Expression Changes of miRNAs in Humans and Animal Models of Amyotrophic Lateral Sclerosis and Their Potential Application for Clinical Diagnosis
Abstract
:1. Introduction
1.1. Hypotheses of Pathogenesis
1.2. miRNAs as Potential Biomarkers for ALS
1.3. Roles of miRNAs in Pathogenesis of ALS
2. miRNA Research in Animal Models
2.1. Common Animal Models
2.2. Research of miRNAs in Animal Models
2.2.1. Expression of miRNAs in the SOD1 Mouse Model
2.2.2. Expression of miRNAs in the Fus Mouse Model
2.2.3. Expression of miRNAs in the TDP-43 (Q331K) Mouse Model
2.2.4. Expression of miRNAs in the C9orf Mouse Model
3. Application Potential of miRNAs for Clinical Diagnosis
3.1. Expression of miRNAs in iPSC-Derived MNs of ALS Patients
3.2. Expression of miRNAs in ALS Patients
3.3. Prediction of miRNAs by Bioinformatic Technology
4. Conclusions
Funding
Conflicts of Interest
References
- Van Es, M.A.; Hardiman, O.; Chio, A.; Al-Chalabi, A.; Pasterkamp, R.J.; Veldink, J.H.; van den Berg, L.H. Amyotrophic lateral sclerosis. Lancet 2017, 390, 2084–2098. [Google Scholar] [CrossRef]
- Ustyantseva, E.I.; Medvedev, S.P.; Zakian, S.M. Studying ALS: Current approaches, effect on potential treatment strategy. Adv. Exp. Med. Biol. 2020, 1241, 195–217. [Google Scholar]
- Feldman, E.L.; Goutman, S.A.; Petri, S.; Mazzini, L.; Savelieff, M.G.; Shaw, P.J.; Sobue, G. Amyotrophic lateral sclerosis. Lancet 2022, 400, 1363–1380. [Google Scholar] [CrossRef] [PubMed]
- Martinez, B.; Peplow, P.V. MicroRNA expression in animal models of amyotrophic lateral sclerosis and potential therapeutic approaches. Neural Regen. Res. 2022, 17, 728–740. [Google Scholar]
- Ajroud-Driss, S.; Siddique, T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim. Biophys. Acta 2015, 1852, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Mathis, S.; Goizet, C.; Soulages, A.; Vallat, J.-M.; Masson, G.L. Genetics of amyotrophic lateral sclerosis: A review. J. Neurol. Sci. 2019, 399, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Dardiotis, E.; Aloizou, A.M.; Siokas, V.; Patrinos, G.P.; Deretzi, G.; Mitsias, P.; Aschner, M.; Tsatsakis, A. The role of microRNAs in patients with amyotrophic lateral sclerosis. J. Mol. Neurosci. 2018, 66, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Rusina, R.; Vandenberghe, R.; Bruffaerts, R. Cognitive and behavioral manifestations in ALS: Beyond motor system involvement. Diagnostics 2021, 11, 624. [Google Scholar] [CrossRef]
- Niccolini, B.; Palmieri, V.; De Spirito, M.; Papi, M. Opportunities offered by graphene nanoparticles for microRNAs delivery for amyotrophic lateral sclerosis treatment. Materials 2021, 15, 126. [Google Scholar] [CrossRef]
- Shibuya, K.; Otani, R.; Suzuki, Y.I.; Kuwabara, S.; Kiernan, M.C. Neuronal hyperexcitability and free radical toxicity in amyotrophic lateral sclerosis: Established and future targets. Pharmaceuticals 2022, 15, 433. [Google Scholar] [CrossRef]
