A Novel Technique for Corneal Transepithelial Electrical Resistance Measurement in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Antibodies
2.2. Experimental Animals
2.3. TER Measurement Technique
2.4. Transmission Electron Microscopy (TEM) Examination
2.5. ZO-1 Immunohistochemical Staining
2.6. Statistical Analysis
3. Results
3.1. Corneal TER
3.2. Transmission Electron Microscopy
3.3. ZO-1 Immunohistochemical Staining
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinoshita, S.; Adachi, W.; Sotozono, C.; Nishida, K.; Yokoi, N.; Quantock, A.J.; Okubo, K. Characteristics of the human ocular surface epithelium. Prog. Retin. Eye Res. 2001, 20, 639–673. [Google Scholar] [CrossRef] [PubMed]
- Vandenbrouche, E.; Mehta, D.; Minshall, R.; Malik, A.B. Regulation of endothelial junctional permeability. Ann. N. Y. Acad. Sci. 2008, 1123, 134–145. [Google Scholar] [CrossRef]
- Miyoshi, J.; Takai, Y. Structural and functional associations of apical junctions with cytoskeleton. Biochim. Biophys. Acta 2008, 1778, 670–691. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, N.; Kinoshita, S. Clinical evaluation of corneal epithelial barrier function with the slit-lamp fluorophotometer. Cornea 1995, 14, 485–489. [Google Scholar] [CrossRef]
- Pflugfelder, S.C.; Farley, W.; Luo, L.; Chen, L.Z.; de Paiva, C.S.; Olmos, L.C.; Li, D.Q.; Fini, M.E. Matrix metalloproteinase-9 knockout confers resistance to corneal epithelial barrier disruption in experimental dry eye. Am. J. Pathol. 2005, 166, 61–71. [Google Scholar] [CrossRef]
- Alarcon, I.; Tam, C.; Mun, J.J.; LeDue, J.; Evans, D.J.; Fleiszig, S.M. Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Sasaki, H. Quantitative evaluation of corneal epithelial injury caused by n-heptanol using a corneal resistance measuring device in vivo. Clin. Ophthalmol. 2012, 6, 585–593. [Google Scholar] [CrossRef]
- Donn, A.; Maurice, D.M.; Mills, N.L. Studies on the living cornea in vitro. I. Method and physiologic measurements. Arch. Ophthalmol. 1959, 62, 741–747. [Google Scholar] [CrossRef]
- Nakashima, M.; Nakamura, T.; Teshima, M.; To, H.; Uematsu, M.; Kitaoka, T.; Taniyama, K.; Nishida, K.; Nakamura, J.; Sasaki, H. Breakdown evaluation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method. J. Ocul. Pharmacol. Ther. 2008, 24, 43–51. [Google Scholar] [CrossRef]
- Uematsu, M.; Kumagami, T.; Kusano, M.; Yamada, K.; Mishima, K.; Fujimura, K.; Sasaki, H.; Kitaoka, T. Acute corneal epithelial change after instillation of benzalkonium chloride evaluated using a newly developed in vivo corneal transepithelial electrical resistance measurement method. Ophthalmic Res. 2007, 39, 308–314. [Google Scholar] [CrossRef]
- Kusano, M.; Uematsu, M.; Kumagami, T.; Sasaki, H.; Kitaoka, T. Evaluation of acute corneal barrier change induced by topically applied preservatives using corneal transepithelial electrical resistance in vivo. Cornea 2010, 29, 80–85. [Google Scholar] [CrossRef]
- Onizuka, N.; Uematsu, M.; Kusano, M.; Sasaki, H.; Suzuma, K.; Kitaoka, T. Influence of different additives and their concentrations on corneal toxicity and antimicrobial effect of benzalkonium chloride. Cornea 2014, 33, 521–526. [Google Scholar] [CrossRef]
- Uematsu, M.; Mohamed, Y.H.; Onizuka, N.; Ueki, R.; Inoue, D.; Fujikawa, A.; Kitaoka, T. A novel in vivo corneal trans-epithelial electrical resistance measurement device. J. Pharmacol. Toxicol. Methods 2015, 76, 65–71. [Google Scholar] [CrossRef]
- Uematsu, M.; Mohamed, Y.H.; Onizuka, N.; Ueki, R.; Inoue, D.; Fujikawa, A.; Sasaki, H.; Kitaoka, T. Less Invasive Corneal Transepithelial Electrical Resistance Measurement Method. Ocul. Surf. 2016, 14, 37–42. [Google Scholar] [CrossRef]
- Prince, J.H. The Rabbit in Eye Research; Thomas: Springfield, IL, USA, 1964; pp. 86–134. [Google Scholar]
- Smith, R.S.; Krob, D.; John, S.W.M. A goniolens for monitoring of the mouse iridocorneal angle and the optic nerve. Mol. Vis. 2002, 8, 26–31. [Google Scholar] [PubMed]
- Zhang, E.; Schründer, S.; Hoffmann, F. Orthotopic corneal transplantation in the mouse: A new surgical technique with minimal endothelial cell loss. Graefes Arch. Clin. Exp. Ophthalmol. 1996, 243, 714–719. [Google Scholar] [CrossRef]
- Garcia de la Cera, E.; Rodrigues, G.; Liorenta, L.; Schaffel, F.; Marcos, S. Optical aberrations in the mouse eye. Vis. Res. 2006, 46, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Blikslager, A.T.; Moeser, A.J.; Gookin, J.L.; Jones, S.L.; Odle, J. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev. 2007, 87, 545–564. [Google Scholar] [CrossRef] [PubMed]
