Adaptation and Validation of a Modified Broth Microdilution Method for Screening the Anti-Yeast Activity of Plant Phenolics in Apple and Orange Juice Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Yeast Strains and Growth Media
2.3. Preparation of Juices
2.4. Anti-Yeast Assay
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ICMSF. Micro-Organisms in Foods 6; Roberts, T.A., Cordier, J.-L., Gram, L., Tompkin, R.B., Pitt, J.I., Gorris, L.G.M., Swanson, K.M.J., Eds.; Springer: Boston, MA, USA, 2005; ISBN 978-0-306-48675-3. [Google Scholar]
- Neves, M.F.; Trombin, V.G.; Lopes, F.F.; Kalaki, R.; Milan, P. World Consumption of Fruit Juices, Nectars, and Still Drinks. In The Orange Juice Business; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; p. 119. [Google Scholar]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D.; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, Regional, and National Consumption of Sugar-Sweetened Beverages, Fruit Juices, and Milk: A Systematic Assessment of Beverage Intake in 187 Countries. PLoS ONE 2015, 10, e0124845. [Google Scholar] [CrossRef]
- Ellouze, I. Citrus Bio-Wastes: A Source of Bioactive, Functional Products and Non-Food Uses. In Mediterranean Fruits Bio-Wastes: Chemistry, Functionality and Technological Applications; Ramadan, M.F., Farag, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 221–260. ISBN 978-3-030-84436-3. [Google Scholar]
- Liu, Y.; Heying, E.; Tanumihardjo, S.A. History, Global Distribution, and Nutritional Importance of Citrus Fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- Cruz, M.G.; Bastos, R.; Pinto, M.; Ferreira, J.M.; Santos, J.F.; Wessel, D.F.; Coelho, E.; Coimbra, M.A. Waste Mitigation: From an Effluent of Apple Juice Concentrate Industry to a Valuable Ingredient for Food and Feed Applications. J. Clean. Prod. 2018, 193, 652–660. [Google Scholar] [CrossRef]
- Neves, M.F.; Trombin, V.G.; Marques, V.N.; Martinez, L.F. Global Orange Juice Market: A 16-Year Summary and Opportunities for Creating Value. Trop. Plant Pathol. 2020, 45, 166–174. [Google Scholar] [CrossRef]
- Priyadarshini, A.; Priyadarshini, A. Market Dimensions of the Fruit Juice Industry. In Fruit Juices: Extraction, Composition, Quality and Analysis; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 15–32. ISBN 9780128024911. [Google Scholar]
- Deak, T. Handbook of Food Spoilage Yeasts; CRC Press: Boca Raton, FL, USA, 2007; Volume 86, ISBN 9780429148224. [Google Scholar]
- Loureiro, V.; Malfeito-Ferreira, M. Spoilage Yeasts in the Wine Industry. Int. J. Food Microbiol. 2003, 86, 23–50. [Google Scholar] [CrossRef]
- Casey, G.D.; Dobson, A.D.W. Potential of Using Real-Time PCR-Based Detection of Spoilage Yeast in Fruit Juice—A Preliminary Study. Int. J. Food Microbiol. 2004, 91, 327–335. [Google Scholar] [CrossRef]
- Mattioli, M.C.; Boehm, A.B.; Davis, J.; Harris, A.R.; Mrisho, M.; Pickering, A.J. Enteric Pathogens in Stored Drinking Water and on Caregiver’s Hands in Tanzanian Households with and without Reported Cases of Child Diarrhea. PLoS ONE 2014, 9, e84939. [Google Scholar] [CrossRef]
