Shifting the Cancer Screening Paradigm: Developing a Multi-Biomarker Class Approach to Multi-Cancer Early Detection Testing
Abstract
:1. Introduction
2. The Current State of Cancer Screening—A Single-Cancer Approach
3. Shifting the Screening Paradigm to a Multi-Cancer Approach
4. The Path to Development of a Multi-Biomarker Class MCED Test
4.1. Establishing Proof of Concept
4.2. Establishing Feasibility and Clinical Impact
4.3. Biomarker Selection and Classifier Development
4.4. Assessing Performance in Analytical Validation
4.5. Establishing Clinical Effectiveness and Implementation in Clinical Validation and Clinical Utility
4.6. Clinical Implementation of MCED Testing and Diagnostic Resolution
5. Core Concepts for Consideration during MCED Test and Study Design
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- National Cancer Institute. Cancer Disparities. Available online: https://www.cancer.gov/about-cancer/understanding/disparities (accessed on 29 April 2024).
- The White House. Report of the Cancer Moonshot Task Force. Available online: https://obamawhitehouse.archives.gov/sites/default/files/docs/final_cancer_moonshot_task_force_report_1.pdf (accessed on 29 April 2024).
- The White House Briefing Room. Available online: https://www.whitehouse.gov/briefing-room/statements-releases/2022/02/02/fact-sheet-president-biden-reignites-cancer-moonshot-to-end-cancer-as-we-know-it/ (accessed on 29 April 2024).
- Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W., Jr.; Kemper, A.R.; Kubik, M.; et al. Screening for Cervical Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 320, 674–686. [Google Scholar] [CrossRef]
- Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Krist, A.H.; Kubik, M.; et al. Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 325, 1965–1977. [Google Scholar] [CrossRef]
- Potter, A.L.; Bajaj, S.S.; Yang, C.J. The 2021 USPSTF lung cancer screening guidelines: A new frontier. Lancet Respir. Med. 2021, 9, 689–691. [Google Scholar] [CrossRef]
- Siu, A.L. Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2016, 164, 279–296. [Google Scholar] [CrossRef]
- Lin, J.S.; Perdue, L.A.; Henrikson, N.B.; Bean, S.I.; Blasi, P.R. Screening for Colorectal Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021, 325, 1978–1998. [Google Scholar] [CrossRef]
- Ahlquist, D.A. Universal cancer screening: Revolutionary, rational, and realizable. NPJ Precis. Oncol. 2018, 2, 23. [Google Scholar] [CrossRef]
- Beer, T.M. Novel blood-based early cancer detection: Diagnostics in development. Am. J. Manag. Care 2020, 26, S292–S299. [Google Scholar] [CrossRef]
- Nadauld, L.; Goldman, D.P. Considerations in the implementation of multicancer early detection tests. Future Oncol. 2022, 18, 3119–3124. [Google Scholar] [CrossRef]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef]
- Kim, J.J.; Burger, E.A.; Regan, C.; Sy, S. Screening for Cervical Cancer in Primary Care: A Decision Analysis for the US Preventive Services Task Force. JAMA 2018, 320, 706–714. [Google Scholar] [CrossRef]
- Lehman, C.D.; Arao, R.F.; Sprague, B.L.; Lee, J.M.; Buist, D.S.; Kerlikowske, K.; Henderson, L.M.; Onega, T.; Tosteson, A.N.; Rauscher, G.H.; et al. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium. Radiology 2017, 283, 49–58. [Google Scholar] [CrossRef]
- Pinsky, P.F.; Gierada, D.S.; Black, W.; Munden, R.; Nath, H.; Aberle, D.; Kazerooni, E. Performance of Lung-RADS in the National Lung Screening Trial: A retrospective assessment. Ann. Intern. Med. 2015, 162, 485–491. [Google Scholar] [CrossRef]
