Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results
Abstract
:1. Introduction
2. Stem Cell Therapy and the Role of MSCs
2.1. Protocols for Cultures of MSCs and Therapeutic Methods Employing MSCs
2.2. Biology of MSCs
2.2.1. Bone Marrow MSCs
2.2.2. Umbilical Cord MSCs
MSCs Source | Infertility Disorder | Animal Model | Biological Mechanism | Treatment Outcome | References |
---|---|---|---|---|---|
BM-MSCs | PCOS | Intraovarian injection in mouse | ↑ IL10 | ↓ Carbs inflammation, steroidogenic gene expression leading to fertility recovery | [7,106] |
BM-MSCs | PCOS | Mouse | ↑ FSH, ↓ LH, testosterone, MDA levels | ↑ Folliculogenesis, oocyte quality, ↓ apoptosis, oxidative stress, inflammation | [7,14,107] |
BM-MSCs | PCOS | Intraovarian injection in mouse | ↓ CYP17A1/DENNDIA gene expression, BMP2, suppression H295R | ↓ Androgen genes, ↑ apoptosis | [7,14,107] |
BM-MSCs | Endometriosis | Transplantation in mouse | ↓TNFR1 expression | ↑ Folliculogenesis, graafian follicle count, ↓ apoptosis in granulosa cells | [7,108,109] |
BM-MSCs (CD133+) | AS | Rat uterus | ↑ IGF1, Thrombospondin 1 levels/IL10, ↑ FOXP3+ Treg cells/CD163+ M2 macrophages, ↓ CD8+ cytotoxic T cells | ↑ Proliferation of endometrial cells around vessels leading to a pro-regenerative environment in which angiogenesis, fibrosis, receptivity, and regeneration of the endometrium are controlled | [7,110,111] |
BM-MSCs (PROM1/CD133+) | AS | Women | ↑ Er and Pr receptors | ↑ Endometrial vascular density and improved menstrual cycle | [35,112] |
BM-MSCs | Infertility after chemotherapy | Juvenile macaques | - | ↓ Apoptosis, fibrosis, ovarian age, and regeneration of blood vessels and follicles | [14,113] |
BM-MSCs | POF after chemotherapy | POF–cyclophosphamide-induced rabbits | ↑ VEGF, estradiol, ↓ FSH, apoptotic factor Caspase 3 | ↑ Ovarian function and restored ovarian structure | [1,15,114] |
BM-MSCs | Infertility after chemotherapy | Cisplatin-induced rat | ↓ Apoptosis in granulosa cells | Improved perimenopause | [35,115] |
BM-MSCs | POF | Women | - | Improved follicular function, menstrual cycle, pregnancy rate, FSH levels, and endometrial thickness | [8] |
UC-MSCs | POF | Mice | Regulation of JNK/Bcl2 pathway, ↑ HO-1, regulation of autophagy | Ovarian restoration and ↑ of CD8/CD28 T cells | [7,116] |
UC-MSCs | POF | Mouse | Change in the ratio Th1/Th2 cytokines, ↑ HOXA10 gene, ↑ E2, Pr, IL-4, ↓ FSH, IFNγ, IL-2 | Improved implantation, ↓ apoptosis of granulosa cells | [7,117,118] |
UC-MSCs | Preeclampsia | Endotoxic-induced preeclampsia rat | ↓ TNFa/IL-1β, ↑ IL-10 | ↓ Blood pressure, urine protein, and white cells | [7,119] |
UC-MSCs | PCOS | DHEA-induced mice | ↓ M1 macrophages, neutrophils, B-lymphocytes, TNFa, IL-1β, IFNγ, fibrosis-related genes (CTGF) transcription, ↑ M2 macrophages | Regulation of inflammation, improved ovarian function and recovery | [7,15,120] |
UC-MSCs | Preeclampsia | LPS-induced rat | ↑ PPARγ, laminin receptor 1, ↓ MMP2/MMP9/ICAM1 | Improved hypertension and fetal weight | [7,121] |
UC-MSCs | Preeclampsia | AT1-AA induced hypertension rat | Remodeling of the spiral artery, ↓ injury in the kidney, ↑ placental, mesometrial triangle HO-1 expression | ↑ Pregnancy outcome, change in the cytokine profile of the animal | [7,122] |
UC-MSCs | Preeclampsia | Th1-induced preeclampsia mouse | ↓ TNFa in uterine and splenic lymphocytes | ↓ Blood pressure, proteinuria, glomerulonephritis, ↑ fetal–placental growth | [7,123] |
hUC-MSCs (Wharton jelly) | Uterine scars | Transplantation with collagen scaffolds in rat | ↑ MMP9 | Endometrial renewal | [35,124,125] |
hUC-MSCs (Wharton jelly) | Endometriosis | Endometrial cells in vitro | ↓ MMP2, MMP9, BAC, SMAC, survivin, Bcl2 proteins | ↓ Viability, development, invasion, migration of the cells, ↑ their apoptotic activity | [7,126] |
hUC-MCSs | AS | Injection with collagen scaffolds in humans | ↓ ERa, Vimentin, von Willebrand factor, Ki67 | Recovery of uterine adhesions, ↑ cell proliferation, differentiation | [15,113] |
UC-MSCs | Age-related infertility | Perimenopausal rats | Cytokines release | Restoration of total follicle count | [14,100] |
UC-MSCs | Age-related infertility | - | Phosphorylation of FOXO1 and FOXO3a | Primordial follicles activation | [15,127,128] |
hUC-MSCs | POF | Women | - | Improved the development of the number of antral follicles, pregnancy rate, ↑ AMH, E2, FSH levels | [8] |
AD-MSCs | Endometriosis | Rats | ↓ CD68+ macrophages and pro-inflammatory cytokines | ↓ Endometriosis-related inflammation | [7,129] |
AD-MSCs | POF | Injection with collagen scaffolds rat | - | ↑ Preservation of ADMSCs in ovaries of the rat | [15,48] |
AD-MSCs | Rat | ↑ VEGF | ↑ Angiogenesis and ovarian graft quality | [15,130] | |
AD-MSCs | POF | Chemotherapy POF-induced mice, rats | Altering gene expression and paracrine cytokines secretion | Improve ovarian function after chemotherapy, ↑ follicle number, oocyte number, corpora lutea | [11,35,131] |
Fetal liver MSCs | POF | Mouse | MT1 target, ↑ oxidate protection, Caspase 3, Caspase 9, Bcl2 suppression | ↑ Proliferation of granulosa cells, anti-apoptotic effects, ↓ ovarian injury, oxidate damage | [7,132] |
Men-SCs | POF | Mice | ↑ FGF2 | Restoration of ovarian function and structure through ↓ fibrosis, ↓ granulosa cell apoptosis, ↑ follicle counts, normal sex hormones | [7,12,15] |
En-MSCs | POF | Mouse, rat, human | ↓ Growth arrest, GADD45B factor, ↑ CDC2 and Cyclin B1 | Restoration of ovarian function, ↓ granulosa cell apoptosis | [15,133,134,135] |
Men-SCs | AS | Rats, rodents | Regulation of PKB signaling | ↑ Angiogenesis, immunomodulation, rate of implanted embryos | [7,14,136,137] |
Chorionic villous MSCs (CV-MSCs) | Preeclampsia | In vitro | ↑ LC3BII through JAK2/STAT3 pathway | ↑ Proliferation, invasion, autophagy of trophoblastic cells | [7,138] |
Men-SCs | AS | Rat | Regulation of Wnt5a and Gdf5 factors and Hippo pathway | ↑ Endometrial growth, improve endometrial proliferation and angiogenesis, ↓ fibrosis, inflammation | [1,15,139] |
Men-SCs | Endometrial damage | Mouse | ↑ Keratin, vimentin, VEGF, ↓ DNA damaging factors, PKB/AKT signaling modulation | ↑ Rate of embryo transplantation | [14,17,35,137] |
A-MSCs | Age-related infertility | Mouse | Regulation of PRKAA2/AMPK/FOXO3/FOXO3A pathway | ↑ Ovarian function and oocyte maturation | [35,140] |
A-MSCs | AS | Rat | ↓ TNFa and IL1b, ↑ IL6 and FGFb | Ovarian restoration, ↓ inflammation | [35,141] |
P-MSCs | - | Rat | Secretion of KIT ligand (KITLG/SCF) result to ↑ Lin28a, Lhx8, Nanos3, Nobox genes expressions | Improve ovarian function | [35,98] |
P-MSCs | - | Ovariectomized rats | ↑ Estrogen and folliculogenesis-related genes expression | Improve ovarian function | [15,142] |
2.2.3. Adipose Tissue MSCs
2.2.4. Menstrual-Blood-Derived MSCs/Endometrial MSCs
2.2.5. Amniotic Fluid Stem Cells/Amniotic Epithelial Stem Cells
2.2.6. Placental MSCs
3. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD-MSCs | Adipose-derived Mesenchymal Stem Cells |
AESCS | Amniotic Epithelial Stem Cells |
AF-MSCs | Amniotic Fluid Mesenchymal Stem Cells |
AKT | Protein Kinase B |
AMH | Anti-Müllerian Hormone |
AMPK | AMP-activated Protein Kinase |
AS | Asherman Syndrome |
AT1-AA | Angiotensin II Type 1 Receptor Autoantibodies |
BAC | Bacterial Artificial Chromosome |
Bax | Bcl-2-associated X protein |
BCL2 | B-cell Lymphoma 2 |
BLI | Bioluminescence Imaging |
BM-MSCs | Bone Marrow Mesenchymal Stem Cells |
BMP2 | Bone Morphogenetic Protein 2 |
BMP4 | Bone Morphogenetic Protein 4 |
CCL5 | C-C Motif Chemokine Ligand 5 |
CD105 | Cluster of Differentiation 105 |
CD11b | Cluster of Differentiation 11b |
CD14 | Cluster of Differentiation 14 |
CD163 | Cluster of Differentiation 163 |
CD19 | Cluster of Differentiation 19 |
CD28 | Cluster of Differentiation 28 |
CD34 | Cluster of Differentiation 34 |
CD45 | Cluster of Differentiation 45 |
CD68 | Cluster of Differentiation 68 |
CD73 | Cluster of Differentiation 73 |
CD79 | Cluster of Differentiation 79 |
CD79a | Cluster of Differentiation 79a |
CD8 | Cluster of Differentiation 8 |
CDC2 | Cell Division Cycle 2 |
CFU-F | Colony Forming Unit Fibroblast |
CK8/18 | Cytokeratin 8/18 |
CM-Dil | CM-1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate |
CSF3 | Colony-Stimulating Factor 3 |
CT | Computed Tomography |
CTGF | Connective Tissue Growth Factor |
CTLA4 | Cytotoxic T-Lymphocyte Associated protein 4 |
CVMSCs | Chorionic Villus Mesenchymal Stem Cells |
CYP17A1 | Cytochrome P450 17A1 |
DENNDIA | Differentially Expressed in Normal and Neoplastic Development, Isoform A |
DHEA | Dehydroepiandrosterone |
DilC | 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate—C |
DMEM | Dulbecco’s Modified Eagle Medium |
DMSO | Dimethyl Sulfoxide |
DNA | Deoxyribonucleic Acid |
E2 | Estradiol |
EGFP | Enhanced Green Fluorescent Protein |
En-MSCs | Endometrial Mesenchymal Stem Cells |
ER | Estrogen Receptor |
ERK | Extracellular-signal-Regulated Kinase |
ERα | Estrogen Receptor alpha |
ESCs | Embryonic Stem Cells |
F12-DMEM | Ham’s F-12 Nutrient Mixture supplemented Dulbecco’s Modified Eagle Medium |
FACS | Fluorescence-Activated Cells Sorting |
FBS | Fetal Bovine Serum |
FGF | Fibroblast Growth Factor |
FGF2 | Fibroblast Growth Factor 2 |
FGFb | Fibroblast Growth Factor basic |
FOXO1 | Forkhead Box O1 |
FOXO3a | Forkhead Box O3a |
FOXP3 | Forkhead Box P3 |
FSH | Follicle-Stimulating Hormone |
FSHR | Follicle-Stimulating Hormone Receptor |
GADD45B | Growth Arrest and DNA-Damage-inducible, beta |
G-CSF | Granulocyte Colony-Stimulating Factor |
Gdf5 | Growth Differentiation Factor 5 |
GFP | Green Fluorescent Protein |
GITR | Glucocorticoid-Induced TNFR-related protein |
GMP | Good Manufacturing Practices |
GPCR | G Protein-Coupled Receptor |
H295R | Human adrenocortical carcinoma cell line (NCI-H295R) |
HGF | Hepatocyte Growth Factor |
HLA-DR | Human Leukocyte Antigen locus DR |
HO-1 | Heme Oxygenase 1 |
HOXA10 | Homeobox A10 |
hUC-MSCs | Human Umbilical Cord Mesenchymal Stem Cells |
ICAM1 | Intercellular Adhesion Molecule 1 |
IDO | Indoleamine 2,3-dioxygenase |
IFNγ | Interferon gamma |
IGF1 | Insulin-like Growth Factor 1 |
IL10 | Interleukin 10 |
IL-1β | Interleukin-1 beta |
IL-2 | Interleukin 2 |
IL-4 | Interleukin 4 |
IL6 | Interleukin 6 |
iPSCs | Induced Pluripotent Stem Cells |
IRE1 | Inositol-Requiring Enzyme 1 |
JAK2 | Janus Kinase 2 |
JNK | c-Jun N-terminal Kinase |
KITLG | KIT Ligand (also known as Stem Cell Factor, SCF) |
LC3BII | Microtubule-associated protein 1A/1B-light chain 3B, form II |
L-DMEM | L-glutamine-supplemented Dulbecco’s Modified Eagle Medium |
LG-DMEM | Low Glucose Dulbecco’s Modified Eagle Medium |
LH | Luteinizing Hormone |
Lhx8 | LIM Homeobox 8 |
Lin28a | Lin-28 Homolog A |
LPS | Lipopolysaccharide |
MAPK | Mitogen-Activated Protein Kinase |
MDA | Malondialdehyde |
MEM | Minimum Essential Medium |
Men-MSCs | Menstrual Mesenchymal Stem Cells |
MHC-II | Major Histocompatibility Complex class II |
miRNAs | Micro Ribonucleic Acid |
MMP2 | Matrix Metalloproteinase 2 |
MMP9 | Matrix Metalloproteinase 9 |
MRI | Magnetic Resonance Imaging |
MSCs | Mesenchymal Stem Cells |
MT1 | Metallothionein 1 |
Nanos3 | Nanos Homolog 3 |
NF-kB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
NO | Nitric Oxide |
Nobox | Newborn Ovary Homeobox |
p21 | Cyclin-dependent kinase inhibitor 1 or CDKN1A |
p53 | Tumor Protein p53 |
PCOS | Polycystic Ovarian Syndrome |
PDGF-BB | Platelet-Derived Growth Factor—BB |
PET | Positron Emission Tomography |
PGE2 | Prostaglandin E2 |
PI3K | Phosphoinositide 3-Kinase |
PKB | Protein Kinase B |
PMSCs | Placental Mesenchymal Stem Cells |
POF | Premature Ovarian Failure |
POI | Premature Ovarian Insufficiency |
PPARγ | Peroxisome Proliferator-Activated Receptor gamma |
PR | Progesterone Receptor |
PRKAA2 | Protein Kinase AMP-Activated Catalytic Subunit Alpha 2 |
RANTES | Regulated on Activation, Normal T Cell Expressed and Secreted |
Rap1 | Ras-proximate-1 or Ras-related protein 1 |
SCs | Stem Cells |
SMAC | Second Mitochondria-derived Activator of Caspases |
Smad | Small Mothers Against Decapentaplegic |
SPECT | Single-Photon Emission-Computed Tomography |
SSCs | Spermatogonial Stem Cells |
STAT3 | Signal Transducer and Activator of Transcription 3 |
TGFβ | Transforming Growth Factor beta |
Th1 | T helper 1 cell |
Th17 | T helper 17 cell |
Th2 | T helper 2 cell |
TNFR1 | Tumor Necrosis Factor Receptor 1 |
TNFα | Tumor Necrosis Factor alpha |
Treg | Regulatory T cell |
UC-MSCs | Umbilical Cord Mesenchymal Stem Cells |
VEGF | Vascular Endothelial Growth Factor |
VEGFR | Vascular Endothelial Growth Factor Receptor |
Wnt5a | Wingless-Type MMTV Integration Site Family, Member 5A |
References
- Zhao, Y.-X.; Chen, S.-R.; Su, P.-P.; Huang, F.-H.; Shi, Y.-C.; Shi, Q.-Y.; Lin, S. Using Mesenchymal Stem Cells to Treat Female Infertility: An Update on Female Reproductive Diseases. Stem Cells Int. 2019, 2019, 9071720. [Google Scholar] [CrossRef] [PubMed]
- Hull, M.G.; Glazener, C.M.; Kelly, N.J.; Conway, D.I.; Foster, P.A.; Hinton, R.A.; Coulson, C.; Lambert, P.A.; Watt, E.M.; Desai, K.M. Population Study of Causes, Treatment, and Outcome of Infertility. Br. Med. J. 1985, 291, 1693–1697. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Rasheed, Z.B.; Nordin, F.; Wan Kamarul Zaman, W.S.; Tan, Y.-F.; Abd Aziz, N.H. Autologous Human Mesenchymal Stem Cell-Based Therapy in Infertility: New Strategies and Future Perspectives. Biology 2023, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, E.L.; Hershberger, P.E.; Bergh, P.A. Evidence-Based Care for Couples with Infertility. J. Obstet. Gynecol. Neonatal Nurs. 2016, 45, 100–110, quiz e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Thurston, L.; Abbara, A.; Dhillo, W.S. Investigation and Management of Subfertility. J. Clin. Pathol. 2019, 72, 579–587. [Google Scholar] [CrossRef]