- Simforian, E.; Nonga, H.E.; Ndabikunze, B.K. Assessment of Microbiological Quality of Raw Fruit Juice Vended in Dar Es Salaam City, Tanzania. Food Control 2015, 57, 302–307. [Google Scholar] [CrossRef]
- Tournas, V.H.; Heeres, J.; Burgess, L. Moulds and Yeasts in Fruit Salads and Fruit Juices. Food Microbiol. 2006, 23, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Bates, R.P.; Morris, J.R.; Crandall, P.G.; Science, F.; States, U. Principles and Practices of Small—And Medium—Scale Fruit Juice Processing Table of Contents; FAO Agricultural Services Bulletin: Rome, Italy, 2021; pp. 2–7. [Google Scholar]
- Ross, A.I.V.; Griffiths, M.W.; Mittal, G.S.; Deeth, H.C. Combining Nonthermal Technologies to Control Foodborne Microorganisms. Int. J. Food Microbiol. 2003, 89, 125–138. [Google Scholar] [CrossRef]
- Vasantha Rupasinghe, H.P.; Juan, L. Emerging Preservation Methods for Fruit Juices and Beverages. In Food Additive; InTech: Houston, TX, USA, 2012. [Google Scholar]
- Aneja, K.R.; Dhiman, R.; Aggarwal, N.K.; Aneja, A. Emerging Preservation Techniques for Controlling Spoilage and Pathogenic Microorganisms in Fruit Juices. Int. J. Microbiol. 2014, 2014, 758942. [Google Scholar] [CrossRef]
- Barata, A.; Pais, A.; Malfeito-Ferreira, M.; Loureiro, V. Influence of Sour Rotten Grapes on the Chemical Composition and Quality of Grape Must and Wine. Eur. Food Res. Technol. 2011, 233, 183–194. [Google Scholar] [CrossRef]
- Tucker, G. Pasteurization: Principles and Applications. In Encyclopedia of Food and Health; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 264–269. ISBN 9780123849533. [Google Scholar]
- Mani-López, E.; Palou, E.; López-Malo, A. Preservatives: Classifications and Analysis. In Encyclopedia of Food and Health; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 497–504. ISBN 9780123849533. [Google Scholar]
- Dong, C.; Mei, Y.; Chen, L. Simultaneous Determination of Sorbic and Benzoic Acids in Food Dressing by Headspace Solid-Phase Microextraction and Gas Chromatography. J. Chromatogr. A 2006, 1117, 109–114. [Google Scholar] [CrossRef]
- Vally, H.; Misso, N. La Adverse Reactions to the Sulphite Additives. Gastroenterol. Hepatol. Bed Bench 2012, 5, 16. [Google Scholar]
- Parke, D.V.; Lewis, D.F.V. Safety Aspects of Food Preservatives. Food Addit. Contam. 1992, 9, 561–577. [Google Scholar] [CrossRef]
- Vally, H.; Misso, N.L.A.; Madan, V. Clinical Effects of Sulphite Additives. Clin. Exp. Allergy 2009, 39, 1643–1651. [Google Scholar] [CrossRef]
- Garcia-Fuentes, A.; Wirtz, S.; Vos, E.; Verhagen, H. Short Review of Sulphites as Food Additives. Eur. J. Nutr. Food Saf. 2015, 5, 113–120. [Google Scholar] [CrossRef]
- Bartowsky, E.J. Bacterial Spoilage of Wine and Approaches to Minimize It. Lett. Appl. Microbiol. 2009, 48, 149–156. [Google Scholar] [CrossRef]
- Soliva-Fortuny, R.C.; Martín-Belloso, O. Microbiological and Biochemical Changes in Minimally Processed Fresh-Cut Conference Pears. Eur. Food Res. Technol. 2003, 217, 4–9. [Google Scholar] [CrossRef]
- Sapit, D.; Fagan, J.M. Microbial Safety of Unpasteurized Juice Increasing Consumer Awareness of the Pathogenic Risks of Unprocessed Fruit and Vegetable Juice. Available online: https://rucore.libraries.rutgers.edu/rutgers-lib/49196/PDF/1 (accessed on 27 May 2024).