- White, T.; Algeri, S. Estimating the lifetime risk of a false positive screening test result. PLoS ONE 2023, 18, e0281153. [Google Scholar] [CrossRef]
- Zhang, T.; Joubert, P.; Ansari-Pour, N.; Zhao, W.; Hoang, P.H.; Lokanga, R.; Moye, A.L.; Rosenbaum, J.; Gonzalez-Perez, A.; Martínez-Jiménez, F.; et al. Genomic and evolutionary classification of lung cancer in never smokers. Nat. Genet. 2021, 53, 1348–1359. [Google Scholar] [CrossRef]
- Brito-Rocha, T.; Constancio, V.; Henrique, R.; Jeronimo, C. Shifting the Cancer Screening Paradigm: The Rising Potential of Blood-Based Multi-Cancer Early Detection Tests. Cells 2023, 12, 935. [Google Scholar] [CrossRef]
- Hackshaw, A.; Clarke, C.A.; Hartman, A.-R. New genomic technologies for multi-cancer early detection: Rethinking the scope of cancer screening. Cancer Cell 2022, 40, 109–113. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts and Figures, 2023; American Cancer Society: Atlanta, GA, USA, 2023. [Google Scholar]
- Chung, D.C.; Gray, D.M.; Singh, H.; Issaka, R.B.; Raymond, V.M.; Eagle, C.; Hu, S.; Chudova, D.I.; Talasaz, A.; Greenson, J.K.; et al. A Cell-free DNA Blood-Based Test for Colorectal Cancer Screening. N. Engl. J. Med. 2024, 390, 973–983. [Google Scholar] [CrossRef]
- Church, T.R.; Wandell, M.; Lofton-Day, C.; Mongin, S.J.; Burger, M.; Payne, S.R.; Castanos-Velez, E.; Blumenstein, B.A.; Rosch, T.; Osborn, N.; et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 2014, 63, 317–325. [Google Scholar] [CrossRef]
- Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Wender, R.C. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 2019, 69, 184–210. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Zaidi, S.K.; Sengupta, R. AACR Cancer Disparities Progress Report 2022. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1249–1250. [Google Scholar] [CrossRef] [PubMed]
- Hall, I.J.; Tangka, F.K.L.; Sabatino, S.A.; Thompson, T.D.; Graubard, B.I.; Breen, N. Patterns and Trends in Cancer Screening in the United States. Prev. Chronic Dis. 2018, 15, E97. [Google Scholar] [CrossRef] [PubMed]
- Doubeni, C.A.; Corley, D.A.; Zhao, W.; Lau, Y.; Jensen, C.D.; Levin, T.R. Association between Improved Colorectal Screening and Racial Disparities. N. Engl. J. Med. 2022, 386, 796–798. [Google Scholar] [CrossRef]
- Cohen, J.D.; Javed, A.A.; Thoburn, C.; Wong, F.; Tie, J.; Gibbs, P.; Schmidt, C.M.; Yip-Schneider, M.T.; Allen, P.J.; Schattner, M.; et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc. Natl. Acad. Sci. USA 2017, 114, 10202–10207. [Google Scholar] [CrossRef]
- Douville, C.; Cohen, J.D.; Ptak, J.; Popoli, M.; Schaefer, J.; Silliman, N.; Dobbyn, L.; Schoen, R.E.; Tie, J.; Gibbs, P.; et al. Assessing aneuploidy with repetitive element sequencing. Proc. Natl. Acad. Sci. USA 2020, 117, 4858–4863. [Google Scholar] [CrossRef]
- Lennon, A.M.; Buchanan, A.H.; Kinde, I.; Warren, A.; Honushefsky, A.; Cohain, A.T.; Ledbetter, D.H.; Sanfilippo, F.; Sheridan, K.; Rosica, D.; et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 2020, 369, abb9601. [Google Scholar] [CrossRef]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef]
- Pelosof, L.; Ahn, C.; Gao, A.; Horn, L.; Madrigales, A.; Cox, J.; McGavic, D.; Minna, J.D.; Gazdar, A.F.; Schiller, J. Proportion of Never-Smoker Non-Small Cell Lung Cancer Patients at Three Diverse Institutions. J. Natl. Cancer Inst. 2017, 109, djw295. [Google Scholar] [CrossRef]
- American Cancer Society. Key Statistics for Pancreatic Cancer. Available online: https://www.cancer.org/cancer/types/pancreatic-cancer/about/key-statistics.html (accessed on 29 April 2024).