- Kassubek, J.; Pagani, M. Imaging in amyotrophic lateral sclerosis: MRI and PET. Curr. Opin. Neurol. 2019, 32, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Qin, X.; Chang, X.; Wang, H.; Guo, J.; Zhang, W. Neurofilament markers in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J. Cell. Mol. Med. 2022, 26, 583–587. [Google Scholar] [CrossRef]
- Ricci, C.; Marzocchi, C.; Battistini, S. MicroRNAs as biomarkers in amyotrophic lateral sclerosis. Cells 2018, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bosch, L.; Van Damme, P.; Bogaert, E.; Robberecht, W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim. Biophys. Acta 2006, 1762, 1068–1082. [Google Scholar] [CrossRef] [PubMed]
- Oberstadt, M.; Claßen, J.; Arendt, T.; Holzer, M. TDP-43 and cytoskeletal proteins in ALS. Mol. Neurobiol. 2018, 55, 3143–3151. [Google Scholar] [CrossRef]
- Zuo, X.; Zhou, J.; Li, Y.; Wu, K.; Chen, Z.; Luo, Z.; Zhang, X.; Liang, Y.; Esteban, M.A.; Zhou, Y.; et al. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat. Struct. Mol. Biol. 2021, 28, 132–142. [Google Scholar] [CrossRef]
- Krus, K.L.; Benitez, A.M.; Strickland, A.; Milbrandt, J.; Bloom, A.J.; DiAntonio, A. Reduced STMN2 and pathogenic TDP-43, two hallmarks of ALS, synergize to accelerate motor decline in mice. bioRxiv 2024. [Google Scholar] [CrossRef]
- Morris, J. Amyotrophic lateral sclerosis (ALS) and related motor neuron diseases: An overview. Neurodiagn. J. 2015, 55, 180–194. [Google Scholar] [CrossRef]
- Chen, H.; Qian, K.; Du, Z.; Cao, J.; Petersen, A.; Liu, H.; Blackbourn, L.W.; Huang, C.L.; Errigo, A.; Yin, Y.; et al. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 2014, 14, 796–809. [Google Scholar] [CrossRef]
- Rothstein, J.D. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann. Neurol. 2009, 65 (Suppl. S1), S3–S9. [Google Scholar] [CrossRef]
- Rothstein, J.D.; Van Kammen, M.; Levey, A.I.; Martin, L.J.; Kuncl, R.W. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 1995, 38, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Niwa, J.; Ishigaki, S.; Hishikawa, N.; Yamamoto, M.; Doyu, M.; Murata, S.; Tanaka, K.; Taniguchi, N.; Sobue, G. Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J. Biol. Chem. 2002, 277, 36793–36798. [Google Scholar] [CrossRef] [PubMed]
- Goutman, S.A.; Hardiman, O.; Al-Chalabi, A.; Chió, A.; Savelieff, M.G.; Kiernan, M.C.; Feldman, E.L. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol. 2022, 21, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Kim, H.J.; Schafer, S.T.; Paquola, A.; Clemenson, G.D.; Toda, T.; Oh, J.; Pankonin, A.R.; Lee, B.S.; Johnston, S.T.; et al. Functional implications of miR-19 in the migration of newborn neurons in the adult brain. Neuron 2016, 91, 79–89. [Google Scholar] [CrossRef]
- Botta-Orfila, T.; Morató, X.; Compta, Y.; Lozano, J.J.; Falgàs, N.; Valldeoriola, F.; Pont-Sunyer, C.; Vilas, D.; Mengual, L.; Fernández, M.; et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J. Neurosci. Res. 2014, 92, 1071–1077. [Google Scholar] [CrossRef]
- Smirnova, L.; Gräfe, A.; Seiler, A.; Schumacher, S.; Nitsch, R.; Wulczyn, F.G. Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 2005, 21, 1469–1477. [Google Scholar] [CrossRef]