- Stratford, M. Food and Beverage Spoilage Yeasts. In Yeasts in Food and Beverages; Querol, A., Fleet, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 335–379. ISBN 978-3-540-28388-1. [Google Scholar]
- Lenovich, L.M.; Buchanan, R.L.; Worley, N.J.; Restaino, L. Effect of Solute Type on Sorbate Resistance in Zygosaccharomyces Rouxji. J. Food Sci. 1988, 53, 914–916. [Google Scholar] [CrossRef]
- Dewanti-Hariyadi, R. Quality and Safety of Fruit Juices. Foodreview Int. 2014, 1, 54–57. [Google Scholar]
- Gould, G. Control with Naturally Occurring Antimicrobial Systems Icluding Bacteriolytic Enzymes. In Control of Foodborne Microorganisms; CRC Press: Boca Raton, FL, USA, 2001; pp. 2081–2302. [Google Scholar]
- Corbo, M.R.; Di Giulio, S.; Conte, A.; Speranza, B.; Sinigaglia, M.; Del Nobile, M.A. Thymol and Modified Atmosphere Packaging to Control Microbiological Spoilage in Packed Fresh Cod Hamburgers. Int. J. Food Sci. Technol. 2009, 44, 1553–1560. [Google Scholar] [CrossRef]
- Rico, D.; Martín-Diana, A.B.; Barat, J.M.; Barry-Ryan, C. Extending and Measuring the Quality of Fresh-Cut Fruit and Vegetables: A Review. Trends Food Sci. Technol. 2007, 18, 373–386. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martín-Belloso, O. Control of Pathogenic and Spoilage Microorganisms in Fresh-Cut Fruits and Fruit Juices by Traditional and Alternative Natural Antimicrobials. Compr. Rev. Food Sci. Food Saf. 2009, 8, 157–180. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V. Phenolic Compounds: From Plants to Foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- González-Rompinelli, E.M.; Rodríguez-Bencomo, J.J.; García-Ruiz, A.; Sánchez-Patán, F.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. A Winery-Scale Trial of the Use of Antimicrobial Plant Phenolic Extracts as Preservatives during Wine Ageing in Barrels. Food Control 2013, 33, 440–447. [Google Scholar] [CrossRef]
- Pinheiro Alves, M.; De Oliveira Moreira, R.; Henrique Rodrigues Júnior, P.; Carla de Freitas Martins, M.; Tuler Perrone, Í.; Fernandes de Carvalho, A. Soro De Leite: Tecnologias Para O Processamento De Coprodutos. Rev. Inst. Laticínios Cândido Tostes 2014, 69, 212. [Google Scholar] [CrossRef]
- Simonetti, G.; Brasili, E.; Pasqua, G. Antifungal Activity of Phenolic and Polyphenolic Compounds from Different Matrices of Vitis vinifera L. Against Human Pathogens. Molecules 2020, 25, 3748. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, H.J.; Min, H.Y.; Park, E.J.; Lee, K.M.; Ahn, Y.H.; Cho, Y.J.; Pyee, J.H. Antibacterial and Antifungal Activity of Pinosylvin, a Constituent of Pine. Fitoterapia 2005, 76, 258–260. [Google Scholar] [CrossRef]
- Pastorkova, E.; Zakova, T.; Landa, P.; Novakova, J.; Vadlejch, J.; Kokoska, L. Growth Inhibitory Effect of Grape Phenolics against Wine Spoilage Yeasts and Acetic Acid Bacteria. Int. J. Food Microbiol. 2013, 161, 209–213. [Google Scholar] [CrossRef]
- Li, D.D.; Zhao, L.X.; Mylonakis, E.; Hu, G.H.; Zou, Y.; Huang, T.K.; Yan, L.; Wang, Y.; Jiang, Y.Y. In Vitro and in Vivo Activities of Pterostilbene against Candida Albicans Biofilms. Antimicrob. Agents Chemother. 2014, 58, 2344–2355. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.G. Novel Antifungal Mechanism of Resveratrol: Apoptosis Inducer in Candida Albicans. Curr. Microbiol. 2014, 70, 383–389. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and Antifungal Properties of Resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef]
- Carrizo Flores, R.; Audicio, N.; Kurina Sanz, M.; Ponzi, M. Antibacterial Activity of Lime (Citrus × Aurantifolia) Essential Oil against Listeria Monocytogenes in Tyndallised Apple Juice. Rev. Soc. Venez. Microbiol. 2014, 34, 10–14. [Google Scholar]