- Balda, M.S.; Whitney, J.A.; Flores, C.; González, S.; Cereijido, M.; Matter, K. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J. Cell Biol. 1996, 134, 1031–1049. [Google Scholar] [CrossRef]
- Smith, R.S.; John, S.W.M.; Nishina, P.M.; Sundberg, J.P. The anterior segment and ocular adnexae. In Systematic Evaluation of the Mouse Eye, Anatomy, Pathology, and Biomethods; Smith, R.S., Ed.; CRC Press: Boca, Raton, FL, USA, 2002; pp. 3–24. [Google Scholar]
- Hazlett, L.D. Corneal and ocular surface histochemistry. Prog. Histochem. Cytochem. 1993, 25, 2. [Google Scholar] [CrossRef]
- Monk, C. Ocular Surface Disease in Rodents (Guinea Pigs, Mice, Rats, Chinchillas). Vet. Clin. N. Am. Exot. Anim. Pract. 2019, 22, 15–26. [Google Scholar] [CrossRef]
- Rosenthal, N.; Brown, S. The mouse ascending: Perspectives for human-disease models. Nat. Cell Biol. 2007, 9, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Justice, M.J.; Dhillon, P. Using the mouse to model human disease: Increasing validity and reproducibility. Dis. Model Mech. 2016, 9, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Liu, X.; Zhou, T.; Wang, Y.; Bai, L.; He, H.; Liu, Z. A mouse dry eye model induced by topical administration of benzalkonium chloride. Mol. Vis. 2011, 17, 257–264. [Google Scholar]
- Ban, Y.; Dota, A.; Cooper, L.J.; Nakamura, T.; Tsuzuki, M.; Mochida, C.; Kinoshita, S. Tight junction-related protein expression and distribution in human corneal epithelium. Exp. Eye Res. 2003, 76, 663–669. [Google Scholar] [CrossRef]
- McCartney, M.D.; Cantucrouch, D. Rabbit corneal epithelial wound repair-tight junction reformation. Curr. Eye Res. 1992, 11, 15–24. [Google Scholar] [CrossRef]
- Sugrue, S.P.; Zieske, J.D. ZO1 in corneal epithelium: Association to the zonula occludens and adherens junctions. Exp. Eye Res. 1997, 64, 11–20. [Google Scholar] [CrossRef]
- Elizondo, R.A.; Yin, Z.; Lu, X.; Watsky, M.A. Effect of vitamin D receptor knockout on cornea epithelium wound healing and tight junctions. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5245–5251. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, B.R.; Siliciano, J.D.; Mooseker, M.S.; Goodenough, D.A. Identification of ZO-1: A high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 1986, 103, 755–776. [Google Scholar] [CrossRef]
- Tsukita, S.; Furuse, M.; Itoh, M. Structural and signalling molecules come together at tight junctions. Curr. Opin. Cell Biol. 1999, 11, 628–633. [Google Scholar] [CrossRef]
- Yanai, R.; Ko, J.A.; Nomi, N.; Morishige, N.; Chikama, T.; Hattori, A.; Hozumi, K.; Nomizu, M.; Nishida, T. Upregulation of ZO-1 in Cultured Human Corneal Epithelial Cells by a Peptide (PHSRN) Corresponding to the Second Cell-Binding Site of Fibronectin. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2757–2764. [Google Scholar] [CrossRef]
- Chikama, T.; Wakuta, M.; Liu, Y.; Nishida, T. Deviated mechanism of wound healing in diabetic corneas. Cornea 2007, 26, S75–S81. [Google Scholar] [CrossRef]
- Bron, A.J.; Tripathi, R.C.; Tripathi, B.J. Wolff’s Anatomy of the Eye and the Orbit, 8th ed.; The Cornea and Sclera; Chapman & Hall Medical: London, UK, 1997; pp. 233–267. [Google Scholar]
- Bergmanson, J.P.G. Clinical Ocular Anatomy and Physiology, 15th ed.; Texas Eye Research and Technology Center: Houston, TX, USA, 2008; pp. 67–94. [Google Scholar]
- Perrin, S. Preclinical research: Make mouse studies work. Nature 2014, 507, 423–425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, Y.H.; Uematsu, M.; Kusano, M.; Inoue, D.; Tang, D.; Suzuki, K.; Kitaoka, T. A Novel Technique for Corneal Transepithelial Electrical Resistance Measurement in Mice. Life 2024, 14, 1046. https://doi.org/10.3390/life14081046
Mohamed YH, Uematsu M, Kusano M, Inoue D, Tang D, Suzuki K, Kitaoka T. A Novel Technique for Corneal Transepithelial Electrical Resistance Measurement in Mice. Life. 2024; 14(8):1046. https://doi.org/10.3390/life14081046
Chicago/Turabian StyleMohamed, Yasser Helmy, Masafumi Uematsu, Mao Kusano, Daisuke Inoue, Diya Tang, Keiji Suzuki, and Takashi Kitaoka. 2024. "A Novel Technique for Corneal Transepithelial Electrical Resistance Measurement in Mice" Life 14, no. 8: 1046. https://doi.org/10.3390/life14081046
APA StyleMohamed, Y. H., Uematsu, M., Kusano, M., Inoue, D., Tang, D., Suzuki, K., & Kitaoka, T. (2024). A Novel Technique for Corneal Transepithelial Electrical Resistance Measurement in Mice. Life, 14(8), 1046. https://doi.org/10.3390/life14081046