Analysis of Lignan Content and Rhizosphere Microbial Diversity of Schisandra chinensis (Turcz.) Baill. Resources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Used in the Experiment
2.2. Sampling Method
2.3. Fruit Characteristics Analysis
2.4. Quantitative Analysis of Lignans
2.4.1. Preparing the Standard Solution and Standard Curves
2.4.2. Preparing and Testing Sample Solution, and Data Analysis
2.5. Rhizosphere Microbial Sequencing Analysis
2.5.1. Total DNA Extraction, PCR Amplification, and Sequencing
2.5.2. Data Processing
2.5.3. Diversity Analysis
3. Results
3.1. Analysis of Schisandra Chinensis Fruit Characteristics
3.2. Differential Analysis of Schisandra Lignan Component Content
3.3. Rhizosphere Microbial Community Composition of Schisandra
3.4. Rhizosphere Soil Microbial Diversity of Schisandra
3.5. Correlation Analysis between Rhizosphere Microorganisms and Schisandra Lignans
3.6. Functional Prediction Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanck, J.L.; Burgos, R.A.; Ahumada, F. Schisandra chinensis (Turcz.) Baill. Fitoterapia 1999, 70, 451. [Google Scholar] [CrossRef]
- Szopa, A.; Ekiert, R.; Ekiert, H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev. 2017, 16, 195–218. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Zhou, L.; Lou, Y.; Yang, X.; Zhao, H.; Ouyang, X.; Huang, Y. An analysis of the nutritional effects of Schisandra chinensis components based on mass spectrometry technology. Frontiers 2023, 10, 1227027. [Google Scholar] [CrossRef] [PubMed]
- Kopustinskiene, D.M.; Bernatoniene, J. Antioxidant effects of Schisandra chinensis fruits and their active constituents. Antioxidants 2021, 10, 620. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G. Pharmacology of Schisandra chinensis Bail: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008, 118, 183. [Google Scholar] [CrossRef] [PubMed]
- National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2010; Volume 1. (In Chinese)
- Szopa, A.; Kokotkiewicz, A.; Luzkiewicz, M.; Ekiert, H. Schisandra lignans production regulated by different bioreactor type. J. Biotechnol. 2017, 247, 11–17. [Google Scholar] [CrossRef]
- Zhu, P.; Li, J.; Fu, X.; Yu, Z. Schisandra fruits for the management of drug-induced liver injury in China: A review. Phytomedicine 2019, 59, 152760. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Zakłos-szyda, M.; Błasiak, J.; Nowak, A.; Zhang, Z.; Zhang, B. Potential of Schisandra chinensis (Turcz.) Baill in human health and nutrition: A review of current knowledge and therapeutic perspectives. Nutrients 2019, 4, 333. [Google Scholar]
- Yang, K.; Qiu, J.; Huang, Z.; Yu, Z.; Wang, W.; Hu, H.; You, Y. A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill and Schisandra sphenanthera Rehd et. Wils. J. Ethnopharmacol. 2022, 284, 114759. [Google Scholar] [CrossRef]