- Siddiqua, S.; Anusha, B.A.; Ashwini, L.S.; Negi, P.S. Antibacterial Activity of Cinnamaldehyde and Clove Oil: Effect on Selected Foodborne Pathogens in Model Food Systems and Watermelon Juice. J. Food Sci. Technol. 2015, 52, 5834–5841. [Google Scholar] [CrossRef] [PubMed]
- Haque, R.; Sumiya, M.K.; Sakib, N.; Sarkar, O.S.; Siddique, T.T.I.; Hossain, S.; Islam, A.; Parvez, A.K.; Talukder, A.A.; Dey, S.K. Antimicrobial Activity of Jambul (Syzygium cumini) Fruit Extract on Enteric Pathogenic Bacteria. Adv. Microbiol. 2017, 07, 195–204. [Google Scholar] [CrossRef]
- Ağçam, E.; Dündar, B.; Polat, S.; Akyildiz, A. Recent Studies on Healthy Nutrients Changing in Fruit Juices Processed with Non-Thermal Technologies. In Health and Safety Aspects of Food Processing Technologies; Malik, A., Erginkaya, Z., Erten, H., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 235–271. ISBN 978-3-030-24903-8. [Google Scholar]
- Renard, C.M.G.C.; Maingonnat, J.F. Thermal Processing of Fruits and Fruit Juices. In Thermal Food Processing: New Technologies and Quality Issues, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 413–438. [Google Scholar] [CrossRef]
- Sun, D.-W. Thermal Food Processing: New Technologies and Quality Issues; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439876787. [Google Scholar]
- Braddock, J.R. Handbook of Citrus By-Products and Processing Technology; Wiley & Sons Ltd.: Hoboken, NJ, USA, 1999; ISBN 978-0-471-19024-0. [Google Scholar]
- Noci, F.; Riener, J.; Walkling-Ribeiro, M.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. Ultraviolet Irradiation and Pulsed Electric Fields (PEF) in a Hurdle Strategy for the Preservation of Fresh Apple Juice. J. Food Eng. 2008, 85, 141–146. [Google Scholar] [CrossRef]
- Tserennadmid, R.; Takó, M.; Galgóczy, L.; Papp, T.; Pesti, M.; Vágvölgyi, C.; Almássy, K.; Krisch, J. Anti Yeast Activities of Some Essential Oils in Growth Medium, Fruit Juices and Milk. Int. J. Food Microbiol. 2011, 144, 480–486. [Google Scholar] [CrossRef]
- Gehrke, I.T.S.; Neto, A.T.; Pedroso, M.; Mostardeiro, C.P.; Da Cruz, I.B.M.; Silva, U.F.; Ilha, V.; Dalcol, I.I.; Morel, A.F. Antimicrobial Activity of Schinus Lentiscifolius (Anacardiaceae). J. Ethnopharmacol. 2013, 148, 486–491. [Google Scholar] [CrossRef]
- Djouossi, M.G.; Tamokou, J.D.D.; Ngnokam, D.; Kuiate, J.R.; Tapondjou, L.A.; Harakat, D.; Voutquenne-Nazabadioko, L. Antimicrobial and Antioxidant Flavonoids from the Leaves of Oncoba spinosa Forssk. (Salicaceae). BMC Complement. Altern. Med. 2015, 15, 134. [Google Scholar] [CrossRef]
- Njateng, G.S.S.; Du, Z.; Gatsing, D.; Nanfack Donfack, A.R.; Feussi Talla, M.; Kamdem Wabo, H.; Tane, P.; Mouokeu, R.S.; Luo, X.; Kuiate, J.R. Antifungal Properties of a New Terpernoid Saponin and Other Compounds from the Stem Bark of Polyscias fulva Hiern (Araliaceae). BMC Complement. Altern. Med. 2015, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, H. Assessment of Different Antimicrobials to Inhibit the Growth of Zygosaccharomyces Rouxii Cocktail in Concentrated Apple Juice. Food Microbiol. 2020, 91, 103549. [Google Scholar] [CrossRef] [PubMed]
- Bonat Celli, G.; Ghanem, A.; Su-Ling Brooks, M. Influence of Freezing Process and Frozen Storage on the Quality of Fruits and Fruit Products. Food Rev. Int. 2016, 32, 280–304. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. In CLSI Document M07-A10; CLSI: Wayne, IN, USA, 2015; p. 35. ISBN 1-56238-988-2. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Method. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2021_manuals/Manual_v_9.0_EUCAST_Disk_Test_2021.pdf (accessed on 22 May 2021).