- Qamar, A.Y.; Hussain, T.; Rafique, M.K.; Bang, S.; Tanga, B.M.; Seong, G.; Fang, X.; Saadeldin, I.M.; Cho, J. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells 2021, 10, 2460. [Google Scholar] [CrossRef]
- Rizano, A.; Margiana, R.; Supardi, S.; Narulita, P. Exploring the Future Potential of Mesenchymal Stem/Stromal Cells and Their Derivatives to Support Assisted Reproductive Technology for Female Infertility Applications. Hum. Cell 2023, 36, 1604–1619. [Google Scholar] [CrossRef]
- Ahmadian, S.; Mahdipour, M.; Pazhang, M.; Sheshpari, S.; Mobarak, H.; Bedate, A.M.; Rahbarghazi, R.; Nouri, M. Effectiveness of Stem Cell Therapy in the Treatment of Ovarian Disorders and Female Infertility: A Systematic Review. Curr. Stem Cell Res. Ther. 2020, 15, 173–186. [Google Scholar] [CrossRef]
- Gabr, H.; Rateb, M.A.; El Sissy, M.H.; Ahmed Seddiek, H.; Ali Abdelhameed Gouda, S. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Chemotherapy Induced Ovarian Failure in Albino Rats. Microsc. Res. Tech. 2016, 79, 938–947. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Shalaby, S.M.; Abdelaziz, M.; Brakta, S.; Hill, W.D.; Ismail, N.; Al-Hendy, A. Human Mesenchymal Stem Cells Partially Reverse Infertility in Chemotherapy-Induced Ovarian Failure. Reprod. Sci. 2018, 25, 51–63. [Google Scholar] [CrossRef]
- Omar, F.; Amin, N.; Elsherif, H.; Mohamed, D. Role of Adipose-Derived Stem Cells in Restoring Ovarian Structure of Adult Albino Rats with Chemotherapy-Induced Ovarian Failure: A Histological and Immunohistochemical Study. J. Carcinog. Mutagen. 2016, 7, 2. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Yang, T.; Li, J.; Yang, X. Study of the Reparative Effects of Menstrual-Derived Stem Cells on Premature Ovarian Failure in Mice. Stem Cell Res. Ther. 2017, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Sakali, A.-K.; Papagianni, M.; Bargiota, A.; Rasic-Markovic, A.; Macut, D.; Mastorakos, G. Environmental Factors Affecting Pregnancy Outcomes. Endocrine 2023, 80, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Saeed, Y.; Liu, X. Mesenchymal Stem Cells to Treat Female Infertility; Future Perspective and Challenges: A Review. Int. J. Reprod. Biomed. 2022, 20, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Esfandyari, S.; Chugh, R.M.; Park, H.; Hobeika, E.; Ulin, M.; Al-Hendy, A. Mesenchymal Stem Cells as a Bio Organ for Treatment of Female Infertility. Cells 2020, 9, 2253. [Google Scholar] [CrossRef]
- Jobling, P.; O’Hara, K.; Hua, S. Female Reproductive Tract Pain: Targets, Challenges, and Outcomes. Front. Pharmacol. 2014, 5, 17. [Google Scholar] [CrossRef]
- Rungsiwiwut, R.; Virutamasen, P.; Pruksananonda, K. Mesenchymal Stem Cells for Restoring Endometrial Function: An Infertility Perspective. Reprod. Med. Biol. 2020, 20, 13–19. [Google Scholar] [CrossRef]
- Huang, F.; Thokerunga, E.; He, F.; Zhu, X.; Wang, Z.; Tu, J. Research Progress of the Application of Mesenchymal Stem Cells in Chronic Inflammatory Systemic Diseases. Stem Cell Res. Ther. 2022, 13, 1. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y.; Zhou, X.; Zhao, Z.; Yu, Q.; Chen, Z.; Wang, Y.; Xu, P.; Yu, Z.; Guo, C.; et al. Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Psoriasis-like Dermatitis by Suppressing IL-17-Producing Γδ T Cells. Cell Tissue Res. 2022, 388, 549–563. [Google Scholar] [CrossRef]
- Jin, Z.; Ren, J.; Qi, S. Exosomal miR-9-5p Secreted by Bone Marrow-Derived Mesenchymal Stem Cells Alleviates Osteoarthritis by Inhibiting Syndecan-1. Cell Tissue Res. 2020, 381, 99–114. [Google Scholar] [CrossRef]
- Van, S.Y.; Noh, Y.K.; Kim, S.W.; Oh, Y.M.; Kim, I.H.; Park, K. Human Umbilical Cord Blood Mesenchymal Stem Cells Expansion via Human Fibroblast-Derived Matrix and Their Potentials toward Regenerative Application. Cell Tissue Res. 2019, 376, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; Zhang, Y.; Li, H.; Li, H.; Jin, R.; Li, L.; Xiang, Y.; Tian, M.; Wang, J.; Sun, L.; et al. Human Umbilical Cord Blood-Derived MSCs Trans-Differentiate into Endometrial Cells and Regulate Th17/Treg Balance through NF-κB Signaling in Rabbit Intrauterine Adhesions Endometrium. Stem Cell Res. Ther. 2022, 13, 301. [Google Scholar] [CrossRef]
- Garolla, A.; Pizzol, D.; Carosso, A.R.; Borini, A.; Ubaldi, F.M.; Calogero, A.E.; Ferlin, A.; Lanzone, A.; Tomei, F.; Engl, B.; et al. Practical Clinical and Diagnostic Pathway for the Investigation of the Infertile Couple. Front. Endocrinol. 2020, 11, 591837. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Roy, P.; Corbitt, C.; Kakar, S.S. Application of Stem Cell Therapy for Infertility. Cells 2021, 10, 1613. [Google Scholar] [CrossRef] [PubMed]
- Balen, A.H.; Morley, L.C.; Misso, M.; Franks, S.; Legro, R.S.; Wijeyaratne, C.N.; Stener-Victorin, E.; Fauser, B.C.J.M.; Norman, R.J.; Teede, H. The Management of Anovulatory Infertility in Women with Polycystic Ovary Syndrome: An Analysis of the Evidence to Support the Development of Global WHO Guidance. Hum. Reprod. Update 2016, 22, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Chagastelles, P.C.; Nardi, N.B. Biology of Stem Cells: An Overview. Kidney Int. Suppl. 2011, 1, 63–67. [Google Scholar] [CrossRef]
- Weissman, I.L. Stem Cells: Units of Development, Units of Regeneration, and Units in Evolution. Cell 2000, 100, 157–168. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Fujino, M.; Tong, G.; Zhang, Q.; Li, X.-K.; Yan, H. Stem Cells as a Resource for Treatment of Infertility-Related Diseases. Curr. Mol. Med. 2019, 19, 539–546. [Google Scholar] [CrossRef]
- Dunlop, C.E.; Telfer, E.E.; Anderson, R.A. Ovarian Stem Cells-Potential Roles in Infertility Treatment and Fertility Preservation. Maturitas 2013, 76, 279–283. [Google Scholar] [CrossRef]
- Yin, L.; Liu, X.; Shi, Y.; Ocansey, D.K.W.; Hu, Y.; Li, X.; Zhang, C.; Xu, W.; Qian, H. Therapeutic Advances of Stem Cell-Derived Extracellular Vesicles in Regenerative Medicine. Cells 2020, 9, 707. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Lai, L.-C. The Potential Roles of Stem Cell-Derived Extracellular Vesicles as a Therapeutic Tool. Ann. Transl. Med. 2019, 7, 693. [Google Scholar] [CrossRef] [PubMed]
- Lo, B.; Parham, L. Ethical Issues in Stem Cell Research. Endocr. Rev. 2009, 30, 204–213. [Google Scholar] [CrossRef] [PubMed]
- King, N.M.; Perrin, J. Ethical Issues in Stem Cell Research and Therapy. Stem Cell Res. Ther. 2014, 5, 85. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, Z.; Abedindo, A.; Omrani, M.D.; Ghaderian, S.M.H. Mesenchymal Stem Cells (MSCs) Therapy for Recovery of Fertility: A Systematic Review. Stem Cell Rev. Rep. 2018, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mirfakhraie, R.; Lasemi, M.V.; Mehravar, M.; Halvachi, D.; Salimi, M.; Roshandel, E. Mesenchymal Stem Cell Transplantation for Infertility Treatment: A Review. Biomed. Res. Ther. 2023, 10, 5744–5756. [Google Scholar] [CrossRef]
- Shammaa, R.; El-Kadiry, A.E.-H.; Abusarah, J.; Rafei, M. Mesenchymal Stem Cells Beyond Regenerative Medicine. Front. Cell Dev. Biol. 2020, 8, 72. [Google Scholar] [CrossRef]