- Kim, H.W.; Shin, J.H.; Lee, M.K.; Jang, G.H.; Lee, S.H.; Jang, H.H.; Jeong, S.T.; Kim, J.B. Qualitative and Quantitative Analysis of Dibenzocyclooctadiene Lignans for the Fruits of Korean “Omija” (Schisandra chinensis). Korean J. Med. Crop Sci. 2015, 23, 385–394. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Deeepa, P.; Kim, M.; Park, S.J.; Kim, S. An overview of neuroprotective and cognitive enhancement properties of lignans from Schisandra chinensis. Biomed. Pharmacother. 2018, 97, 958. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, B.; Shan, Y.; Wang, X.; Lv, X.; Mohamed, J.; Li, H.; Wang, C.; Chen, J.; Sun, J. Metabolic mapping of Schisandra chinensis lignans and their metabolites in rats using a metabolomic approach based on HPLC with quadrupole time-of-flight MS/MS spectrometry. J. Sep. Sci. 2020, 43, 378. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, T.; Gong, G.; Li, Y.; Zhang, J.; Wu, B.; Bi, K.; Jia, Y. Antidepressant-like effects of Schisandrin on lipopolysaccharide-induced mice: Gut microbiota, short chain fatty acid and TLR4/NF-κB signaling pathway. Int. Immunopharmacol. 2020, 89, 107029. [Google Scholar] [CrossRef]
- Wu, Z.; Jia, M.; Zhao, W.; Huang, X.; Yang, X.; Chen, D.; Qiaolongbatu, X.; Li, X.; Wu, J.; Qian, F.; et al. Schisandrol A, the main active ingredient of Schisandrae Chinensis Fructus, inhibits pulmonary fibrosis through suppression of the TGF-β signaling pathway as revealed by UPLC-Q-TOF/MS, network pharmacology and experimental verification. J. Ethnopharmacol. 2022, 289, 115031. [Google Scholar] [CrossRef]
- Gong, S.; Liu, J.; Wan, S.; Yang, W.; Zhang, Y.; Yu, B.; Li, F.; Kou, J. Schisandrol A attenuates myocardial ischemia/reperfusion-induced myocardial apoptosis through upregulation of 14-3-3θ. Oxid. Med. Cell Longev. 2021, 26, 5541753. [Google Scholar] [CrossRef]
- Takanche, J.S.; Kim, J.E.; Han, S.H.; Yi, H.K. Effect of gomisin A on osteoblast differentiation in high glucose-mediated oxidative stress. Phytomedicine 2020, 66, 153107. [Google Scholar] [CrossRef]
- Wang, T.; Liu, J.; Huang, X.; Zhang, C.; Shanguan, M.; Chen, J.; Wu, S.; Chen, M.; Yang, Z.; Zhao, S. Gomisin A enhances the antitumor effect of paclitaxel by suppressing oxidative stress in ovarian cancer. Oncol. Rep. 2022, 48, 202. [Google Scholar] [CrossRef]
- Kee, J.Y.; Han, Y.H.; Mun, J.G.; Park, S.H.; Jeon, H.D.; Hong, S.H. Gomisin A suppresses colorectal lung metastasis by inducing ampk/p38-mediated apoptosis and decreasing metastatic abilities of colorectal cancer cells. Front. Pharmacol. 2018, 9, 986. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, X.; Liu, J.; Yuan, L.; Yuan, L.; Liu, J.; Wang, C.; Sun, J.; Chen, J.; Jing, S.; et al. Schisantherin A improves learning and memory abilities partly through regulating the Nrf2/Keap1/ARE signaling pathway in chronic fatigue mice. Exp. Ther. Med. 2021, 21, 385. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, Z.; Hong, Y.; Feng, L.; Su, Y.; Xu, D. Schisandrin A alleviates mycophenolic acid-induced intestinal toxicity by regulating cell apoptosis and oxidative damage. Toxicol. Mech. Methods 2022, 32, 580–587. [Google Scholar] [CrossRef]