- Food and Drug Administration (FDA). Antimicrobial Susceptibility Test (AST) Systems—Class II Special Controls Guidance for Industry and FDA. Available online: https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/antimicrobial-susceptibility-test-ast-systems-class-ii-special-controls-guidance-industry-and-fda (accessed on 13 April 2021).
- International Organization for Standardization (ISO). Broth Micro-Dilution Reference Method for Testing the In Vitro Activity of Antimicrobial Agents against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. In Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Devices, Part 1; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-Infective Potential of Natural Products: How to Develop a Stronger in Vitro “Proof-of-Concept”. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and Roles of Stilbenes in Plants. Plant Sci. 2009, 177, 143–155. [Google Scholar] [CrossRef]
- Evans, S.M.; Marjorie, M.C. Plant Products as Antimicrobial Agents. Cosmet. Sci. Technol. Ser. 2006, 31, 205. [Google Scholar]
- Shwaiki, L.N.; Arendt, E.K.; Lynch, K.M.; Thery, T.L.C. Inhibitory Effect of Four Novel Synthetic Peptides on Food Spoilage Yeasts. Int. J. Food Microbiol. 2019, 300, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ou, Z.M.; Wu, C.D. Growth Media Affect Assessment of Antimicrobial Activity of Plant-Derived Polyphenols. Biomed. Res. Int. 2018, 2018, 8308640. [Google Scholar] [CrossRef]
- Plumed-Ferrer, C.; Väkeväinen, K.; Komulainen, H.; Rautiainen, M.; Smeds, A.; Raitanen, J.E.; Eklund, P.; Willför, S.; Alakomi, H.L.; Saarela, M.; et al. The Antimicrobial Effects of Wood-Associated Polyphenols on Food Pathogens and Spoilage Organisms. Int. J. Food Microbiol. 2013, 164, 99–107. [Google Scholar] [CrossRef]
- Kim, S.; Lee, D.G. Oxyresveratrol-Induced DNA Cleavage Triggers Apoptotic Response in Candida Albicans. Microbiology 2018, 164, 1112–1121. [Google Scholar] [CrossRef]
- Stas, J.; Marketa, H.; Jan, B.; Ladislav, K. Development of New In Vitro Colorimetric MTT Assay for High-Throughput Screening of Anti-Yeast Activity of Plant-Derived Preservative Candidates in an Orange Juice Food Model. Presented at 1st International Conference on Advanced Production and Processing (ICAPP), Novi Sad, Serbia, 10–11 October 2019. [Google Scholar]
- Davidson, P.M.; Cekmer, H.B.; Monu, E.A.; Techathuvanan, C. The Use of Natural Antimicrobials in Food: An Overview. In Handbook of Natural Antimicrobials for Food Safety and Quality; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 1–27. ISBN 9781782420422. [Google Scholar]
- Singh Tomar, R.; Sharma, P.; Sharma, A.; Mishra, R. Assessment and evaluation of methods used for antimicrobial activity assay: An overview. WJPR 2015, 4, 907–934. [Google Scholar]
- Rimando, A.M.; Cuendet, M.; Desmarchelier, C.; Mehta, R.G.; Pezzuto, J.M.; Duke, S.O. Cancer Chemopreventive and Antioxidant Activities of Pterostilbene, a Naturally Occurring Analogue of Resveratrol. J. Agric. Food Chem. 2002, 50, 3453–3457. [Google Scholar] [CrossRef] [PubMed]