- Chu, D.-T.; Phuong, T.N.T.; Tien, N.L.B.; Tran, D.K.; Thanh, V.V.; Quang, T.L.; Truong, D.T.; Pham, V.H.; Ngoc, V.T.N.; Chu-Dinh, T.; et al. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. Int. J. Mol. Sci. 2020, 21, 708. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Galipeau, J.; Krampera, M.; Barrett, J.; Dazzi, F.; Deans, R.J.; DeBruijn, J.; Dominici, M.; Fibbe, W.E.; Gee, A.P.; Gimble, J.M.; et al. International Society for Cellular Therapy Perspective on Immune Functional Assays for Mesenchymal Stromal Cells as Potency Release Criterion for Advanced Phase Clinical Trials. Cytotherapy 2016, 18, 151–159. [Google Scholar] [CrossRef]
- Fu, Y.-X.; Ji, J.; Shan, F.; Li, J.; Hu, R. Human Mesenchymal Stem Cell Treatment of Premature Ovarian Failure: New Challenges and Opportunities. Stem Cell Res. Ther. 2021, 12, 161. [Google Scholar] [CrossRef]
- Abbaszadeh, H.; Ghorbani, F.; Abbaspour-Aghdam, S.; Kamrani, A.; Valizadeh, H.; Nadiri, M.; Sadeghi, A.; Shamsasenjan, K.; Jadidi-Niaragh, F.; Roshangar, L.; et al. Chronic Obstructive Pulmonary Disease and Asthma: Mesenchymal Stem Cells and Their Extracellular Vesicles as Potential Therapeutic Tools. Stem Cell Res. Ther. 2022, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Bortolotti, F.; Ukovich, L.; Razban, V.; Martinelli, V.; Ruozi, G.; Pelos, B.; Dore, F.; Giacca, M.; Zacchigna, S. In Vivo Therapeutic Potential of Mesenchymal Stromal Cells Depends on the Source and the Isolation Procedure. Stem Cell Rep. 2015, 4, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Akamatsu, H.; Hasegawa, S.; Yamada, T.; Nakata, S.; Ohkuma, M.; Miyachi, E.-I.; Marunouchi, T.; Matsunaga, K. Isolation of Multipotent Stem Cells from Mouse Adipose Tissue. J. Dermatol. Sci. 2007, 48, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Nadri, S. A Protocol for Isolation and Culture of Mesenchymal Stem Cells from Mouse Bone Marrow. Nat. Protoc. 2009, 4, 102–106. [Google Scholar] [CrossRef]
- Sung, J.H.; Yang, H.-M.; Park, J.B.; Choi, G.-S.; Joh, J.-W.; Kwon, C.H.; Chun, J.M.; Lee, S.-K.; Kim, S.-J. Isolation and Characterization of Mouse Mesenchymal Stem Cells. Transplant. Proc. 2008, 40, 2649–2654. [Google Scholar] [CrossRef]
- Pountos, I.; Corscadden, D.; Emery, P.; Giannoudis, P.V. Mesenchymal Stem Cell Tissue Engineering: Techniques for Isolation, Expansion and Application. Injury 2007, 38, S23–S33. [Google Scholar] [CrossRef]
- Bao, R.; Xu, P.; Wang, Y.; Wang, J.; Xiao, L.; Li, G.; Zhang, C. Bone Marrow Derived Mesenchymal Stem Cells Transplantation Rescues Premature Ovarian Insufficiency Induced by Chemotherapy. Gynecol. Endocrinol. 2018, 34, 320–326. [Google Scholar] [CrossRef]
- Su, J.; Ding, L.; Cheng, J.; Yang, J.; Li, X.; Yan, G.; Sun, H.; Dai, J.; Hu, Y. Transplantation of Adipose-Derived Stem Cells Combined with Collagen Scaffolds Restores Ovarian Function in a Rat Model of Premature Ovarian Insufficiency. Hum. Reprod. 2016, 31, 1075–1086. [Google Scholar] [CrossRef]
- Song, D.; Zhong, Y.; Qian, C.; Zou, Q.; Ou, J.; Shi, Y.; Gao, L.; Wang, G.; Liu, Z.; Li, H.; et al. Human Umbilical Cord Mesenchymal Stem Cells Therapy in Cyclophosphamide-Induced Premature Ovarian Failure Rat Model. BioMed Res. Int. 2016, 2016, 2517514. [Google Scholar] [CrossRef]
- Fouad, H.; Sabry, D.; Elsetohy, K.; Fathy, N. Therapeutic Efficacy of Amniotic Membrane Stem Cells and Adipose Tissue Stem Cells in Rats with Chemically Induced Ovarian Failure. J. Adv. Res. 2016, 7, 233–241. [Google Scholar] [CrossRef]
- Eagle, H. Nutrition Needs of Mammalian Cells in Tissue Culture. Science 1955, 122, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; He, Q.; McCaigue, M.; Marsh, D.; Li, G. Nonadherent Cell Population of Human Marrow Culture Is a Complementary Source of Mesenchymal Stem Cells (MSCs). J. Orthop. Res. 2006, 24, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Markusen, J.F.; Mason, C.; Hull, D.A.; Town, M.A.; Tabor, A.B.; Clements, M.; Boshoff, C.H.; Dunnill, P. Behavior of Adult Human Mesenchymal Stem Cells Entrapped in Alginate-GRGDY Beads. Tissue Eng. 2006, 12, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Grayson, W.L.; Ma, T.; Bunnell, B.; Lu, W.W. Effects of Hydroxyapatite in 3-D Chitosan-Gelatin Polymer Network on Human Mesenchymal Stem Cell Construct Development. Biomaterials 2006, 27, 1859–1867. [Google Scholar] [CrossRef]
- Na, K.; Kim, S.W.; Sun, B.K.; Woo, D.G.; Yang, H.N.; Chung, H.M.; Park, K.H. Osteogenic Differentiation of Rabbit Mesenchymal Stem Cells in Thermo-Reversible Hydrogel Constructs Containing Hydroxyapatite and Bone Morphogenic Protein-2 (BMP-2). Biomaterials 2007, 28, 2631–2637. [Google Scholar] [CrossRef]
- Russell, A.L.; Lefavor, R.C.; Zubair, A.C. Characterization and Cost–Benefit Analysis of Automated Bioreactor-Expanded Mesenchymal Stem Cells for Clinical Applications. Transfusion 2018, 58, 2374–2382. [Google Scholar] [CrossRef]
- Rojewski, M.T.; Fekete, N.; Baila, S.; Nguyen, K.; Fürst, D.; Antwiler, D.; Dausend, J.; Kreja, L.; Ignatius, A.; Sensebé, L.; et al. GMP-Compliant Isolation and Expansion of Bone Marrow-Derived MSCs in the Closed, Automated Device Quantum Cell Expansion System. Cell Transplant. 2013, 22, 1981–2000. [Google Scholar] [CrossRef]
- Sensebé, L.; Krampera, M.; Schrezenmeier, H.; Bourin, P.; Giordano, R. Mesenchymal Stem Cells for Clinical Application. Vox Sang. 2010, 98, 93–107. [Google Scholar] [CrossRef]
- Galipeau, J.; Sensébé, L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell 2018, 22, 824–833. [Google Scholar] [CrossRef]
- Caplan, A.I. Adult Mesenchymal Stem Cells for Tissue Engineering versus Regenerative Medicine. J. Cell. Physiol. 2007, 213, 341–347. [Google Scholar] [CrossRef]
- Tarte, K.; Gaillard, J.; Lataillade, J.-J.; Fouillard, L.; Becker, M.; Mossafa, H.; Tchirkov, A.; Rouard, H.; Henry, C.; Splingard, M.; et al. Clinical-Grade Production of Human Mesenchymal Stromal Cells: Occurrence of Aneuploidy without Transformation. Blood 2010, 115, 1549–1553. [Google Scholar] [CrossRef] [PubMed]
- Phinney, D.G.; Prockop, D.J. Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair—Current Views. Stem Cells 2007, 25, 2896–2902. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, S.; Keating, A.; Deans, R.; Hematti, P.; Prockop, D.; Stroncek, D.F.; Stacey, G.; Weiss, D.J.; Mason, C.; Rao, M.S. Soliciting Strategies for Developing Cell-Based Reference Materials to Advance Mesenchymal Stromal Cell Research and Clinical Translation. Stem Cells Dev. 2014, 23, 1157–1167. [Google Scholar] [CrossRef]
- Koobatian, M.T.; Row, S.; Smith, R.J.; Koenigsknecht, C.; Andreadis, S.T.; Swartz, D.D. Successful Endothelialization and Remodeling of a Cell-Free Small-Diameter Arterial Graft in a Large Animal Model. Biomaterials 2016, 76, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Hu, X.; Li, D.; Xie, S.; Zhou, Z.; Meng, X.; Shan, H. Bioluminescence Imaging of Transplanted Mesenchymal Stem Cells by Overexpression of Hepatocyte Nuclear Factor4α: Tracking Biodistribution and Survival. Mol. Imaging Biol. 2019, 21, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.S.; Cho, H.; Jeon, S.; Lim, D.-K.; Kim, K. Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells. Biomolecules 2023, 13, 1787. [Google Scholar] [CrossRef]