- Xu, D.; Liu, J.; Ma, H.; Guo, W.; Wang, J.; Kan, X.; Li, Y.; Gong, Q.; Cao, Y.; Cheng, J.; et al. Schisandrin A protects against lipopolysaccharide-induced mastitis through activating Nrf2 signaling pathway and inducing autophagy. Int. Immunopharmacol. 2020, 78, 105983. [Google Scholar] [CrossRef]
- Zong, W.; Gouda, M.; Cai, E.; Wang, R.; Xu, W.; Wu, Y.; Munekata, P.E.; Lorenzo, M. The antioxidant phytochemical Schisandrin A promotes neural cell proliferation and differentiation after ischemic brain injury. Molecules 2021, 26, 7466. [Google Scholar] [CrossRef]
- Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.; et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 2018, 69, 896–904. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, S.; Luo, G.; Cheng, B.C.; Zhang, C.; Wang, Y.; Qiu, X.; Zhou, X.; Wang, Q.; Song, X. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism 2022, 131, 155200. [Google Scholar] [CrossRef]
- Nasser, M.I.; Zhu, S.; Chen, C.; Zhao, M.; Huang, H.; Zhu, P. A comprehensive review on Schisandrin B and its biological properties. Oxidative Med. Cell. Longev. 2020, 14, 2172740. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Choi, S.I. Schisandrin C isolated from Schisandra chinensis fruits inhibits lipid accumulation by regulating adipogenesis and lipolysis through AMPK signaling in 3T3-L1 adipocytes. J. Food Biochem. 2022, 46, e14454. [Google Scholar] [CrossRef]
- Guo, M.; An, F.; Yu, H.; Wei, X.; Hong, M.; Lu, Y. Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activationmediated IL-1β secretion and pyroptosis. Biomed. Pharmacother. 2017, 96, 129–136. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Zhang, D.Y.; Kuang, H.; Xia, Y. Low-polymerization compositional fingerprinting for characterization of Schisandra polysaccharides by hydrophilic interaction liquid chromatography-electrospray mass spectrometry. Int. J. Biol. Macromol. 2021, 185, 983–996. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, Y.; Jang, J.H.; Son, Y.; Kim, J.A.; Lee, S.; Kim, H. The growth characteristics and lignans contents of Schisandra chinensis fruits from diferent cultivation regions. Appl. Biol. Chem. 2022, 65, 77. [Google Scholar] [CrossRef]
- Shang, J.; Zhao, Q.; Yan, P.; Sun, H.; Sun, M.; Sun, H.; Liang, H.; Zhang, D.; Qian, Z.; Cui, L. Environmental factors influencing potential distribution of Schisandra sphenanthera and its accumulation of medicinal components. Frontiers 2023, 14, 1302417. [Google Scholar] [CrossRef]
- Edwardsa, J.; Johnsona, C.; Santosantos-mesellÍna, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, Y.; Zhang, P.; Trivedi, P.; Riera, N.; Wang, Y.; Liu, X.; Fan, G.; Tang, J.; Coletta-Filho, H.D. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 2018, 9, 4894. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jaramillo, J.E.; Carrión, V.J.; Bosse, M.; Ferrão, L.F.; de Hollander, M.; Garcia, A.A.; Ramírez, C.A.; Mendes, R.P.; Raaijmakers, J.M. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 2017, 11, 2244–2257. [Google Scholar] [CrossRef]
