53, 2202–2208. [Google Scholar] [CrossRef]
- Semler, M.W.; Kellum, J.A. Balanced Crystalloid Solutions. Am. J. Respir. Crit. Care Med. 2019, 199, 952–960. [Google Scholar] [CrossRef]
- Semler, M.W.; Self, W.H.; Rice, T.W. Balanced Crystalloids versus Saline in Critically Ill Adults. N. Engl. J. Med. 2018, 378, 1951. [Google Scholar] [CrossRef]
- Rein, J.L.; Coca, S.G. “I don’t get no respect”: The role of chloride in acute kidney injury. Am. J. Physiol.-Ren. Physiol. 2019, 316, F587–F605. [Google Scholar] [CrossRef]
- Yunos, N.M.; Bellomo, R.; Hegarty, C.; Story, D.; Ho, L.; Bailey, M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 2012, 308, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Hong, T.H.; Lee, K.W.; Jung, M.J.; Lee, J.G.; Lee, S.H. Hyperchloremia is associated with 30-day mortality in major trauma patients: A retrospective observational study. Scand. J. Trauma. Resusc. Emerg. Med. 2016, 24, 117. [Google Scholar] [CrossRef]
- Annane, D.; Siami, S.; Jaber, S.; Martin, C.; Elatrous, S.; Declère, A.D.; Preiser, J.C.; Outin, H.; Troché, G.; Charpentier, C.; et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: The CRISTAL randomized trial. JAMA 2013, 310, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Legrand, M.; Mik, E.G.; Balestra, G.M.; Lutter, R.; Pirracchio, R.; Payen, D.; Ince, C. Fluid resuscitation does not improve renal oxygenation during hemorrhagic shock in rats. Anesthesiology 2010, 112, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Executive Summary: Surviving Sepsis Campaign: International Guidelines for the Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A.; Walley, K.R.; Singer, J.; Gordon, A.C.; Hébert, P.C.; Cooper, D.J.; Holmes, C.L.; Mehta, S.; Granton, J.T.; Storms, M.M.; et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N. Engl. J. Med. 2008, 358, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.C.; Russell, J.A.; Walley, K.R.; Singer, J.; Ayers, D.; Storms, M.M.; Holmes, C.L.; Hébert, P.C.; Cooper, D.J.; Mehta, S.; et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010, 36, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.C.; Mason, A.J.; Thirunavukkarasu, N.; Perkins, G.D.; Cecconi, M.; Cepkova, M.; Pogson, D.G.; Aya, H.D.; Anjum, A.; Frazier, G.J.; et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients with Septic Shock: The VANISH Randomized Clinical Trial. JAMA 2016, 316, 509–518. [Google Scholar] [CrossRef]
- Edwards, R.M.; Trizna, W.; Kinter, L.B. Renal microvascular effects of vasopressin and vasopressin antagonists. Am. J. Physiol. 1989, 256, F274–F278. [Google Scholar] [CrossRef]
- Bomzon, L.; Rosendorff, C.; Scriven, D.R.; Farr, J. The effect of noradrenaline, adrenergic blocking agents, and tyramine on the intrarenal distribution of blood flow in the baboon. Cardiovasc. Res. 1975, 9, 314–322. [Google Scholar] [CrossRef]
- Jiang, L.; Sheng, Y.; Feng, X.; Wu, J. The effects and safety of vasopressin receptor agonists in patients with septic shock: A meta-analysis and trial sequential analysis. Crit. Care 2019, 23, 91. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.J.; Zeeman, H.; Biezaitis, V. Holistic Practice in Traumatic Brain Injury Rehabilitation: Perspectives of Health Practitioners. PLoS ONE 2016, 11, e0156826. [Google Scholar] [CrossRef] [PubMed]
- Hyer, N.L.; Wemmerlöv, U.; Morris, J.A. Performance analysis of a focused hospital unit: The case of an integrated trauma center. J. Oper. Manag. 2009, 27, 203–219. [Google Scholar] [CrossRef]
- Perner, A.; Prowle, J.; Joannidis, M.; Young, P.; Hjortrup, P.B.; Pettilä, V. Fluid management in acute kidney injury. Intensive Care Med. 2017, 43, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Baines, R.; Westacott, R.; Selby, N.; Carr, S. An educational approach to improve outcomes in acute kidney injury (AKI): Report of a quality improvement project. BMJ Open 2014, 4, e004388. [Google Scholar] [CrossRef] [PubMed]