- Volonte, C.; Apolloni, S.; Parisi, C. MicroRNAs: Newcomers into the ALS picture. CNS Neurol. Disord. Drug Targets 2015, 14, 194–207. [Google Scholar] [CrossRef]
- Joilin, G.; Leigh, P.N.; Newbury, S.F.; Hafezparast, M. An overview of microRNAs as biomarkers of ALS. Front. Neurol. 2019, 10, 186. [Google Scholar] [CrossRef]
- Lewis, B.P.; Shih, I.H.; Jones-Rhoades, M.W.; Bartel, D.P.; Burge, C.B. Prediction of mammalian microRNA targets. Cell 2003, 115, 787–798. [Google Scholar] [CrossRef]
- Dash, B.P.; Freischmidt, A.; Weishaupt, J.H.; Hermann, A. An integrative miRNA-mRNA expression analysis identifies miRNA signatures associated with SOD1 and TARDBP patient-derived motor neurons. Hum. Mol. Genet. 2024, 33, 1300–1314. [Google Scholar] [CrossRef]
- Vassileff, N.; Spiers, J.G.; Lee, J.D.; Woodruff, T.M.; Ebrahimie, E.; Mohammadi Dehcheshmeh, M.; Hill, A.F.; Cheng, L. A panel of miRNA biomarkers common to serum and brain-derived extracellular vesicles identified in mouse model of amyotrophic lateral sclerosis. Mol. Neurobiol. 2024, 61, 5901–5915. [Google Scholar] [CrossRef] [PubMed]
- Rizzuti, M.; Melzi, V.; Gagliardi, D.; Resnati, D.; Meneri, M.; Dioni, L.; Masrori, P.; Hersmus, N.; Poesen, K.; Locatelli, M.; et al. Insights into the identification of a molecular signature for amyotrophic lateral sclerosis exploiting integrated microRNA profiling of iPSC-derived motor neurons and exosomes. Cell Mol. Life Sci. 2022, 79, 189. [Google Scholar] [CrossRef]
- Wilson, J.M.; Khabazian, I.; Wong, M.C.; Seyedalikhani, A.; Bains, J.S.; Pasqualotto, B.A.; Williams, D.E.; Andersen, R.J.; Simpson, R.J.; Smith, R.; et al. Behavioral and neurological correlates of ALS-parkinsonism dementia complex in adult mice fed washed cycad flour. Neuromol. Med. 2002, 1, 207–221. [Google Scholar]
- Duchen, L.W.; Strich, S.J. An hereditary motor neurone disease with progressive denervation of muscle in the mouse: The mutant ‘wobbler’. J. Neurol. Neurosurg. Psychiatry 1968, 31, 535–542. [Google Scholar] [CrossRef]
- Schmitt-John, T.; Drepper, C.; Mussmann, A.; Hahn, P.; Kuhlmann, M.; Thiel, C.; Hafner, M.; Lengeling, A.; Heimann, P.; Jones, J.M.; et al. Mutation of Vps54 causes motor neuron disease and defective spermiogenesis in the wobbler mouse. Nat. Genet. 2005, 37, 1213–1215. [Google Scholar] [CrossRef] [PubMed]
- Achi, E.Y.; Rudnicki, S.A. ALS and frontotemporal dysfunction: A review. Neurol. Res. Int. 2012, 2012, 806306. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 364, 362. [Google Scholar] [CrossRef]
- Julien, J.P.; Kriz, J. Transgenic mouse models of amyotrophic lateral sclerosis. Biochim. Biophys. Acta 2006, 1762, 1013–1024. [Google Scholar] [CrossRef]
- Gurney, M.E. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J. Neurol. Sci. 1997, 152 (Suppl. S1), S67–S73. [Google Scholar] [CrossRef]
- McGoldrick, P.; Joyce, P.I.; Fisher, E.M.; Greensmith, L. Rodent models of amyotrophic lateral sclerosis. Biochim. Biophys. Acta 2013, 1832, 1421–1436. [Google Scholar] [CrossRef]