- Petrenko, Y.; Chudickova, M.; Vackova, I.; Groh, T.; Kosnarova, E.; Cejkova, J.; Turnovcova, K.; Petrenko, A.; Sykova, E.; Kubinova, S. Clinically Relevant Solution for the Hypothermic Storage and Transportation of Human Multipotent Mesenchymal Stromal Cells. Stem Cells Int. 2019, 2019, e5909524. [Google Scholar] [CrossRef]
- Aoyama, T. Transportation of Mesenchymal Stem Cells for Clinical Applications. In Mesenchymal Stem Cells—Isolation, Characterization and Applications; IntechOpen: London, UK, 2017; ISBN 978-953-51-3616-3. [Google Scholar]
- Harris, D.T. Stem Cell Banking for Regenerative and Personalized Medicine. Biomedicines 2014, 2, 50–79. [Google Scholar] [CrossRef]
- Bulte, J.W.M.; Daldrup-Link, H.E. Clinical Tracking of Cell Transfer and Cell Transplantation: Trials and Tribulations. Radiology 2018, 289, 604–615. [Google Scholar] [CrossRef]
- De Becker, A.; Riet, I.V. Homing and Migration of Mesenchymal Stromal Cells: How to Improve the Efficacy of Cell Therapy? World J. Stem Cells 2016, 8, 73–87. [Google Scholar] [CrossRef]
- Liu, G.; Lv, H.; An, Y.; Wei, X.; Yi, X.; Yi, H. Tracking of Transplanted Human Umbilical Cord-Derived Mesenchymal Stem Cells Labeled with Fluorescent Probe in a Mouse Model of Acute Lung Injury. Int. J. Mol. Med. 2018, 41, 2527–2534. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.T. Long-Term Frozen Storage of Stem Cells: Challenges and Solutions. J. Biorepos. Sci. Appl. Med. 2016, 4, 9–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Chiu, S.; Liang, X.; Gao, F.; Zhang, Z.; Liao, S.; Liang, Y.; Chai, Y.-H.; Low, D.J.H.; Tse, H.-F.; et al. Rap1-Mediated Nuclear Factor-kappaB (NF-κB) Activity Regulates the Paracrine Capacity of Mesenchymal Stem Cells in Heart Repair Following Infarction. Cell Death Discov. 2015, 1, 15007. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Pittenger, M.F. Human Mesenchymal Stem Cells Modulate Allogeneic Immune Cell Responses. Blood 2005, 105, 1815–1822. [Google Scholar] [CrossRef]
- Arabpour, M.; Saghazadeh, A.; Rezaei, N. Anti-Inflammatory and M2 Macrophage Polarization-Promoting Effect of Mesenchymal Stem Cell-Derived Exosomes. Int. Immunopharmacol. 2021, 97, 107823. [Google Scholar] [CrossRef]
- Xie, M.; Xiong, W.; She, Z.; Wen, Z.; Abdirahman, A.S.; Wan, W.; Wen, C. Immunoregulatory Effects of Stem Cell-Derived Extracellular Vesicles on Immune Cells. Front. Immunol. 2020, 11, 13. [Google Scholar] [CrossRef]
- Nauta, A.J.; Kruisselbrink, A.B.; Lurvink, E.; Willemze, R.; Fibbe, W.E. Mesenchymal Stem Cells Inhibit Generation and Function of Both CD34+-Derived and Monocyte-Derived Dendritic Cells. J. Immunol. 2006, 177, 2080–2087. [Google Scholar] [CrossRef]
- Ge, W.; Jiang, J.; Baroja, M.L.; Arp, J.; Zassoko, R.; Liu, W.; Bartholomew, A.; Garcia, B.; Wang, H. Infusion of Mesenchymal Stem Cells and Rapamycin Synergize to Attenuate Alloimmune Responses and Promote Cardiac Allograft Tolerance. Am. J. Transplant. 2009, 9, 1760–1772. [Google Scholar] [CrossRef]
- Waterman, R.S.; Tomchuck, S.L.; Henkle, S.L.; Betancourt, A.M. A New Mesenchymal Stem Cell (MSC) Paradigm: Polarization into a Pro-Inflammatory MSC1 or an Immunosuppressive MSC2 Phenotype. PLoS ONE 2010, 5, e10088. [Google Scholar] [CrossRef]
- Sato, K.; Ozaki, K.; Oh, I.; Meguro, A.; Hatanaka, K.; Nagai, T.; Muroi, K.; Ozawa, K. Nitric Oxide Plays a Critical Role in Suppression of T-Cell Proliferation by Mesenchymal Stem Cells. Blood 2007, 109, 228–234. [Google Scholar] [CrossRef]
- Németh, K.; Leelahavanichkul, A.; Yuen, P.S.T.; Mayer, B.; Parmelee, A.; Doi, K.; Robey, P.G.; Leelahavanichkul, K.; Koller, B.H.; Brown, J.M.; et al. Bone Marrow Stromal Cells Attenuate Sepsis via Prostaglandin E(2)-Dependent Reprogramming of Host Macrophages to Increase Their Interleukin-10 Production. Nat. Med. 2009, 15, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Musiał-Wysocka, A.; Kot, M.; Majka, M. The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplant. 2019, 28, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Besikcioglu, H.E.; Sarıbas, G.S.; Ozogul, C.; Tiryaki, M.; Kilic, S.; Pınarlı, F.A.; Gulbahar, O. Determination of the Effects of Bone Marrow Derived Mesenchymal Stem Cells and Ovarian Stromal Stem Cells on Follicular Maturation in Cyclophosphamide Induced Ovarian Failure in Rats. Taiwan. J. Obstet. Gynecol. 2019, 58, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Subbarao, R.B.; Rho, G.J. Human Mesenchymal Stem Cells—Current Trends and Future Prospective. Biosci. Rep. 2015, 35, e00191. [Google Scholar] [CrossRef]
- Harrell, C.R.; Fellabaum, C.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells 2019, 8, 467. [Google Scholar] [CrossRef]
- Sagaradze, G.D.; Basalova, N.A.; Efimenko, A.Y.; Tkachuk, V.A. Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Front. Cell Dev. Biol. 2020, 8, 576176. [Google Scholar] [CrossRef]
- Wei, E.; Hu, M.; Wu, L.; Pan, X.; Zhu, Q.; Liu, H.; Liu, Y. TGF-β Signaling Regulates Differentiation of MSCs in Bone Metabolism: Disputes among Viewpoints. Stem Cell Res. Ther. 2024, 15, 156. [Google Scholar] [CrossRef]
- Xiong, J.; Lu, Z.; Wu, M.; Zhang, J.; Cheng, J.; Luo, A.; Shen, W.; Fang, L.; Zhou, S.; Wang, S. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries. PLoS ONE 2015, 10, e0139824. [Google Scholar] [CrossRef]
- Zhu, S.-F.; Hu, H.-B.; Xu, H.-Y.; Fu, X.-F.; Peng, D.-X.; Su, W.-Y.; He, Y.-L. Human Umbilical Cord Mesenchymal Stem Cell Transplantation Restores Damaged Ovaries. J. Cell. Mol. Med. 2015, 19, 2108–2117. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Zhang, Y.; Li, N.; Wen, Y.; Cao, F.; Ai, H.; Xue, X. Homing and Restorative Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Cisplatin Injured Ovaries in Rats. Mol. Cells 2014, 37, 865–872. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Wang, W.; Liu, Z.; Meng, J.; Han, Z. Mesenchymal Stem Cells Modified with Heme Oxygenase-1 Have Enhanced Paracrine Function and Attenuate Lipopolysaccharide-Induced Inflammatory and Oxidative Damage in Pulmonary Microvascular Endothelial Cells. Cell. Physiol. Biochem. 2018, 49, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, W.; Ren, H.; Zhao, X.; Wang, S.; Ma, H.; Shi, X. Mesenchymal Stem Cells Increase Expression of Heme Oxygenase-1 Leading to Anti-Inflammatory Activity in Treatment of Acute Liver Failure. Stem Cell Res. Ther. 2017, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.; Friedenstein, A.J. Stromal Stem Cells: Marrow-Derived Osteogenic Precursors. Ciba Found. Symp. 1988, 136, 42–60. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Huang, Z.; Lin, H.; Tian, Y.; Li, P.; Lin, S. Bone Marrow Mesenchymal Stem Cells (BMSCs) Restore Functional Endometrium in the Rat Model for Severe Asherman Syndrome. Reprod. Sci. 2019, 26, 436–444. [Google Scholar] [CrossRef]