- Dong, L.; Xu, J.; Li, Y.; Fang, H.; Niu, W.; Li, X.; Zhang, Y.; Ding, W.; Chen, S. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil. Biol. Biochem. 2018, 125, 64. [Google Scholar] [CrossRef]
- Ying, Y.; Ding, W.; Li, Y. Characterization of Soil Bacterial Communities in Rhizospheric and Nonrhizospheric Soil of Panax ginseng. Biochem. Genet. 2012, 50, 848. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Guo, X.; Lei, Z.; Wang, Y.; Yang, Z.; Niu, J.; Liang, J. Screening of high-efficiency nitrogen-fixing bacteria from the traditional Chinese medicine plant Astragalus mongolicus and its effect on plant growth promotion and bacterial communities in the rhizosphere. BMC Microbiol. 2023, 23, 292. [Google Scholar] [CrossRef]
- Sun, B.; Yan, Y.; Ma, M.; Wen, J.; He, Y.; Sun, Y.; Yuan, P.; Xu, P.; Yang, Y.; Zhao, Z.; et al. Based on HPLC and HS-GC-IMS Techniques, the Changes in the Internal Chemical Components of Schisandra chinensis (Turcz.) Baill. Fruit at Different Harvesting Periods Were Analyzed. Molecules 2024, 29, 1893. [Google Scholar] [CrossRef]
- Wang, J. Optimization of Extraction Process of Total Lignans from Schisandra chinensis and Evaluation of Preparation Quality; Northwest A&F University: Yangling, China, 2022. (In Chinese) [Google Scholar]
- Liu, C.; Zhao, D.; Ma, W.; Guo, Y.; Wang, A.; Wang, Q.; Lee, D. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Stackebrandt, E.; Goebel, B.M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Wang, Q. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537. [Google Scholar] [CrossRef]
- Ai, J.; Wang, Y.; Wang, Z.; Wang, Z.; Sun, D.; Shi, G.; Liu, X.; Xu, P.; Guo, J. Chinese Schisandra Germplasm Resources; China griculture Press: Beijing, China, 2022. (In Chinese) [Google Scholar]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, Y.; Son, Y.; Park, G.H.; Kwon, H.Y.; Park, Y.; Park, E.; Lee, S.; Kim, H. Multivariate analysis among marker compounds environmental factors, and fruit quality of Schisandra chinensis at different locations in south Korea. Plants 2023, 12, 3877. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Tao, X.; Pan, Y.; Yuan, R.; Li, H.; Sun, J.; Ju, W.; Chen, J.; Wang, C. Comparison of contents and effects of lignans from 4 strains of Schisandra chinensis. J. Jilin Univ. 2019, 45, 300. (In Chinese) [Google Scholar]
- Zhang, J.; Zhao, S.; Guo, X.; Chen, Y.; Qi, Y.; Liu, Y. Optimization of ultrasonic-microwave synergistic extraction and determination of main components of total lignans in Schisandra chinensis (Turcz.) Baill fruits. J. Shandong First Med. Univ. Shandong Acad. Med. Sci. 2023, 44, 327. (In Chinese) [Google Scholar]
- Mu, M.; Zhang, G.; Zhang, H.; Yang, M.; Guo, D.; Zhou, N. Correlation between rhizospheric microorganisms distribution and alkaloid content of Fritillaria taipaiensis. China J. Chin. Mater. Medica 2019, 44, 2231. (In Chinese) [Google Scholar]