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef]
- SEER Explorer: An Interactive Website for SEER Cancer Statistics [Internet]. Surveillance Research Program, National Cancer Institute. Available online: https://seer.cancer.gov/statistics-network/explorer/ (accessed on 29 April 2024).
- Douville, C.; Nobles, C.; Hwang, H.J.; Katerov, V.E.; Gainullin, V.; Tong, J.; Ushakov, K.; Koenig, A.; Guttman, H.; Jaime, M.; et al. 73P Multi-cancer early detection through evaluation of aneuploidy, methylation, and protein biomarkers in plasma. Ann. Oncol. 2022, 33, S575. [Google Scholar] [CrossRef]
- Douville, C.; Hogstrom, L.; Gainullin, V.; Hwang, H.J.; Chowbina, S.; Zhang, Y.; Gray, M.; Nobles, C.; Kumar, M.; Manesse, M.; et al. 189P Design and enrollment for a classifier development study for a blood-based multi-cancer early detection (MCED) test. Ann. Oncol. 2023, 34, S257–S258. [Google Scholar] [CrossRef]
- Gainullin, V.; Hwang, H.J.; Hogstrom, L.; Arvai, K.; Best, A.; Gray, M.; Kumar, M.; Manesse, M.; Chen, X.; Uren, P.; et al. Abstract LB100: Performance of a multi-analyte, multi-cancer early detection (MCED) blood test in a prospectively-collected cohort. Cancer Res. 2024, 84, LB100. [Google Scholar] [CrossRef]
- Buchanan, A.H.; Lennon, A.M.; Rego, S.P.; Choudhry, O.A.; Elias, P.Z.; Sadler, J.R.; Cohen, J.D.; Douville, C.B.; Honushefsky, A.M.; Klein, A.; et al. Long-term clinical outcomes of cancers diagnosed following detection by a blood-based multi-cancer early detection (MCED) test. J. Clin. Oncol. 2023, 41, 3037. [Google Scholar] [CrossRef]
- Lennon, A.M.; Buchanan, A.H.; Rego, S.P.; Choudhry, O.A.; Elias, P.Z.; Sadler, J.R.; Cohen, J.D.; Douville, C.B.; Honushefsky, A.M.; Klein, A.; et al. Outcomes in participants with a false positive multi-cancer early detection (MCED) test: Results from >4 years follow-up from DETECT-A, the first large, prospective, interventional MCED study. J. Clin. Oncol. 2023, 41, 3039. [Google Scholar] [CrossRef]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2018. Available online: https://seer.cancer.gov/archive/csr/1975_2018/ (accessed on 8 March 2024).
- Katerov, V.E.; Fleming, H.L.; Rugowski, D.E.; Heilberger, J.; Duellman, T.; Kirby, J.M.; Kirchner, N.; Melah, B.; Hennek, J.; Allawi, H.T. The detection of multiple cancer types with an extended set of methylation and protein markers. J. Clin. Oncol. 2023, 41, 3040. [Google Scholar] [CrossRef]
- Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 2008, 121 (Suppl. 1), 1–84. [Google Scholar] [CrossRef]
- Nowell, P.C. The clonal evolution of tumor cell populations. Science 1976, 194, 23–28. [Google Scholar] [CrossRef]
- Knouse, K.A.; Davoli, T.; Elledge, S.J.; Amon, A. Aneuploidy in Cancer: Seq-ing Answers to Old Questions. Annu. Rev. Cancer Biol. 2017, 1, 335–354. [Google Scholar] [CrossRef]
- Delpu, Y.; Cordelier, P.; Cho, W.C.; Torrisani, J. DNA Methylation and Cancer Diagnosis. Int. J. Mol. Sci. 2013, 14, 15029–15058. [Google Scholar] [CrossRef] [PubMed]
- Schrag, D.; Beer, T.M.; McDonnell, C.H., 3rd; Nadauld, L.; Dilaveri, C.A.; Reid, R.; Marinac, C.R.; Chung, K.C.; Lopatin, M.; Fung, E.T.; et al. Blood-based tests for multicancer early detection (PATHFINDER): A prospective cohort study. Lancet 2023, 402, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Katerov, S.; Vaccaro, A.; Hennek, J.; Carlson, J.; Taylor, W.R.; Mahoney, D.; Kisiel, J.B.; Allawi, H.T. Abstract 111: Accurate multi-cancer detection using methylated DNA markers and proteins in plasma. Cancer Res. 2021, 81, 111. [Google Scholar] [CrossRef]
- Gianullin, V.; Hagmann, L.; Arvai, K.; Djebbari, A.; Nobles, C.L.; Hogstrom, L.; Manesse, M.; Fa, V.; Zhuang, F.; Chen, X.; et al. Abstract P041: Improved sensitivity of a multi-analyte early detection test based on mutation, methylation, aneuploidy, and protein biomarkers. Cancer Prev. Res. 2023, 16, P041. [Google Scholar] [CrossRef]