- Bhartiya, D.; Singh, P.; Sharma, D.; Kaushik, A. Very Small Embryonic-like Stem Cells (VSELs) Regenerate Whereas Mesenchymal Stromal Cells (MSCs) Rejuvenate Diseased Reproductive Tissues. Stem Cell Rev. Rep. 2022, 18, 1718–1727. [Google Scholar] [CrossRef]
- Yi, K.W.; Mamillapalli, R.; Sahin, C.; Song, J.; Tal, R.; Taylor, H.S. Bone Marrow-Derived Cells or C-X-C Motif Chemokine 12 (CXCL12) Treatment Improve Thin Endometrium in a Mouse Model. Biol. Reprod. 2019, 100, 61–70. [Google Scholar] [CrossRef]
- Choi, J.H.; Seok, J.; Lim, S.M.; Kim, T.H.; Kim, G.J. Microenvironmental Changes Induced by Placenta-Derived Mesenchymal Stem Cells Restore Ovarian Function in Ovariectomized Rats via Activation of the PI3K-FOXO3 Pathway. Stem Cell Res. Ther. 2020, 11, 486. [Google Scholar] [CrossRef]
- Wang, S.; Yu, L.; Sun, M.; Mu, S.; Wang, C.; Wang, D.; Yao, Y. The Therapeutic Potential of Umbilical Cord Mesenchymal Stem Cells in Mice Premature Ovarian Failure. BioMed Res. Int. 2013, 2013, 690491. [Google Scholar] [CrossRef]
- Zhang, C. The Roles of Different Stem Cells in Premature Ovarian Failure. Curr. Stem Cell Res. Ther. 2020, 15, 473–481. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Pan, W.-W.; Liu, S.-B.; Shen, Z.-F.; Xu, Y.; Hu, L.-L. ERK/MAPK Signalling Pathway and Tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef]
- Dupont, J.; Scaramuzzi, R.J. Insulin Signalling and Glucose Transport in the Ovary and Ovarian Function during the Ovarian Cycle. Biochem. J. 2016, 473, 1483–1501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Guan, C.-Y.; Tian, S.; Lv, X.-D.; Li, J.-H.; Ma, X.; Xia, H.-F. Therapeutic Effect of Human Umbilical Cord-Derived Mesenchymal Stem Cells on Injured Rat Endometrium during Its Chronic Phase. Stem Cell Res. Ther. 2018, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, M.; Zhang, Y.; Li, W.; Yang, B. Mesenchymal Stem Cells Derived from Wharton Jelly of the Human Umbilical Cord Ameliorate Damage to Human Endometrial Stromal Cells. Fertil. Steril. 2011, 96, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.; Shalaby, S.; Brakta, S.; Elam, L.; Elsharoud, A.; Al-Hendy, A. Umbilical Cord Blood Mesenchymal Stem Cells as an Infertility Treatment for Chemotherapy Induced Premature Ovarian Insufficiency. Biomedicines 2019, 7, 7. [Google Scholar] [CrossRef]
- Chugh, R.M.; Park, H.; Esfandyari, S.; Elsharoud, A.; Ulin, M.; Al-Hendy, A. Mesenchymal Stem Cell-Conditioned Media Regulate Steroidogenesis and Inhibit Androgen Secretion in a PCOS Cell Model via BMP-2. Int. J. Mol. Sci. 2021, 22, 9184. [Google Scholar] [CrossRef]
- Kalhori, Z.; Azadbakht, M.; Soleimani Mehranjani, M.; Shariatzadeh, M.A. Improvement of the Folliculogenesis by Transplantation of Bone Marrow Mesenchymal Stromal Cells in Mice with Induced Polycystic Ovary Syndrome. Cytotherapy 2018, 20, 1445–1458. [Google Scholar] [CrossRef]
- Wang, T.; Rainey, W.E. Human Adrenocortical Carcinoma Cell Lines. Mol. Cell. Endocrinol. 2012, 351, 58–65. [Google Scholar] [CrossRef]
- Chugh, R.M.; Park, H.-S.; El Andaloussi, A.; Elsharoud, A.; Esfandyari, S.; Ulin, M.; Bakir, L.; Aboalsoud, A.; Ali, M.; Ashour, D.; et al. Mesenchymal Stem Cell Therapy Ameliorates Metabolic Dysfunction and Restores Fertility in a PCOS Mouse Model through Interleukin-10. Stem Cell Res. Ther. 2021, 12, 388. [Google Scholar] [CrossRef]
- Sehic, E.; Thorén, E.; Gudmundsdottir, I.; Oltean, M.; Brännström, M.; Hellström, M. Mesenchymal Stem Cells Establish a Pro-Regenerative Immune Milieu after Decellularized Rat Uterus Tissue Transplantation. J. Tissue Eng. 2022, 13, 20417314221118858. [Google Scholar] [CrossRef]
- Cervelló, I.; Gil-Sanchis, C.; Santamaría, X.; Cabanillas, S.; Díaz, A.; Faus, A.; Pellicer, A.; Simón, C. Human CD133+ Bone Marrow-Derived Stem Cells Promote Endometrial Proliferation in a Murine Model of Asherman Syndrome. Fertil. Steril. 2015, 104, 1552–1560.e3. [Google Scholar] [CrossRef]
- Santamaria, X.; Cabanillas, S.; Cervelló, I.; Arbona, C.; Raga, F.; Ferro, J.; Palmero, J.; Remohí, J.; Pellicer, A.; Simón, C. Autologous Cell Therapy with CD133+ Bone Marrow-Derived Stem Cells for Refractory Asherman’s Syndrome and Endometrial Atrophy: A Pilot Cohort Study. Hum. Reprod. 2016, 31, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Sun, H.; Zhu, H.; Zhu, X.; Tang, X.; Yan, G.; Wang, J.; Bai, D.; Wang, J.; Wang, L.; et al. Allogeneic Cell Therapy Using Umbilical Cord MSCs on Collagen Scaffolds for Patients with Recurrent Uterine Adhesion: A Phase I Clinical Trial. Stem Cell Res. Ther. 2018, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Abd-Allah, S.H.; Shalaby, S.M.; Pasha, H.F.; El-Shal, A.S.; Raafat, N.; Shabrawy, S.M.; Awad, H.A.; Amer, M.G.; Gharib, M.A.; El Gendy, E.A.; et al. Mechanistic Action of Mesenchymal Stem Cell Injection in the Treatment of Chemically Induced Ovarian Failure in Rabbits. Cytotherapy 2013, 15, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-Q.; Gao, X.; Lin, Z.-J.; Wu, W.-Z.; Huang, L.-H.; Dong, H.-Y.; Chen, J.; Lu, J.; Fu, Y.-F.; Wang, J.; et al. BMSCs Reduce Rat Granulosa Cell Apoptosis Induced by Cisplatin and Perimenopause. BMC Cell Biol. 2013, 14, 18. [Google Scholar] [CrossRef]
- Yin, N.; Wu, C.; Qiu, J.; Zhang, Y.; Bo, L.; Xu, Y.; Shi, M.; Zhu, S.; Yang, G.; Mao, C. Protective Properties of Heme Oxygenase-1 Expressed in Umbilical Cord Mesenchymal Stem Cells Help Restore the Ovarian Function of Premature Ovarian Failure Mice through Activating the JNK/Bcl-2 Signal Pathway-Regulated Autophagy and Upregulating the Circulating of CD8+CD28- T Cells. Stem Cell Res. Ther. 2020, 11, 49. [Google Scholar] [CrossRef]
- Lédée, N.; Petitbarat, M.; Chevrier, L.; Vitoux, D.; Vezmar, K.; Rahmati, M.; Dubanchet, S.; Gahéry, H.; Bensussan, A.; Chaouat, G. The Uterine Immune Profile May Help Women With Repeated Unexplained Embryo Implantation Failure After In Vitro Fertilization. Am. J. Reprod. Immunol. 2016, 75, 388–401. [Google Scholar] [CrossRef]
- Liang, P.-Y.; Diao, L.-H.; Huang, C.-Y.; Lian, R.-C.; Chen, X.; Li, G.-G.; Zhao, J.; Li, Y.-Y.; He, X.-B.; Zeng, Y. The Pro-Inflammatory and Anti-Inflammatory Cytokine Profile in Peripheral Blood of Women with Recurrent Implantation Failure. Reprod. Biomed. Online 2015, 31, 823–826. [Google Scholar] [CrossRef]
- FU, L.; LIU, Y.; ZHANG, D.; XIE, J.; GUAN, H.; SHANG, T. Beneficial Effect of Human Umbilical Cord-Derived Mesenchymal Stem Cells on an Endotoxin-Induced Rat Model of Preeclampsia. Exp. Ther. Med. 2015, 10, 1851–1856. [Google Scholar] [CrossRef]
- Xie, Q.; Xiong, X.; Xiao, N.; He, K.; Chen, M.; Peng, J.; Su, X.; Mei, H.; Dai, Y.; Wei, D.; et al. Mesenchymal Stem Cells Alleviate DHEA-Induced Polycystic Ovary Syndrome (PCOS) by Inhibiting Inflammation in Mice. Stem Cells Int. 2019, 2019, 9782373. [Google Scholar] [CrossRef]