- Mitchell, J.C.; McGoldrick, P.; Vance, C.; Hortobagyi, T.; Sreedharan, J.; Rogelj, B.; Tudor, E.L.; Smith, B.N.; Klasen, C.; Miller, C.C.; et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol. 2013, 125, 273–288. [Google Scholar] [CrossRef]
- Arnold, E.S.; Ling, S.C.; Huelga, S.C.; Lagier-Tourenne, C.; Polymenidou, M.; Ditsworth, D.; Kordasiewicz, H.B.; McAlonis-Downes, M.; Platoshyn, O.; Parone, P.A.; et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl. Acad. Sci. USA 2013, 110, E736–E745. [Google Scholar] [CrossRef] [PubMed]
- Lutz, C. Mouse models of ALS: Past, present and future. Brain Res 2018, 1693, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Al-Chalabi, A.; Hardiman, O. The epidemiology of ALS: A conspiracy of genes, environment and time. Nat. Rev. Neurol. 2013, 9, 617–628. [Google Scholar] [CrossRef]
- Liu, Y.; Pattamatta, A.; Zu, T.; Reid, T.; Bardhi, O.; Borchelt, D.R.; Yachnis, A.T.; Ranum, L.P. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 2016, 90, 521–534. [Google Scholar] [CrossRef]
- Tung, Y.T.; Peng, K.C.; Chen, Y.C.; Yen, Y.P.; Chang, M.; Thams, S.; Chen, J.A. Mir-17∼92 confers motor neuron subtype differential resistance to ALS-associated degeneration. Cell Stem Cell 2019, 25, 193–209.e7. [Google Scholar] [CrossRef] [PubMed]
- Matamala, J.M.; Arias-Carrasco, R.; Sanchez, C.; Uhrig, M.; Bargsted, L.; Matus, S.; Maracaja-Coutinho, V.; Abarzua, S.; van Zundert, B.; Verdugo, R.; et al. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis. Neurobiol. Aging 2018, 64, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Grillo, A.R.; Scarpa, M.; Brun, P.; D’Incà, R.; Nai, L.; Banerjee, A.; Cavallo, D.; Barzon, L.; Palù, G.; et al. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp. Mol. Med. 2015, 47, e164. [Google Scholar] [CrossRef]
- Peters, O.M.; Cabrera, G.T.; Tran, H.; Gendron, T.F.; McKeon, J.E.; Metterville, J.; Weiss, A.; Wightman, N.; Salameh, J.; Kim, J.; et al. Human C9ORF72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron 2015, 88, 902–909. [Google Scholar] [CrossRef]
- Marcuzzo, S.; Bonanno, S.; Kapetis, D.; Barzago, C.; Cavalcante, P.; D’Alessandro, S.; Mantegazza, R.; Bernasconi, P. Up-regulation of neural and cell cycle-related microRNAs in brain of amyotrophic lateral sclerosis mice at late disease stage. Mol. Brain 2015, 8, 5. [Google Scholar] [CrossRef]
- Zhou, F.; Guan, Y.; Chen, Y.; Zhang, C.; Yu, L.; Gao, H.; Du, H.; Liu, B.; Wang, X. miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice. Int. J. Clin. Exp. Pathol. 2013, 6, 1826–1838. [Google Scholar] [PubMed]
- Chen, F.; Han, J.; Li, X.; Zhang, Z.; Wang, D. Identification of the biological function of miR-9 in spinal cord ischemia-reperfusion injury in rats. PeerJ 2021, 9, e11440. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Han, Y.; Teng, J.; Kong, X.; Qi, X. Screening and identification of key biomarkers associated with amyotrophic lateral sclerosis and depression using bioinformatics. Medicine 2023, 102, e36265. [Google Scholar] [CrossRef] [PubMed]