- Hudnut, A.G.; Hubbell, E.; Venn, O.; Church, T.R. Modeled residual current cancer risk after clinical investigation of a positive multi-cancer early detection test result. Cancer 2023, 129, 2056–2063. [Google Scholar] [CrossRef]
- Tyson, C.; O’Donnell, E.K.; Fishman, E.; Parthasarathy, V.; Beer, T.M. Abstract 769: Evaluating the diagnostic burden of tumor localization strategies for multi-cancer early detection tests. Cancer Res. 2023, 83, 769. [Google Scholar] [CrossRef]
- Rutjes, A.W.; Reitsma, J.B.; Vandenbroucke, J.P.; Glas, A.S.; Bossuyt, P.M. Case-control and two-gate designs in diagnostic accuracy studies. Clin. Chem. 2005, 51, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Dey, T.; Mukherjee, A.; Chakraborty, S. A Practical Overview of Case-Control Studies in Clinical Practice. Chest 2020, 158, S57–S64. [Google Scholar] [CrossRef]
- Sutton-Tyrrell, K. Assessing bias in case-control studies. Proper selection of cases and controls. Stroke 1991, 22, 938–942. [Google Scholar] [CrossRef]
- Feng, Z.; Pepe, M.S. Adding Rigor to Biomarker Evaluations-EDRN Experience. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2575–2582. [Google Scholar] [CrossRef]
- Klein, E.A.; Richards, D.; Cohn, A.; Tummala, M.; Lapham, R.; Cosgrove, D.; Chung, G.; Clement, J.; Gao, J.; Hunkapiller, N.; et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 2021, 32, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Hitzeman, N.; Cotton, E. Incidentalomas: Initial management. Am. Fam. Physician 2014, 90, 784–789. [Google Scholar]
- MacMahon, H.; Naidich, D.P.; Goo, J.M.; Lee, K.S.; Leung, A.N.C.; Mayo, J.R.; Mehta, A.C.; Ohno, Y.; Powell, C.A.; Prokop, M.; et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology 2017, 284, 228–243. [Google Scholar] [CrossRef]
- Schneider, B.J.; Ismaila, N.; Aerts, J.; Chiles, C.; Daly, M.E.; Detterbeck, F.C.; Hearn, J.W.D.; Katz, S.I.; Leighl, N.B.; Levy, B.; et al. Lung Cancer Surveillance After Definitive Curative-Intent Therapy: ASCO Guideline. J. Clin. Oncol. 2020, 38, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Fassnacht, M.; Arlt, W.; Bancos, I.; Dralle, H.; Newell-Price, J.; Sahdev, A.; Tabarin, A.; Terzolo, M.; Tsagarakis, S.; Dekkers, O.M. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 2016, 175, G1–G34. [Google Scholar] [CrossRef] [PubMed]
- Winawer, S.; Fletcher, R.; Rex, D.; Bond, J.; Burt, R.; Ferrucci, J.; Ganiats, T.; Levin, T.; Woolf, S.; Johnson, D.; et al. Colorectal cancer screening and surveillance: Clinical guidelines and rationale-Update based on new evidence. Gastroenterology 2003, 124, 544–560. [Google Scholar] [CrossRef] [PubMed]
- Macmillan, M.T.; Williams, M.C. Incidental Non-cardiac Findings in Cardiovascular Imaging. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 93. [Google Scholar] [CrossRef]
- Moxon, J.V.; Parr, A.; Emeto, T.I.; Walker, P.; Norman, P.E.; Golledge, J. Diagnosis and monitoring of abdominal aortic aneurysm: Current status and future prospects. Curr. Probl. Cardiol. 2010, 35, 512–548. [Google Scholar] [CrossRef]
- Munden, R.F.; Carter, B.W.; Chiles, C.; MacMahon, H.; Black, W.C.; Ko, J.P.; McAdams, H.P.; Rossi, S.E.; Leung, A.N.; Boiselle, P.M.; et al. Managing Incidental Findings on Thoracic CT: Mediastinal and Cardiovascular Findings. A White Paper of the ACR Incidental Findings Committee. J. Am. Coll. Radiol. 2018, 15, 1087–1096. [Google Scholar] [CrossRef]
- Chatzellis, E.; Kaltsas, G. Adrenal Incidentalomas. In Endotex; Feingold, K.R., Anawalt, B., Blackman, M.R., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Singla, N. Active Surveillance for Kidney Cancer. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/kidney-cancer/active-surveillance-for-kidney-cancer (accessed on 29 April 2024).