- Wang, L.-L.; Yu, Y.; Guan, H.-B.; Qiao, C. Effect of Human Umbilical Cord Mesenchymal Stem Cell Transplantation in a Rat Model of Preeclampsia. Reprod. Sci. 2016, 23, 1058–1070. [Google Scholar] [CrossRef]
- Zhang, D.; Fu, L.; Wang, L.; Lin, L.; Yu, L.; Zhang, L.; Shang, T. Therapeutic Benefit of Mesenchymal Stem Cells in Pregnant Rats with Angiotensin Receptor Agonistic Autoantibody-Induced Hypertension: Implications for Immunomodulation and Cytoprotection. Hypertens. Pregnancy 2017, 36, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, G.; Fan, H.; Zhao, X.; Li, P.; Wang, Z.; Hu, Y.; Hou, Y. Mesenchymal Stem Cells Ameliorate Th1-Induced Pre-Eclampsia-Like Symptoms in Mice via the Suppression of TNF-α Expression. PLoS ONE 2014, 9, e88036. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ding, L.; Wang, L.; Cao, Y.; Zhu, H.; Lu, J.; Li, X.; Song, T.; Hu, Y.; Dai, J. Umbilical Cord-Derived Mesenchymal Stem Cells on Scaffolds Facilitate Collagen Degradation via Upregulation of MMP-9 in Rat Uterine Scars. Stem Cell Res. Ther. 2017, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Lin, X.; Pan, Y.; Zheng, X.; Shi, L.; Zhang, Y.; Ma, L.; Gao, C.; Zhang, S. A Collagen Scaffold Loaded with Human Umbilical Cord-Derived Mesenchymal Stem Cells Facilitates Endometrial Regeneration and Restores Fertility. Acta Biomater. 2019, 92, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Hajazimian, S.; Maleki, M.; Mehrabad, S.D.; Isazadeh, A. Human Wharton’s Jelly Stem Cells Inhibit Endometriosis through Apoptosis Induction. Reproduction 2020, 159, 549–558. [Google Scholar] [CrossRef]
- Ding, C.; Zou, Q.; Wang, F.; Wu, H.; Wang, W.; Li, H.; Huang, B. HGF and BFGF Secretion by Human Adipose-Derived Stem Cells Improves Ovarian Function During Natural Aging via Activation of the SIRT1/FOXO1 Signaling Pathway. Cell. Physiol. Biochem. 2018, 45, 1316–1332. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, L.; Wang, S.; Sheng, X.; Yan, G.; Xu, L.; Liu, J.; Liu, M.; Zhen, X.; Ding, L.; et al. Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells on a Collagen Scaffold Improves Ovarian Function in a Premature Ovarian Failure Model of Mice. In Vitro Cell. Dev. Biol. Anim. 2019, 55, 302–311. [Google Scholar] [CrossRef]
- Meligy, F.Y.; Elgamal, D.A.; Abdelzaher, L.A.; Khashbah, M.Y.; El-Mokhtar, M.A.; Sayed, A.A.; Refaiy, A.M.; Othman, E.R. Adipose Tissue-Derived Mesenchymal Stem Cells Reduce Endometriosis Cellular Proliferation through Their Anti-Inflammatory Effects. Clin. Exp. Reprod. Med. 2021, 48, 322. [Google Scholar] [CrossRef]
- Damous, L.L.; Nakamuta, J.S.; Saturi de Carvalho, A.E.; Carvalho, K.C.; Soares, J.M., Jr.; Simões, M.D.J.; Krieger, J.E.; Baracat, E.C. Does Adipose Tissue-Derived Stem Cell Therapy Improve Graft Quality in Freshly Grafted Ovaries? Reprod. Biol. Endocrinol. 2015, 13, 108. [Google Scholar] [CrossRef]
- Sun, M.; Wang, S.; Li, Y.; Yu, L.; Gu, F.; Wang, C.; Yao, Y. Adipose-Derived Stem Cells Improved Mouse Ovary Function after Chemotherapy-Induced Ovary Failure. Stem Cell Res. Ther. 2013, 4, 80. [Google Scholar] [CrossRef]
- Huang, B.; Qian, C.; Ding, C.; Meng, Q.; Zou, Q.; Li, H. Fetal Liver Mesenchymal Stem Cells Restore Ovarian Function in Premature Ovarian Insufficiency by Targeting MT1. Stem Cell Res. Ther. 2019, 10, 362. [Google Scholar] [CrossRef]
- Liu, T.; Huang, Y.; Zhang, J.; Qin, W.; Chi, H.; Chen, J.; Yu, Z.; Chen, C. Transplantation of Human Menstrual Blood Stem Cells to Treat Premature Ovarian Failure in Mouse Model. Stem Cells Dev. 2014, 23, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Manshadi, M.D.; Navid, S.; Hoshino, Y.; Daneshi, E.; Noory, P.; Abbasi, M. The Effects of Human Menstrual Blood Stem Cells-Derived Granulosa Cells on Ovarian Follicle Formation in a Rat Model of Premature Ovarian Failure. Microsc. Res. Tech. 2019, 82, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Guo, F.; Yuan, Q.; Shao, Y.; Zhang, Y.; Wang, H.; Hao, S.; Du, X. Endometrial Mesenchymal Stem Cells Isolated from Menstrual Blood Repaired Epirubicin-Induced Damage to Human Ovarian Granulosa Cells by Inhibiting the Expression of Gadd45b in Cell Cycle Pathway. Stem Cell Res. Ther. 2019, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Akyash, F.; Javidpou, M.; Yazd, E.F.; Golzadeh, J.; Hajizadeh-Tafti, F.; Aflatoonian, R.; Aflatoonian, B. Characteristics of the Human Endometrial Regeneration Cells as a Potential Source for Future Stem Cell-Based Therapies: A Lab Resources Study. Int. J. Reprod. Biomed. 2020, 18, 943. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Song, K.; Zhang, J.; Zhang, Y.; Tan, B.-Z. Effects of Menstrual Blood-Derived Stem Cells on Endometrial Injury Repair. Mol. Med. Rep. 2019, 19, 813. [Google Scholar] [CrossRef]
- Chu, Y.; Zhu, C.; Yue, C.; Peng, W.; Chen, W.; He, G.; Liu, C.; Lv, Y.; Gao, G.; Yao, K.; et al. Chorionic Villus-Derived Mesenchymal Stem Cell-Mediated Autophagy Promotes the Proliferation and Invasiveness of Trophoblasts under Hypoxia by Activating the JAK2/STAT3 Signalling Pathway. Cell Biosci. 2021, 11, 182. [Google Scholar] [CrossRef]
- Zhang, S.; Li, P.; Yuan, Z.; Tan, J. Platelet-Rich Plasma Improves Therapeutic Effects of Menstrual Blood-Derived Stromal Cells in Rat Model of Intrauterine Adhesion. Stem Cell Res. Ther. 2019, 10, 61. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, C.; La, B.; Cao, M.; Ning, S.; Zhou, J.; Yan, Z.; Li, C.; Cui, Y.; Ma, X.; et al. Human Amnion-Derived Mesenchymal Stem Cells Improved the Reproductive Function of Age-Related Diminished Ovarian Reserve in Mice through Ampk/FoxO3a Signaling Pathway. Stem Cell Res. Ther. 2021, 12, 317. [Google Scholar] [CrossRef]
- Neuvians, T.P.; Schams, D.; Berisha, B.; Pfaffl, M.W. Involvement of Pro-Inflammatory Cytokines, Mediators of Inflammation, and Basic Fibroblast Growth Factor in Prostaglandin F2alpha-Induced Luteolysis in Bovine Corpus Luteum. Biol. Reprod. 2004, 70, 473–480. [Google Scholar] [CrossRef]
- Kim, T.-H.; Choi, J.H.; Jun, Y.; Lim, S.M.; Park, S.; Paek, J.-Y.; Lee, S.-H.; Hwang, J.-Y.; Kim, G.J. 3D-Cultured Human Placenta-Derived Mesenchymal Stem Cell Spheroids Enhance Ovary Function by Inducing Folliculogenesis. Sci. Rep. 2018, 8, 15313. [Google Scholar] [CrossRef] [PubMed]
- Choudhery, M.S.; Badowski, M.; Muise, A.; Pierce, J.; Harris, D.T. Donor Age Negatively Impacts Adipose Tissue-Derived Mesenchymal Stem Cell Expansion and Differentiation. J. Transl. Med. 2014, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Kilic, S.; Yuksel, B.; Pinarli, F.; Albayrak, A.; Boztok, B.; Delibasi, T. Effect of Stem Cell Application on Asherman Syndrome, an Experimental Rat Model. J. Assist. Reprod. Genet. 2014, 31, 975. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Qi, W.; Zheng, J.; Tian, Y.; Qi, X.; Kong, D.; Zhang, J.; Huang, X. Exosomes Derived from Adipose Mesenchymal Stem Cells Restore Functional Endometrium in a Rat Model of Intrauterine Adhesions. Reprod. Sci. 2020, 27, 1266–1275. [Google Scholar] [CrossRef]