- Orlando, G.; Soker, S.; Stratta, R.J.; Atala, A. Will Regenerative Medicine Replace Transplantation? Cold Spring Harb. Perspect. Med. 2013, 3, a015693. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Sever, M.S. Prevention and Treatment of AKI during Various Disasters. Kidney Dial. 2022, 2, 85–90. [Google Scholar] [CrossRef]
- Ledoux-Hutchinson, L.; Wald, R.; Malbrain, M.L.N.G.; Carrier, F.M.; Bagshaw, S.M.; Bellomo, R.; Adhikari, N.K.J.; Gallagher, M.; Silver, S.A.; Bouchard, J.; et al. Fluid Management for Critically Ill Patients with Acute Kidney Injury Receiving Kidney Replacement Therapy: An International Survey. Clin. J. Am. Soc. Nephrol. 2023, 18, 705–715. [Google Scholar] [CrossRef]
Stage | Criteria | Biomarker Results |
---|---|---|
1s | No change in sCr or UO | Positive |
1A | Increased sCr ≥ 0.3mg/dL within 48 h or ≥1.5 times basal value and/or UO < 0.5 mL/kg/h for 6 h | Negative |
1B | Same as 1A | Positive |
2A | Increased sCr ≥ 2 times basal value and/or UO < 0.5 mL/kg/h for 12 h | Negative |
2B | Same as 2A | Positive |
3A | Increased sCr ≥ 3 times basal value and/or UO < 0.3 mL/kg/h for 24 h or anuria for >12 h or RRT requirement | Negative |
3B | Same as 3A | Positive |
Biomarker | Sample Type | Cutoff Value | Utility | Typical Application | |
---|---|---|---|---|---|
NGAL | Plasma or Urine | 150 ng/mL | Predicts AKI; sensitive and specific | Used upon admission in emergency settings for trauma patients | Plasma or Urine |
LFABP | Urine | 50 ng/mL | Indicates tubular damage | Used in critical care to detect early structural kidney damage | Urine |
IL-18 | Plasma or Urine | 200 pg/mL | Associated with inflammatory response in AKI | Used to differentiate between various causes of AKI | Plasma or Urine |
TIMP-2 | Urine | TIMP-2 × IGFBP7 > 0.3 (AKIRisk™) | Indicator of cellular stress | Part of a combination test with IGFBP7 for early AKI detection in ICU patients | Urine |
IGFBP7 | Urine | TIMP-2 × IGFBP7 > 0.3 (AKIRisk™) | Indicates cell cycle arrest | Combined with TIMP-2 to assess risk of AKI development post-surgery | Urine |
WSES (2018 Revised) | AAST | Detailed AAST Description | Hemodynamic Stability |
---|---|---|---|
I | 1 | Subcapsular hematoma and/or parenchymal contusion without laceration | Stable |
2 | Perirenal hematoma confined to Gerota fascia | ||
Renal parenchymal laceration ≤1 cm depth without urinary extravasation | |||
II | 3 | Renal parenchymal laceration >1 cm depth without collecting system rupture or urinary extravasation | |
Any injury with kidney vascular injury or active bleeding contained within Gerota fascia | |||
III | 4 | Parenchymal laceration extending into urinary collecting system with urinary extravasation | |
Renal pelvis laceration, complete ureteropelvic disruption, or both | |||
Active bleeding beyond Gerota fascia into retroperitoneum or peritoneum | |||
Segmental renal vein or artery injury or kidney infarction(s) caused by vessel thrombosis without active bleeding | |||
5 | Shattered kidney with loss of identifiable parenchymal renal anatomy | ||
Devascularized kidney with active bleeding | |||
Main renal artery or vein laceration or avulsion of hilum | |||
IV | Any | Any | Unstable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lassola, S.; Cundari, F.; Marini, G.; Corradi, F.; De Rosa, S. Advancements in Trauma-Induced Acute Kidney Injury: Diagnostic and Therapeutic Innovations. Life 2024, 14, 1005. https://doi.org/10.3390/life14081005
Lassola S, Cundari F, Marini G, Corradi F, De Rosa S. Advancements in Trauma-Induced Acute Kidney Injury: Diagnostic and Therapeutic Innovations. Life. 2024; 14(8):1005. https://doi.org/10.3390/life14081005
Chicago/Turabian StyleLassola, Sergio, Francesco Cundari, Giuseppe Marini, Francesco Corradi, and Silvia De Rosa. 2024. "Advancements in Trauma-Induced Acute Kidney Injury: Diagnostic and Therapeutic Innovations" Life 14, no. 8: 1005. https://doi.org/10.3390/life14081005
APA StyleLassola, S., Cundari, F., Marini, G., Corradi, F., & De Rosa, S. (2024). Advancements in Trauma-Induced Acute Kidney Injury: Diagnostic and Therapeutic Innovations. Life, 14(8), 1005. https://doi.org/10.3390/life14081005