- Baranowski, M.L.H.; Feld, S.; Yeung, H.; Chen, S.C. Clinically significant incidental findings among teledermatology patients with history of skin cancer. J. Am. Acad. Dermatol. 2020, 83, 1444–1447. [Google Scholar] [CrossRef]
- Schramm, D.; Justus, A.; Bach, A.G.; Surov, A. Incidental findings in the skeletal musculature on computed tomography. Br. J. Radiol. 2017, 90, 20160727. [Google Scholar] [CrossRef]
- Khanna, S.; Singh, S.; Khanna, A.K. Parathyroid incidentaloma. Indian J. Surg. Oncol. 2012, 3, 26–29. [Google Scholar] [CrossRef]
- Russ, G.; Leboulleux, S.; Leenhardt, L.; Hegedus, L. Thyroid incidentalomas: Epidemiology, risk stratification with ultrasound and workup. Eur. Thyroid. J. 2014, 3, 154–163. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). Practice Guidelines in Oncology: B-Cell Lymphomas. Version 3.2018. Available online: https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf (accessed on 29 April 2024).
- Freda, P.U.; Beckers, A.M.; Katznelson, L.; Molitch, M.E.; Montori, V.M.; Post, K.D.; Vance, M.L.; Endocrine, S. Pituitary incidentaloma: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 894–904. [Google Scholar] [CrossRef]
- Chen, R.C.; Rumble, R.B.; Loblaw, D.A.; Finelli, A.; Ehdaie, B.; Cooperberg, M.R.; Morgan, S.C.; Tyldesley, S.; Haluschak, J.J.; Tan, W.; et al. Active Surveillance for the Management of Localized Prostate Cancer (Cancer Care Ontario Guideline): American Society of Clinical Oncology Clinical Practice Guideline Endorsement. J. Clin. Oncol. 2016, 34, 2182–2190. [Google Scholar] [CrossRef]
- Klein, S. Evaluation of palpable breast masses. Am. Fam. Physician 2005, 71, 1731–1738. [Google Scholar]
- Mannas, M.P.; Lee, T.; Pourghiasian, M.; Wilson, D.C.; Black, P.C. Incidentalomas of the prostate detected by 18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Can. Urol. Assoc. J. 2020, 14, E180–E184. [Google Scholar] [CrossRef]
Breast [9] | Colorectal [7,10] | Lung [8] | Cervical [6] | ||
---|---|---|---|---|---|
Population | Average risk * | Average risk | High risk | Average risk | |
Recommendation Level ** | B | B | A | B | A |
Age at First Screening, y | 40 | 45–49 | 50–75 | 50 *** | 21 |
Screening Modality | Mammography Ultrasound MRI | Stool-based methods
| Low-dose CT | Pap test HPV test | |
Interval for testing, y | 1–2 | 1–10 † | 1 | 3–5 |
Lennon et al. [31] | Douville et al. [38] | Douville, et al. [39] Gainullin et al. [40] | |
---|---|---|---|
Study Name | DETECT-A | Biomarker Feasibility | ASCEND-2 |
Study Type | Prospective interventional | Case–control | Case–control |
N | 10,006 | 3518 Training and validation set (Cancers: 1821; Non-Cancers: 565) Test set (Cancers: 566; Non-Cancers: 566) | 6314 (Cancer: 1426; Non-Cancer: 4888) |
Population | Asymptomatic women aged 65–74 years with no history of cancer | Men and women | Men and women aged >/ = 50 years |
Biomarker Classes | Mutations Proteins | Mutations Proteins Aneuploidy Methylation | Proteins Methylation |