- Tang, J.; Han, Y.; Pei, L.; Gu, W.; Qiu, R.; Wang, S.; Ma, Q.; Gan, Y.; Tang, M. Comparative analysis of the rhizosphere microbiome and medicinally active ingredients of Atractylodes lancea from different geographical origins. Open Life Sci. 2023, 18, 20220769. [Google Scholar] [CrossRef]
- Yang, K.; Zheng, Y.; Sun, K.; Wu, X.; Zhang, Z.; He, C.; Xiao, P. Rhizosphere microbial markers (micro-markers): A new physical examination indicator for traditional Chinese medicines. Chin. Herbal. Med. 2024, 16, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Fan, Y.; Zhou, Z.; Xu, S.; Zhou, P.; Zhou, J.; Wang, R. Peanut rotation and flooding induce rhizobacteriome variation with opposing influences on the growth and medicinal yield of Corydalis yanhusuo. Front. Plant Sci. 2021, 12, 779302–779314. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, D.; Gao, H.; Li, Y.; Chen, W.; Jiao, S.; Wei, G. Regulation of soil micro-foodwebs to root secondary metabolites in cultivated and wild licorice plants. Sci. Total Environ. 2022, 828, 154302–154314. [Google Scholar] [CrossRef]
- Tian, L.; Shi, S.; Ji, L.; Nasir, F.; Ma, L.; Tian, C. Effect of the biocontrol bacterium Bacillus amyloliquefaciens on the rhizosphere in ginseng plantings. Int. Microbiol. 2018, 21, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Männistö, M.K.; Rawat, S.; Starovoytov, V.; Häggblom, M.M. Granulicella arctica sp. nov., Granulicella mallensis sp. nov., Granulicella tundricola sp. nov. and Granulicella sapmiensis sp. nov., novel acidobacteria from tundra soil. Int. J. Syst. Evol. Microbiol. 2012, 62, 2097–2106. [Google Scholar] [CrossRef]
- Eichorst, S.A.; Trojan, D.; Huntemann, M.; Clum, A.; Pillay, M.; Palaniappan, K.; Varghese, N.; Mikhailova, N.; Stamatis, D.; Reddy, T.B. One complete and seven draft genome sequences of subdivision 1 and 3 Acidobacteria isolated from soil. Microbiol. Resour. Announc. 2020, 9, e01087-19. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.L.; Challacombe, J.F.; Janssen, P.H.; Henrissat, B.; Coutinho, P.M.; Wu, M.; Xie, G.; Haft, D.H.; Sait, M.; Badger, J.; et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 2009, 75, 2046–2056. [Google Scholar] [CrossRef] [PubMed]
- Crits-Christoph, A.; Diamond, S.; Butterfield, C.N.; Thomas, B.C.; Banfield, J.F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 2018, 558, 440–444. [Google Scholar] [CrossRef]
- Pan, Z.; Fu, J.; Zhou, R. Preliminary Study of Soil Fungi in Schisandra chinensis Garden and Screening Antagonism Strains. J. Jilin Agric. Univ. 2007, 29, 636. (In Chinese) [Google Scholar]
- Tong, B. Correlation between Rhizosphere Microorganisms from Cinnamomum Migao and Its Medicinal Active Components in Fruits; Guizhou University: Guiyang, China, 2020. (In Chinese) [Google Scholar]
- Li, G. Rhizosphere Microbial Community Diversity of Radix Astragali and the Dynamic Changes of Major Flavonoids Content; Neimenggu University: Huhehaote, China, 2016. (In Chinese) [Google Scholar]