- Remsberg, C.M.; Yáñez, J.A.; Ohgami, Y.; Vega-Villa, K.R.; Rimando, A.M.; Davies, N.M. Pharmacometrics of pterostilbene 169 Pharmacometrics of Pterostilbene: Preclinical Pharmacokinetics and Metabolism, Anticancer, Antiinflammatory, Antioxidant and Analgesic Activity. Phytother. Res. 2008, 22, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Roupe, K.; Remsberg, C.; Yanez, J.; Davies, N. Pharmacometrics of Stilbenes: Seguing Towards the Clinic. Curr. Clin. Pharmacol. 2008, 1, 81–101. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.S.; Yue, B.D.; Ho, P.C. Determination of Pterostilbene in Rat Plasma by a Simple HPLC-UV Method and Its Application in Pre-Clinical Pharmacokinetic Study. Biomed. Chromatogr. 2009, 23, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Kukreja, A.; Wadhwa, N. Therapeutic Role of Resveratrol and Piceatannol in Disease Prevention. J. Blood Disord. Transfus. 2014, 5, 240. [Google Scholar] [CrossRef]
- Nowak, R.; Olech, M.; Nowacka, N. Plant Polyphenols as Chemopreventive Agents. In Polyphenols in Human Health and Disease; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 2, pp. 1289–1307. ISBN 9780123984562. [Google Scholar]
- Piotrowska, H.; Kucinska, M.; Murias, M. Biological Activity of Piceatannol: Leaving the Shadow of Resveratrol. Mutat. Res. Rev. Mutat. Res. 2012, 750, 60–82. [Google Scholar] [CrossRef]
- Likhitwitayawuid, K. Oxyresveratrol: Sources, Productions, Biological Activities, Pharmacokinetics, and Delivery Systems. Molecules 2021, 26, 4212. [Google Scholar] [CrossRef]
- Kimani, B.G.; Kerekes, E.B.; Szebenyi, C.; Krisch, J.; Vágvölgyi, C.; Papp, T.; Takó, M. In Vitro Activity of Selected Phenolic Compounds against Planktonic and Biofilm Cells of Food-Contaminating Yeasts. Foods 2021, 10, 1652. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R. Wine Science: Principles, Practice, Perception, 2nd ed.; Academic Press: Cambridge, MA, USA, 2000; ISBN 9780080489865. [Google Scholar]
- Ribes, S.; Ruiz-Rico, M.; Pérez-Esteve, É.; Fuentes, A.; Barat, J.M. Enhancing the Antimicrobial Activity of Eugenol, Carvacrol and Vanillin Immobilised on Silica Supports against Escherichia Coli or Zygosaccharomyces Rouxii in Fruit Juices by Their Binary Combinations. LWT 2019, 113, 108326. [Google Scholar] [CrossRef]
- Sagdic, O.; Ozturk, I.; Ozkan, G.; Yetim, H.; Ekici, L.; Yilmaz, M.T. RP-HPLC-DAD Analysis of Phenolic Compounds in Pomace Extracts from Five Grape Cultivars: Evaluation of Their Antioxidant, Antiradical and Antifungal Activities in Orange and Apple Juices. Food Chem. 2011, 126, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.; Auld, D.; Klumpp, C.; Jadhav, A.; Zheng, W.; Thorne, N.; Austin, C.P.; Inglese, J.; Simeonov, A. A Robotic Platform for Quantitative High-Throughput Screening. Assay Drug Dev. Technol. 2008, 6, 637–657. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pastor, R.; Carrera-Pacheco, S.E.; Zúñiga-Miranda, J.; Rodríguez-Pólit, C.; Mayorga-Ramos, A.; Guamán, L.P.; Barba-Ostria, C. Current Landscape of Methods to Evaluate Antimicrobial Activity of Natural Extracts. Molecules 2023, 28, 1068. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Armengol, E.; Harmanci, M.; Laffleur, F. Current Strategies to Determine Antifungal and Antimicrobial Activity of Natural Compounds. Microbiol. Res. 2021, 252, 126867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hou, X.; Ma, L.; Shi, Y.; Zhang, D.; Qu, K. Analytical Methods for Assessing Antimicrobial Activity of Nanomaterials in Complex Media: Advances, Challenges, and Perspectives. J. Nanobiotechnol. 2023, 21, 97. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhao, P.T.; Yang, T.G.; Meng, Y.H. A Comparative Study of the Cloudy Apple Juice Sterilized by High-Temperature Short-Time or High Hydrostatic Pressure Processing: Shelf-Life, Phytochemical and Microbial View. Food Sci. Technol. 2022, 42, e63620. [Google Scholar] [CrossRef]