No of Cancers Detected (Organ types) | 26 (ovarian, lung, uterine, thyroid, colorectal, breast, lymphoma, kidney, appendix, carcinoma of unknown primary) | 15 (breast, bladder, colorectal, esophageal, kidney, liver and bile duct, lung and bronchus, ovarian, pancreatic, prostate, stomach, uterine, non-Hodgkin’s lymphoma, multiple myeloma, myelodysplastic syndrome) | 21 (anal, bladder and urinary, breast, cervical and uterine, colorectal, esophageal, head and neck, kidney, liver and bile duct, lung and bronchial, multiple myeloma, non-Hodgkin lymphoma, ovary, pancreatic, prostate, small intestinal, stomach, testicular, thyroid, uterus, vulva) |
Sensitivity, % | 27.1% | 3 marker classes: 55.2% 4 marker classes: 62.4% | 50.9% |
Specificity, % | 98.9% | 3 marker classes: 99.0% 4 marker classes: 98.0% | 98.5% |
False Positive Rate, % | 1.0% | n/a | n/a |
Evidence Aim | Studies | Goal |
---|---|---|
Clinical Feasibility | DETECT-A—A prospective interventional trial to establish MCED characteristics. | To evaluate the impact of an MCED test on cancer downstaging, patient compliance with SoC screening, and patient perceptions. |
Analytical Validation | ASCEND-2—A multi-center, prospectively collected case–control study. | To assess the performance of a refined MCED test classifier algorithm using samples from adults ≥50 years old of all genders with known cancer, suspicion of cancer, and controls without cancer. |
Clinical Validity and Clinical Utility | DETECT-SOAR—A prospective, randomized, controlled, open-label, intervention pivotal trial. | To evaluate the safety and effectiveness of MCED testing in the indicated population (adults of all genders aged 50–84 years). |
Clinical Utility | FALCON—A RWE registry evaluating clinical outcomes, treatment patterns, healthcare utilization patterns, and economic burden among patients who have undergone MCED testing. | To evaluate if MCED testing can inform clinical management. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisiel, J.B.; Ebbert, J.O.; Taylor, W.R.; Marinac, C.R.; Choudhry, O.A.; Rego, S.P.; Beer, T.M.; Beidelschies, M.A. Shifting the Cancer Screening Paradigm: Developing a Multi-Biomarker Class Approach to Multi-Cancer Early Detection Testing. Life 2024, 14, 925. https://doi.org/10.3390/life14080925
Kisiel JB, Ebbert JO, Taylor WR, Marinac CR, Choudhry OA, Rego SP, Beer TM, Beidelschies MA. Shifting the Cancer Screening Paradigm: Developing a Multi-Biomarker Class Approach to Multi-Cancer Early Detection Testing. Life. 2024; 14(8):925. https://doi.org/10.3390/life14080925
Chicago/Turabian StyleKisiel, John B., Jon O. Ebbert, William R. Taylor, Catherine R. Marinac, Omair A. Choudhry, Seema P. Rego, Tomasz M. Beer, and Michelle A. Beidelschies. 2024. "Shifting the Cancer Screening Paradigm: Developing a Multi-Biomarker Class Approach to Multi-Cancer Early Detection Testing" Life 14, no. 8: 925. https://doi.org/10.3390/life14080925
APA StyleKisiel, J. B., Ebbert, J. O., Taylor, W. R., Marinac, C. R., Choudhry, O. A., Rego, S. P., Beer, T. M., & Beidelschies, M. A. (2024). Shifting the Cancer Screening Paradigm: Developing a Multi-Biomarker Class Approach to Multi-Cancer Early Detection Testing. Life, 14(8), 925. https://doi.org/10.3390/life14080925