- Zhou, N.; Mei, C.; Zhu, X.; Zhao, J.; Ma, M.; Li, W. Research progress of rhizosphere microorganisms in Fritillaria L. medicinal plants. Front. Bioeng. Biotechnol. 2022, 10, 1054757. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wei, J.; Bai, S.; Qiang, Y.; Cui, L.; Liu, S. Characteristics of Rhizosphere Soil Fungi Community of Schisandra Sphenanthera Rehd.Et Wils. J. Yan’an Univ. (Nat. Sci. Ed.) 2020, 39, 15. [Google Scholar]
pH | Organic Matter (OM) | Total Phosphorus (TP) | Total Potassium (TK) | Total Nitrogen (TN) | Alkaline Hydrolysable Nitrogen (AN) | Available Phosphorus (AP) | Available Potassium (AK) |
---|---|---|---|---|---|---|---|
5.31 | 3.27% | 807.06 mg/kg | 18,441.81 mg/kg | 1922.6 mg/kg | 164.02 mg/kg | 142.57 mg/kg | 114.82 mg/kg |
Time (t/s) | Velocity of Flow (mL/min) | A (%) | B (%) |
---|---|---|---|
0 | 1.0 | 45 | 55 |
20 | 1.0 | 25 | 75 |
40 | 1.0 | 22 | 78 |
45 | 1.0 | 22 | 78 |
47 | 1.0 | 5 | 95 |
52 | 1.0 | 5 | 95 |
55 | 1.0 | 45 | 55 |
60 | 1.0 | 45 | 55 |
Sample ID | Length of Fruit Bunch (cm) | Stalk Length of Fruit Bunch (cm) | Number of Fruits per Fruit Bunch | Weight of Fruit Bunch (g) | Width of Fruit (mm) | Length of Fruit (mm) | Fresh Weight of Fruit (g) | Dry Weight of Fruit (g) |
---|---|---|---|---|---|---|---|---|
ZJ19 | 6.900 ± 0.964 b | 2.567 ± 0.058 d | 21.0 ± 2.646 bc | 21.140 ± 5.142 abc | 10.633 ± 0.850 c | 10.533 ± 0.351 abc | 0.983 ± 0.121 a | 0.220 ± 0.026 a |
ZJ20 | 9.167 ± 0.896 ab | 3.233 ± 0.551 cd | 25.0 ± 5.568 abc | 24.753 ± 5.973 abc | 12.033 ± 2.201 abc | 11.533 ± 1.419 abc | 0.993 ± 0.107 a | 0223 ± 0.038 a |
ZJ21 | 11.800 ± 4.190 a | 3.833 ± 1.716 bcd | 29.3 ± 12.055 ab | 26.527 ± 8.135 ab | 13.700 ± 0.947 ab | 12.223 ± 0.127 ab | 1.012 ± 0.128 a | 0.227 ± 0.025 a |
ZJ22 | 9.033 ± 1.966 ab | 3.200 ± 0.346 cd | 26.3 ± 1.528 abc | 20.800 ± 5.888 abcd | 12.813 ± 1.261 ab | 10.857 ± 1.231 abc | 0.844 ± 0.024 abc | 0.153 ± 0.006 bc |
ZJ23 | 7.867 ± 0.902 b | 2.867 ± 0.153 cd | 20.0 ± 5.196 bc | 15.247 ± 5.342 cd | 13.317 ± 1.136 ab | 11.323 ± 1.181 abc | 0.780 ± 0.091 bc | 0.190 ± 0.020 ab |
ZJ24 | 12.433 ± 1.102 a | 7.900 ± 0.346 a | 18.7 ± 5.508 c | 17.030 ± 5.434 bcd | 14.017 ± 0.594 a | 12.383 ± 1.515 a | 0.994 ± 0.046 a | 0.167 ± 0.012 bc |
ZJ25 | 12.033 ± 0.950 a | 5.333 ± 1.531 b | 24.7 ± 2.082 abc | 20.373 ± 7.070 abcd | 10.650 ± 0.490 c | 10.227 ± 0.816 bc | 0.875 ± 0.085 abc | 0.157 ± 0.021 bc |
ZJ26 | 10.067 ± 1.106 ab | 4.433 ± 1.436 bc | 19.0 ± 3.606 bc | 10.453 ± 0.739 d | 11.783 ± 0.667 bc | 9.907 ± 0.895 c | 0.723 ± 0.118 c | 0.133 ± 0.021 c |
ZJ27 | 9.600 ± 1.253 ab | 2.933 ± 0.611 cd | 32.0 ± 2.646 a | 29.467 ± 1.559 a | 12.080 ± 0.806 abc | 10.940 ± 0.985 abc | 0.928 ± 0.088 ab | 0.170 ± 0.020 bc |
Mean | 9.878 | 4.033 | 24 | 20.643 | 12.336 | 11.103 | 0.904 | 0.182 |
RSD | 4.61% | 8.65% | 5.14% | 6.78% | 2.33% | 2.06% | 2.66% | 3.85% |
Sample ID | Schisandrol A (mg/g) | Schisandrol B (mg/g) | Schisantherin A (mg/g) | Schisandrin A (mg/g) | Schisandrin B (mg/g) | Schisandrin C (mg/g) | Total Lignans (mg/g) |
---|---|---|---|---|---|---|---|