- Mandha, J.; Shumoy, H.; Matemu, A.O.; Raes, K. Characterization of Fruit Juices and Effect of Pasteurization and Storage Conditions on Their Microbial, Physicochemical, and Nutritional Quality. Food Biosci. 2023, 51, 102335. [Google Scholar] [CrossRef]
- Vikram, V.B.; Ramesh, M.N.; Prapulla, S.G. Thermal Degradation Kinetics of Nutrients in Orange Juice Heated by Electromagnetic and Conventional Methods. J. Food Eng. 2005, 69, 31–40. [Google Scholar] [CrossRef]
- Mattio, L.M.; Catinella, G.; Dallavalle, S.; Pinto, A. Stilbenoids: A Natural Arsenal against Bacterial Pathogens. Antibiotics 2020, 9, 336. [Google Scholar] [CrossRef]
- Mizuhara, N.; Inoue, M.; Kurotaki, H.; Matsumoto, K.; Ogita, A.; Fujita, K.-I. Pterostilbene, a Natural Methoxylated Analog of Resveratrol, Exhibits Antifungal Activity Induced by Reactive Oxygen Species Production and Plasma Membrane Injury. Appl. Microbiol. 2023, 3, 666–674. [Google Scholar] [CrossRef]
Chemical Structure | R1 | R2 | R3 | R4 | R5 | Name | Anti-Yeast Activity |
---|---|---|---|---|---|---|---|
Stilbenes | |||||||
OH | OH | OH | H | OH | oxyreseveratrol | Yes | |
OH | OH | OH | OH | H | piceatannol | Yes | |
OCH3 | OCH3 | OH | H | H | pterostilbene | Yes | |
OH | OH | OH | H | H | resveratrol | No | |
Phenolic acids | |||||||
OCH3 | OH | OH | - | - | ferulic acid | Yes | |
OH | OH | quinic acid | - | - | chlorogenic acid | No | |
Flavonoids | |||||||
OH | H | - | - | - | luteolin | No | |
H | OH | - | - | - | myricetin | No | |
OH | - | - | - | - | eriodictyol | No | |
H | - | - | - | - | naringenin | No | |
- | - | - | - | - | phloridzin | No | |
Diarylheptanoids | |||||||
- | - | - | - | - | curcumin a | No |
Compound | Yeast/Juice Food Model/MIC a (μg/mL) | |||||
---|---|---|---|---|---|---|
Saccharomyces cerevisiae | Zygosaccharomyces bailii | Zygosaccharomyces rouxii | ||||
Orange | Apple | Orange | Apple | Orange | Apple | |
Ferulic acid | 1024 | 512 | 1024 | 512 | 512 | 512 |
Oxyresveratrol | 512 | 512 | 512 | 512 | 512 | 1024 |
Piceatannol | 512 | 512 | 512 | 256 | 256 | 512 |
Pterostilbene | 32 | 32 | 32 | 64 | 32 | 128 |
Sodium metabisulfite b | 512 | 1024 | >1024 | >1024 | 1024 | 512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staš, J.; Houdkova, M.; Banout, J.; Duque-Dussán, E.; Roubík, H.; Kokoska, L. Adaptation and Validation of a Modified Broth Microdilution Method for Screening the Anti-Yeast Activity of Plant Phenolics in Apple and Orange Juice Models. Life 2024, 14, 938. https://doi.org/10.3390/life14080938
Staš J, Houdkova M, Banout J, Duque-Dussán E, Roubík H, Kokoska L. Adaptation and Validation of a Modified Broth Microdilution Method for Screening the Anti-Yeast Activity of Plant Phenolics in Apple and Orange Juice Models. Life. 2024; 14(8):938. https://doi.org/10.3390/life14080938
Chicago/Turabian StyleStaš, Jan, Marketa Houdkova, Jan Banout, Eduardo Duque-Dussán, Hynek Roubík, and Ladislav Kokoska. 2024. "Adaptation and Validation of a Modified Broth Microdilution Method for Screening the Anti-Yeast Activity of Plant Phenolics in Apple and Orange Juice Models" Life 14, no. 8: 938. https://doi.org/10.3390/life14080938
APA StyleStaš, J., Houdkova, M., Banout, J., Duque-Dussán, E., Roubík, H., & Kokoska, L. (2024). Adaptation and Validation of a Modified Broth Microdilution Method for Screening the Anti-Yeast Activity of Plant Phenolics in Apple and Orange Juice Models. Life, 14(8), 938. https://doi.org/10.3390/life14080938