- Shao, X.; Ai, G.; Wang, L.; Qin, J.; Li, Y.; Jiang, H.; Zhang, T.; Zhou, L.; Gao, Z.; Cheng, J.; et al. Adipose-Derived Stem Cells Transplantation Improves Endometrial Injury Repair. Zygote 2019, 27, 367–374. [Google Scholar] [CrossRef]
- Monsef, F.; Artimani, T.; Alizadeh, Z.; Ramazani, M.; Solgi, G.; Yavangi, M.; Asl, S.S. Comparison of the Regenerative Effects of Bone Marrow/Adipose-Derived Stem Cells in the Asherman Model Following Local or Systemic Administration. J. Assist. Reprod. Genet. 2020, 37, 1861–1868. [Google Scholar] [CrossRef]
- Kozlowska, U.; Krawczenko, A.; Futoma, K.; Jurek, T.; Rorat, M.; Patrzalek, D.; Klimczak, A. Similarities and Differences between Mesenchymal Stem/Progenitor Cells Derived from Various Human Tissues. World J. Stem Cells 2019, 11, 347–374. [Google Scholar] [CrossRef]
- Bozorgmehr, M.; Gurung, S.; Darzi, S.; Nikoo, S.; Kazemnejad, S.; Zarnani, A.H.; Gargett, C.E. Endometrial and Menstrual Blood Mesenchymal Stem/Stromal Cells: Biological Properties and Clinical Application. Front. Cell Dev. Biol. 2020, 8, 497. [Google Scholar] [CrossRef]
- Chen, L.; Qu, J.; Xiang, C. The Multi-Functional Roles of Menstrual Blood-Derived Stem Cells in Regenerative Medicine. Stem Cell Res. Ther. 2019, 10, 1. [Google Scholar] [CrossRef]
- Xu, S.; Chan, R.W.; Ng, E.H.; Yeung, W.S. Spatial and Temporal Characterization of Endometrial Mesenchymal Stem-like Cells Activity during the Menstrual Cycle. Exp. Cell Res. 2017, 350, 184–189. [Google Scholar] [CrossRef]
- Meng, X.; Ichim, T.E.; Zhong, J.; Rogers, A.; Yin, Z.; Jackson, J.; Wang, H.; Ge, W.; Bogin, V.; Chan, K.W. Endometrial Regenerative Cells: A Novel Stem Cell Population. J. Transl. Med. 2007, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.-X.; Wang, J.; Wang, X.-L.; Ali, A.; Wu, L.-M.; Liu, Y.-S. Feasibility Analysis of Treating Severe Intrauterine Adhesions by Transplanting Menstrual Blood-Derived Stem Cells. Int. J. Mol. Med. 2018, 41, 2201–2212. [Google Scholar] [CrossRef]
- Tan, J.; Li, P.; Wang, Q.; Li, Y.; Li, X.; Zhao, D.; Xu, X.; Kong, L. Autologous Menstrual Blood-Derived Stromal Cells Transplantation for Severe Asherman’s Syndrome. Hum. Reprod. 2016, 31, 2723–2729. [Google Scholar] [CrossRef]
- Zhong, Z.; Patel, A.N.; Ichim, T.E.; Riordan, N.H.; Wang, H.; Min, W.-P.; Woods, E.J.; Reid, M.; Mansilla, E.; Marin, G.H.; et al. Feasibility Investigation of Allogeneic Endometrial Regenerative Cells. J. Transl. Med. 2009, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Loukogeorgakis, S.P.; De Coppi, P. Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells 2017, 35, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Gy, X.; Ih, L.; Cc, C.; Cc, C.; Yh, L.; Wt, C.; Sc, W. Amniotic Fluid Stem Cells Prevent Follicle Atresia and Rescue Fertility of Mice with Premature Ovarian Failure Induced by Chemotherapy. PLoS ONE 2014, 9, e106538. [Google Scholar] [CrossRef]
- Ling, L.; Feng, X.; Wei, T.; Wang, Y.; Wang, Y.; Wang, Z.; Tang, D.; Luo, Y.; Xiong, Z. Human Amnion-Derived Mesenchymal Stem Cell (hAD-MSC) Transplantation Improves Ovarian Function in Rats with Premature Ovarian Insufficiency (POI) at Least Partly through a Paracrine Mechanism. Stem Cell Res. Ther. 2019, 10, 46. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Q.; Sun, J.; Lai, D. Human Amniotic Epithelial Cells Improve Fertility in an Intrauterine Adhesion Mouse Model. Stem Cell Res. Ther. 2019, 10, 257. [Google Scholar] [CrossRef]
- Burton, G.J.; Fowden, A.L. The Placenta: A Multifaceted, Transient Organ. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140066. [Google Scholar] [CrossRef]
- De la Torre, P.; Pérez-Lorenzo, M.J.; Flores, A.I. Human Placenta-Derived Mesenchymal Stromal Cells: A Review from Basic Research to Clinical Applications. In Stromal Cells—Structure, Function, and Therapeutic Implications; IntechOpen: London, UK, 2018; ISBN 978-1-78984-985-1. [Google Scholar]
- Lee, J.M.; Jung, J.; Lee, H.-J.; Jeong, S.J.; Cho, K.J.; Hwang, S.-G.; Kim, G.J. Comparison of Immunomodulatory Effects of Placenta Mesenchymal Stem Cells with Bone Marrow and Adipose Mesenchymal Stem Cells. Int. Immunopharmacol. 2012, 13, 219–224. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lee, M.J.; Seok, O.S.; Paek, Y.C.; Cho, G.J.; Seol, H.J.; Lee, J.K.; Oh, M.J. Cytokine Expression in Placenta-Derived Mesenchymal Stem Cells in Patients with Pre-Eclampsia and Normal Pregnancies. Cytokine 2010, 49, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, A.M.; Giuffrida, D.; Masturzo, B.; Mele, P.; Piccoli, E.; Eva, C.; Todros, T.; Rolfo, A. Altered Expression of G1/S Phase Cell Cycle Regulators in Placental Mesenchymal Stromal Cells Derived from Preeclamptic Pregnancies with Fetal-Placental Compromise. Cell Cycle 2016, 16, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Zhao, W.; Luo, Q.; Yuan, W.; Luan, X.; Zhang, H. Restoring Ovarian Function With Human Placenta-Derived Mesenchymal Stem Cells in Autoimmune-Induced Premature Ovarian Failure Mice Mediated by Treg Cells and Associated Cytokines. Reprod. Sci. 2018, 25, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, W.; Wang, L.; Luo, Q.; Yin, N.; Lu, X.; Hou, Y.; Cui, J.; Zhang, H. Human Placenta-Derived Mesenchymal Stem Cells Inhibit Apoptosis of Granulosa Cells Induced by IRE1α Pathway in Autoimmune POF Mice. Cell Biol. Int. 2019, 43, 899–909. [Google Scholar] [CrossRef]
- Yatsenko, S.A.; Rajkovic, A. Genetics of Human Female Infertility†. Biol. Reprod. 2019, 101, 549–566. [Google Scholar] [CrossRef]
- Kanyal Butola, L.; Ambad, R.; Vagga, A. Recent Updates in Female Infertility: A Short Review of Literature. Indian J. Forensic Med. Toxicol. 2021, 15, 302–311. [Google Scholar] [CrossRef]
- Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells Int. 2019, 2019, 9628536. [Google Scholar] [CrossRef]
- Mushahary, D.; Spittler, A.; Kasper, C.; Weber, V.; Charwat, V. Isolation, Cultivation, and Characterization of Human Mesenchymal Stem Cells. Cytom. Part A 2018, 93, 19–31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzianagnosti, S.; Dermitzakis, I.; Theotokis, P.; Kousta, E.; Mastorakos, G.; Manthou, M.E. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life 2024, 14, 1161. https://doi.org/10.3390/life14091161
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life. 2024; 14(9):1161. https://doi.org/10.3390/life14091161
Chicago/Turabian StyleChatzianagnosti, Sofia, Iasonas Dermitzakis, Paschalis Theotokis, Eleni Kousta, George Mastorakos, and Maria Eleni Manthou. 2024. "Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results" Life 14, no. 9: 1161. https://doi.org/10.3390/life14091161
APA StyleChatzianagnosti, S., Dermitzakis, I., Theotokis, P., Kousta, E., Mastorakos, G., & Manthou, M. E. (2024). Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life, 14(9), 1161. https://doi.org/10.3390/life14091161