- Nolan, K.; Mitchem, M.R.; Jimenez-Mateos, E.M.; Henshall, D.C.; Concannon, C.G.; Prehn, J.H. Increased expression of microRNA-29a in ALS mice: Functional analysis of its inhibition. J. Mol. Neurosci. 2014, 53, 231–241. [Google Scholar] [CrossRef]
- Ho, W.Y.; Chak, L.L.; Hor, J.H.; Liu, F.; Diaz-Garcia, S.; Chang, J.C.; Sanford, E.; Rodriguez, M.J.; Alagappan, D.; Lim, S.M.; et al. FUS-dependent microRNA deregulations identify TRIB2 as a druggable target for ALS motor neurons. iScience 2023, 26, 108152. [Google Scholar] [CrossRef] [PubMed]
- Klatt, C.L.; Theis, V.; Hahn, S.; Theiss, C.; Matschke, V. Deregulated miR-29b-3p correlates with tissue-specific activation of intrinsic apoptosis in an animal model of amyotrophic lateral sclerosis. Cells 2019, 8, 1077. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zhang, C.; Guan, Y.; Chen, Y.; Lu, Q.; Jie, L.; Gao, H.; Du, H.; Zhang, H.; Liu, Y.; et al. Screening the expression characteristics of several miRNAs in G93A-SOD1 transgenic mouse: Altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J. Neurochem. 2018, 145, 51–67. [Google Scholar] [CrossRef]
- Parisi, C.; Napoli, G.; Amadio, S.; Spalloni, A.; Apolloni, S.; Longone, P.; Volonté, C. MicroRNA-125b regulates microglia activation and motor neuron death in ALS. Cell Death Differ. 2016, 23, 531–541. [Google Scholar] [CrossRef]
- Loffreda, A.; Nizzardo, M.; Arosio, A.; Ruepp, M.D.; Calogero, R.A.; Volinia, S.; Galasso, M.; Bendotti, C.; Ferrarese, C.; Lunetta, C.; et al. miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Prog. Neurobiol. 2020, 190, 101803. [Google Scholar] [CrossRef]
- Pang, D.; Yu, Y.; Zhao, B.; Huang, J.; Cui, Y.; Li, T.; Li, C.; Shang, H. The long non-coding RNA NR3C2-8:1 promotes p53-mediated apoptosis through the miR-129-5p/USP10 axis in amyotrophic lateral sclerosis. Mol. Neurobiol. 2024. [Google Scholar] [CrossRef]
- Sun, D.; Wang, S.K.; Ding, K.; Liu, M.Y.; Jiang, X.; Chen, Y.C.; Zhou, F.H. Decrease in expression of miRNA-132 and increase in expression of BDNF in the spinal cord of ALS transgenic mice. Chin. J. Histochromatics Cytochromatics 2019, 28, 14–18. [Google Scholar]
- Hoye, M.L.; Koval, E.D.; Wegener, A.J.; Hyman, T.S.; Yang, C.; O’Brien, D.R.; Miller, R.L.; Cole, T.; Schoch, K.M.; Shen, T.; et al. MicroRNA profiling reveals marker of motor neuron disease in ALS models. J. Neurosci. 2017, 37, 5574–5586. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cai, B.; Fan, D.S. Expression of microRNA-29b in mice with amyotrophic lateral sclerosis. Beijing Da Xue Xue Bao Yi Xue Ban 2015, 47, 733–736. [Google Scholar] [PubMed]
- Ghorbani, S.; Talebi, F.; Chan, W.F.; Masoumi, F.; Vojgani, M.; Power, C.; Noorbakhsh, F. MicroRNA-181 variants regulate T cell phenotype in the context of autoimmune neuroinflammation. Front. Immunol. 2017, 8, 758. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, Y.C.; Mullane, P.; Ji, Y.J.; Liu, H.; He, L.; Arora, A.; Hwang, H.Y.; Alessi, A.F.; Niaki, A.G.; et al. FUS regulates activity of microRNA-mediated gene silencing. Mol. Cell 2018, 69, 787–801.e8. [Google Scholar] [CrossRef]