ZJ19 | 5.730 ± 0.053 bcd | 1.609 ± 0.120 b | 0.919 ± 0.085 e | 1.380 ± 0.196 cd | 3.861 ± 0.269 a | 0.342 ± 0.016 b | 13.841 ± 0423 a |
ZJ20 | 5.730 ± 0.234 bcd | 1.884 ± 0.148 a | 0.698 ± 0.068 f | 1.098 ± 0.144 ef | 2.789 ± 0.197 b | 0.419 ± 0.028 a | 12.619 ± 0.328 b |
ZJ21 | 6.014 ± 0.133 b | 0.402 ± 0.027 e | 2.091 ± 0.050 a | 1.466 ± 0.020 c | 2.208 ± 0.039 bc | 0.0803 ± 0.002 g | 12.261 ± 0.143 b |
ZJ22 | 5.626 ± 0.056 cd | 1.104 ± 0.055 c | 1.029 ± 0.008 d | 1.202 ± 0.004 de | 1.126 ± 0.013 e | 0.062 ± 0.004 g | 10.149 ± 0.015 d |
ZJ23 | 5.510 ± 0.15 d | 0.390 ± 0.029 e | 0.597 ± 0.059 g | 1.360 ± 0.185 cd | 1.725 ± 0.115 cde | 0.258 ± 0.013 c | 9.839 ± 3.204 d |
ZJ24 | 5.536 ± 0.317 d | 1.550 ± 0.116 b | 0.876 ± 0.083 e | 1.130 ± 0.168 e | 1.235 ± 1.084 e | 0.219 ± 0.017 d | 11.430 ± 0.481 c |
ZJ25 | 5.133 ± 0.016 e | 0.773 ± 0.036 d | 0.737 ± 0.010 f | 0.888 ± 0.015 f | 1.954 ± 0.031 cd | 0.242 ± 0.004 cd | 9.726 ± 0.036 d |
ZJ26 | 5.927 ± 0.074 bc | 0.361 ± 0.046 e | 1.131 ± 0.004 c | 2.034 ± 0.035 b | 1.398 ± 0.007 de | 0.169 ± 0.003 e | 11.020 ± 0.041 c |
ZJ27 | 6.345 ± 0.270 a | 0.707 ± 0.093 d | 1.597 ± 0.051 b | 2.959 ± 0.116 a | 2.315 ± 0.060 bc | 0.107 ± 0.004 f | 14.031 ± 0.336 a |
RSD | 6.33% | 58.06% | 43.30% | 41.11% | 36.62% | 54.97% | 14.00% |
Sample ID | Shannon | Chao | Coverage |
---|---|---|---|
ZJ19 | 6.95 ± 0.04 a | 4985 ± 142.2 b | 0.96 ± 0.001 bc |
ZJ20 | 6.37 ± 0.31 c | 3925 ± 288.6 c | 0.97 ± 0.002 a |
ZJ21 | 6.54 ± 0.02 bc | 3952 ± 75.97 c | 0.97 ± 0.001 a |
ZJ22 | 6.89 ± 0.09 ab | 5789 ± 71.82 a | 0.96 ± 0.0003 d |
ZJ23 | 6.72 ± 0.23 abc | 4684 ± 450.6 b | 0.96 ± 0.003 bc |
ZJ24 | 6.58 ± 0.11 bc | 4551 ± 364.6 b | 0.96 ± 0.003 bc |
ZJ25 | 6.56 ± 0.06 bc | 4954 ± 50.08 b | 0.96 ± 0.0003 c |
ZJ26 | 6.67 ± 0.09 abc | 4467 ± 210.9 b | 0.97 ± 0.001 b |
ZJ27 | 6.50 ± 0.07 c | 4531 ± 72.63 b | 0.97 ± 0.001 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, Y.; Li, C.; Liu, Y.; Fan, S.; Yan, Y.; Tian, T.; Li, J.; Wang, Y.; Qin, H.; et al. Analysis of Lignan Content and Rhizosphere Microbial Diversity of Schisandra chinensis (Turcz.) Baill. Resources. Life 2024, 14, 946. https://doi.org/10.3390/life14080946
Wang Y, Yang Y, Li C, Liu Y, Fan S, Yan Y, Tian T, Li J, Wang Y, Qin H, et al. Analysis of Lignan Content and Rhizosphere Microbial Diversity of Schisandra chinensis (Turcz.) Baill. Resources. Life. 2024; 14(8):946. https://doi.org/10.3390/life14080946
Chicago/Turabian StyleWang, Yanli, Yiming Yang, Changyu Li, Yingxue Liu, Shutian Fan, Yiping Yan, Taiping Tian, Jiaqi Li, Yue Wang, Hongyan Qin, and et al. 2024. "Analysis of Lignan Content and Rhizosphere Microbial Diversity of Schisandra chinensis (Turcz.) Baill. Resources" Life 14, no. 8: 946. https://doi.org/10.3390/life14080946
APA StyleWang, Y., Yang, Y., Li, C., Liu, Y., Fan, S., Yan, Y., Tian, T., Li, J., Wang, Y., Qin, H., Zhang, B., Lu, W., & Xu, P. (2024). Analysis of Lignan Content and Rhizosphere Microbial Diversity of Schisandra chinensis (Turcz.) Baill. Resources. Life, 14(8), 946. https://doi.org/10.3390/life14080946