- Williams, A.H.; Valdez, G.; Moresi, V.; Qi, X.; McAnally, J.; Elliott, J.L.; Bassel-Duby, R.; Sanes, J.R.; Olson, E.N. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009, 326, 1549–1554. [Google Scholar] [CrossRef]
- Cheng, J.; Ho, W.K.; Wu, B.T.; Liu, H.P.; Lin, W.Y. miRNA profiling as a complementary diagnostic tool for amyotrophic lateral sclerosis. Sci. Rep. 2023, 13, 13805. [Google Scholar] [CrossRef]
- Joilin, G.; Gray, E.; Thompson, A.G.; Bobeva, Y.; Talbot, K.; Weishaupt, J.; Ludolph, A.; Malaspina, A.; Leigh, P.N.; Newbury, S.F.; et al. Identification of a potential non-coding RNA biomarker signature for amyotrophic lateral sclerosis. Brain Commun. 2020, 2, fcaa053. [Google Scholar] [CrossRef]
- Mei, Z.; Liu, J.; Schroeder, J.P.; Weinshenker, D.; Duong, D.M.; Seyfried, N.T.; Li, Y.; Jin, P.; Wingo, A.P.; Wingo, T.S. Lowering Hippocampal miR-29a Expression slows cognitive decline and reduces beta-amyloid deposition in 5×FAD mice. Mol. Neurobiol. 2024, 61, 3343–3356. [Google Scholar] [CrossRef]
- Ma, Y.H.; Deng, W.J.; Luo, Z.Y.; Jing, J.; Pan, P.W.; Yao, Y.B.; Fang, Y.B.; Teng, J.F. Inhibition of microRNA-29b suppresses oxidative stress and reduces apoptosis in ischemic stroke. Neural Regen. Res. 2022, 17, 433–439. [Google Scholar]
- Koval, E.D.; Shaner, C.; Zhang, P.; du Maine, X.; Fischer, K.; Tay, J.; Chau, B.N.; Wu, G.F.; Miller, T.M. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum. Mol. Genet. 2013, 22, 4127–4135. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.; Sequeira, C.; Barbosa, M.; Cunha, C.; Vaz, A.R.; Brites, D. Astrocyte regional diversity in ALS includes distinct aberrant phenotypes with common and causal pathological processes. Exp. Cell Res. 2020, 395, 112209. [Google Scholar] [CrossRef]
- Vaz, A.R.; Vizinha, D.; Morais, H.; Colaço, A.R.; Loch-Neckel, G.; Barbosa, M.; Brites, D. Overexpression of miR-124 in motor neurons plays a key role in ALS pathological processes. Int. J. Mol. Sci. 2021, 22, 6128. [Google Scholar] [CrossRef] [PubMed]
- Shioya, M.; Obayashi, S.; Tabunoki, H.; Arima, K.; Saito, Y.; Ishida, T.; Satoh, J. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol. Appl. Neurobiol. 2010, 36, 320–330. [Google Scholar] [CrossRef]
- Afonso, G.J.M.; Cavaleiro, C.; Valero, J.; Mota, S.I.; Ferreiro, E. Recent advances in extracellular vesicles in amyotrophic lateral sclerosis and emergent perspectives. Cells 2023, 12, 1763. [Google Scholar] [CrossRef]
- Campos-Melo, D.; Droppelmann, C.A.; He, Z.; Volkening, K.; Strong, M.J. Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: A role in the regulation of NFL mRNA levels. Mol. Brain 2013, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolny, G.; Martone, J.; Lepore, E.; Casola, I.; Petrucci, A.; Inghilleri, M.; Morlando, M.; Colantoni, A.; Scicchitano, B.M.; Calvo, A.; et al. A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients. Cell Death Discov. 2021, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.P.; Wada, S.; Vergani, L.; Hock, M.B.; Lamon, S.; Léger, B.; Ushida, T.; Cartoni, R.; Wadley, G.D.; Hespel, P.; et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol. Dis. 2013, 49, 107–117. [Google Scholar] [CrossRef]
- De Andrade, H.M.; de Albuquerque, M.; Avansini, S.H.; Rocha, C.D.S.; Dogini, D.B.; Nucci, A.; Carvalho, B.; Lopes-Cendes, I.; França, M.C., Jr. MicroRNAs-424 and 206 are potential prognostic markers in spinal onset amyotrophic lateral sclerosis. J. Neurol. Sci. 2016, 368, 19–24. [Google Scholar] [CrossRef]
- Takahashi, I.; Hama, Y.; Matsushima, M.; Hirotani, M.; Kano, T.; Hohzen, H.; Yabe, I.; Utsumi, J.; Sasaki, H. Identification of plasma microRNAs as a biomarker of sporadic amyotrophic lateral sclerosis. Mol. Brain 2015, 8, 67. [Google Scholar] [CrossRef]
- Freischmidt, A.; Müller, K.; Ludolph, A.C.; Weishaupt, J.H. Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 2013, 1, 42. [Google Scholar] [CrossRef] [PubMed]
- Benigni, M.; Ricci, C.; Jones, A.R.; Giannini, F.; Al-Chalabi, A.; Battistini, S. Identification of miRNAs as potential biomarkers in cerebrospinal fluid from amyotrophic lateral sclerosis patients. Neuromol. Med. 2016, 18, 551–560. [Google Scholar] [CrossRef] [PubMed]
- De Felice, B.; Annunziata, A.; Fiorentino, G.; Borra, M.; Biffali, E.; Coppola, C.; Cotrufo, R.; Brettschneider, J.; Giordana, M.L.; Dalmay, T.; et al. miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics 2014, 15, 243–253. [Google Scholar] [CrossRef] [PubMed]
miRNA | Animal Model | Expression Region | Expression Result (↑ Indicates Upregulation) | Target Gene | Refs. |
---|---|---|---|---|---|
miR-9 | SOD1 (G93A) mice | Spinal cord | ↑ | Map2k3, Notch2 signaling pathway | [50,51,52] |
miR-19a | SOD1 (G93A) mice | Brain | ↑ | Rapgef2 | [24,31,50] |
miR-19b | SOD1 (G93A) mice | Brain | ↑ | [31,50] | |
miR-21 | SOD1 (G93A) mice/TDP-43 (Q331K) mice | Brain/Serum | Pathogenesis ↓ | Inflammation-related | [27,47,53] |
miR-29a | SOD1 (G93A) mice/ALS-FUS mice/TDP-43 (Q331K) mice | Spinal cord | ↑ | Arpc3 | [31,54,55] |
miR-29b family | SOD1 (G93A) mice/wobbler mice | Spinal cord/Brain | 0 d ↓, 40 d ↑ | Bcl2 family | [56] |
miR-30b-3p | FUS mice | Spinal cord/Hippocampus | ↑ | [55] | |
miR-17 | SOD1 (G93A) mice | Spinal cord | ↓ | Pten, Nedd4-2, Ndfip1 | [46] |
miR-18a | SOD1 (G93A) mice | Spinal cord | ↓ | [46] | |
miR-20a | SOD1 (G93A) mice | Spinal cord | ↓ | [46] | |
miR-21a-5p | FUS mice/TDP-43 (Q331K) mice | Spinal cord/Serum | ↑ | [55] | |
miR-122-5p | TDP-43 (Q331K) mice | Hippocampus Cerebral cortex/Serum | ↓ | Zfp827, Nfat5, Grhl2 | [31] |
miR-124/a | SOD1 (G93A) mice | Spinal cord/Brainstem/Brain | Neural stem cell ↓, Differentiated neural stem cells ↑, brain ↑ | Sox2, Sox9 | [50,57] |
miR-125b | SOD1 (G93A) mice | Spinal cord | 23 w ↑ | A20 | [58] |
miR-129-5p | SOD1 (G93A) mice | Spinal cord | 15 w ↑ | USP10/Tp53 | [59,60] |
miR-132 | SOD1 (G93A) mice | Spinal cord | 95 d ↓, 108 d ↓, 122 d ↓ | Bdnf | [61] |
miR-136-5p | TDP-43 (Q331K) mice | Hippocampus Cerebral cortex | ↑ | [31] | |
miR-138 | SOD1 (G93A) mice | Spinal cord | Decreases daily starting at 126 d and maximizes at end stage | Not yet reported | [62] |
miR-142-3p | SOD1 (G86R) | Serum | ↑ | Tdp43, C9orf72, Cacna1d, Bcl2 | [47,63] |
miR-146-5p | FUS mice | Spinal cord/Hippocampus | Spinal cord ↑ Hippocampus ↓ | Inflammation-related | [55] |
miR-146a | SOD1 (G93A) mice | Brain | Pre-onset ↓ | Inflammation-related | [27] |
miR-155 | SOD1 (G93A) mice/C9ORF mice | Spinal cord/Brain | Asymptomatic stage ↑, Onset ↓ | Socs1 | [27,35,48] |
miR-181 | SOD1 (G93A) mice | Spinal cord | 95 d, 108 d, 122 d ↑ | Caprin1, inflammation-related, Smad7 | [64] |
miR-183-5p | TDP-43 (Q331K) mice/SOD1 (G93A) | Hippocampus Cerebral cortex/Serum | ↑ | Apoptosis and necrosis | [31,47] |
miR-200c | SOD1 (G93A) mice | Spinal cord | 15 w ↑ | Zeb1 | [59,65] |
miR-200c-3p | TDP-43 (Q331K) mice | Hippocampus Cerebral cortex | ↑ | [31] | |
miR-204-5p | SOD1 (G86R)/SOD1 (G93A)/TDP-43 (A315T) | Serum | SOD1 (G93A) TDP-43 (A315T) ↓ | [47] | |
miR-205-5p | SOD1 (G86R)/SOD1 (G93A) | Serum | SOD1 (G86R) ↓, SOD1 (G93A) ↑ | Zeb1, Zeb2 | [47] |
miR-206 | SOD1 (G93A) mice | Skeletal muscle | Decreased expression accelerates disease | Pax7, Pax3 | [66,67,68] |
miR-218 | SOD1 (G93A) mice | Spinal cord | Decrease day by day from 126 d, maximum at end stage, no significant change in surviving neurons | Neuronal (MN) damage | [62] |
miR-323-3p | FUS mice | Spinal cord/Hippocampus | ↑ | Klf11, Ubap2 | [55] |
miR-375-3p | SOD1 (G86R) | Serum | ↓ | [47] | |
miR-410-3p | FUS mice | Spinal cord/Hippocampus | ↑ | Slc25a42 | [55] |
miR-484 | FUS mice | Spinal cord | ↓ | [55] | |
miR-486b-5p | TDP-43 (Q331K) mice | Hippocampus/Cerebral cortex/Serum | ↑ | Zfp827, Nfat5, Grhl2 | [31] |
miR-488-3p | FUS mice | Spinal cord/Hippocampus | ↑ | Vapb | [55] |
miR-488-5p | FUS mice | Hippocampus | ↑ | Vapb | [55] |
miR-496-3p | FUS mice | Spinal cord/Hippocampus | ↑ | Mbnl1, Cyp26b1 | [55] |
miR-1197-3p | FUS mice | Spinal cord/Hippocampus | ↑ | Trib2 | [55] |
miR-1249-3p | SOD1 (G93A) | Serum | ↑ | Axonal growth, ephrin B signaling pathway-related | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Chen, L.; Zhang, Y.; Sun, B.; Liang, M. Expression Changes of miRNAs in Humans and Animal Models of Amyotrophic Lateral Sclerosis and Their Potential Application for Clinical Diagnosis. Life 2024, 14, 1125. https://doi.org/10.3390/life14091125
Wang R, Chen L, Zhang Y, Sun B, Liang M. Expression Changes of miRNAs in Humans and Animal Models of Amyotrophic Lateral Sclerosis and Their Potential Application for Clinical Diagnosis. Life. 2024; 14(9):1125. https://doi.org/10.3390/life14091125
Chicago/Turabian StyleWang, Ruili, Liang Chen, Yuning Zhang, Bo Sun, and Mengyao Liang. 2024. "Expression Changes of miRNAs in Humans and Animal Models of Amyotrophic Lateral Sclerosis and Their Potential Application for Clinical Diagnosis" Life 14, no. 9: 1125. https://doi.org/10.3390/life14091125
APA StyleWang, R., Chen, L., Zhang, Y., Sun, B., & Liang, M. (2024). Expression Changes of miRNAs in Humans and Animal Models of Amyotrophic Lateral Sclerosis and Their Potential Application for Clinical Diagnosis. Life, 14(9), 1125. https://doi.org/10.3390/life14091125