Vector-Borne Zoonotic Lymphadenitis—The Causative Agents, Epidemiology, Diagnostic Approach, and Therapeutic Possibilities—An Overview
Abstract
:1. Introduction
2. Tularemia
2.1. Microbiology and Epidemiology
2.2. Pathogenesis
2.3. Clinical Manifestation
2.4. Diagnosis
2.5. Treatment
2.6. Prevention
3. Bubonic Plague
3.1. Microbiology and Epidemiology
3.2. Clinical Manifestation
3.3. Diagnosis
3.4. Treatment
3.5. Prevention
4. Bartonellosis (Bartonella henselae Infection)
4.1. Microbiology and Epidemiology
4.2. Pathogenesis
4.3. Clinical Manifestations
4.4. Diagnosis
4.5. Treatment
5. Tick-Borne Lymphadenopathy (TIBOLA)
5.1. Diagnosis
5.2. Treatment
6. Scrub Typhus
6.1. Epidemiology
6.2. Clinical Manifestations
6.3. Diagnosis
6.4. Treatment and Prevention
7. Other Rare Zoonotic Vector-Transmitted Causes of Lymphadenitis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maini, R.; Nagalli, S. Lymphadenopathy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558918/ (accessed on 16 November 2023).
- Melenotte, C.; Edouard, S.; Lepidi, H.; Raoult, D. Diagnostic des adénites infectieuses [Diagnosis of infectious lymphadenitis]. Rev. Med. Interne 2015, 36, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Baranowski, K.; Huang, B. Cat Scratch Disease. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482139/ (accessed on 16 November 2023).
- Kawano-Dourado, L.; Peirera, D.A.; Kawassaki Ade, M.; Dolhnikoff, M.; Silva, M.V.; Kairalla, R.A. Lymphadenopathy and fever in a chef during a stay in Europe. J. Bras. Pneumol. 2015, 41, 191–195. [Google Scholar] [CrossRef]
- von Bargen, K.; Gagnaire, A.; Arce-Gorvel, V.; de Bovis, B.; Baudimont, F.; Chasson, L.; Bosilkovski, M.; Papadopoulos, A.; Martirosyan, A.; Henri, S.; et al. Cervical Lymph Nodes as a Selective Niche for Brucella during Oral Infections. PLoS ONE 2015, 10, e0121790. [Google Scholar] [CrossRef] [PubMed]
- Gaastra, W.; Lipman, L.J.A. Capnocytophaga canimorsus. Vet. Microbiol. 2010, 140, 339. [Google Scholar] [CrossRef]
- Panchal, A.; Shweihat, Y.; Nusair, A. Capnocytophaga Infection Involving Mediastinal Lymph Nodes and Lung Mass in a Patient With a Primary Lung Cancer Diagnosed With EBUS TBNA With Associated Leukemoid Paraneoplastic Syndrome. Chest 2012, 142, 989A. [Google Scholar] [CrossRef]
- Hasan, J.; Hug, M. Pasteurella Multocida. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557629/ (accessed on 16 November 2023).
- Domenis, L.; Spedicato, R.; Pepe, E.; Orusa, R.; Robetto, S. Caseous Lymphadenitis Caused by Corynebacterium pseudotuberculosis in Alpine Chamois (Rupicapra r. rupicapra): A Review of 98 Cases. J. Comp. Pathol. 2018, 161, 11–19. [Google Scholar] [CrossRef]
- Pasternack, M.S. Lymphadenitis and Lymphangitis. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Bennet, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020; Volume 1, pp. 1317–1329. [Google Scholar]
- Gaddey, H.L.; Riegel, A.M. Unexplained Lymphadenopathy: Evaluation and Differential Diagnosis. Am. Fam. Physician 2016, 94, 896–903. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Traveler’s Health. Zoonoses—The One Health Approach CDC Yellow Book. 2024. Available online: https://wwwnc.cdc.gov/travel/yellowbook/2024/environmental-hazards-risks/zoonoses-one-health-approach- (accessed on 16 November 2023).
- European Centre for Disease Prevention and Control. Zoonotic Diseases and Foodborne Outbreaks on the Rise, but Still below Pre-Pandemic Levels. Available online: https://www.ecdc.europa.eu/en/news-events/zoonotic-diseases-and-foodborne-outbreaks-rise-still-below-pre-pandemic-levels (accessed on 16 November 2023).
- Auwaerter, P.G.; Penn, R.L. Francisella tularensis (Tularemia). In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Bennet, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020; Volume 2, pp. 2759–2773. [Google Scholar]
- Dietrich, E.A.; Kingry, L.C.; Kugeler, K.J.; Levy, C.; Yaglom, H.; Young, J.W.; Mead, P.S.; Petersen, J.M. Francisella opportunistica sp. nov., isolated from human blood and cerebrospinal fluid. Int. J. Syst. Evol. Microbiol. 2020, 70, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Gunnell, M.K.; Adams, B.J.; Robison, R.A. The Genetic Diversity and Evolution of Francisella tularensis with Comments on Detection by PCR. Curr. Issues Mol. Biol. 2016, 18, 79–91. [Google Scholar] [PubMed]
- Sjöstedt, A. Tularemia: History, epidemiology, pathogen physiology, and clinical manifestations. Ann. N. Y. Acad. Sci. 2007, 1105, 1–29. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar]
- Jonckers Nieboer, L.F.W.; Fischer, E.A.J.; Braks, M.A.H. Available evidence for mosquito-borne Francisella tularensis transmission is inconclusive. Front. Trop. Dis. 2023, 4, 1230903. [Google Scholar] [CrossRef]
- Whitten, T.; Bjork, J.; Neitzel, D.; Smith, K.; Sullivan, M.; Scheftel, J. Notes from the Field: Francisella tularensis Type B Infection from a Fish Hook Injury—Minnesota, 2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 194. [Google Scholar] [CrossRef] [PubMed]
- Weilbacher, J.O.; Moss, E.S. Tularemia following injury while performing post-mortem examination of a human case. J. Lab. Clin. Med. 1938, 24, 34. [Google Scholar]
- Nelson, C.A.; Murua, C.; Jones, J.M.; Mohler, K.; Zhang, Y.; Wiggins, L.; Kwit, N.A.; Respicio-Kingry, L.; Kingry, L.C.; Petersen, J.M.; et al. Francisella tularensis Transmission by Solid Organ Transplantation, 2017. Emerg. Infect. Dis. 2019, 25, 767–775. [Google Scholar] [CrossRef]
- Bahuaud, O.; Le Brun, C.; Chalopin, T.; Lacasse, M.; Le Marec, J.; Pantaleon, C.; Nicolas, C.; Barbier, L.; Bernard, L.; Lemaignen, A. Severe infections due to Francisella tularensis ssp. holarctica in solid organ transplant recipient: Report of two cases and review of literature. BMC Infect. Dis. 2019, 19, 238. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Tularemia. Available online: https://www.cdc.gov/tularemia/site.html (accessed on 15 September 2024).
- Morse, S.; Henkel, R. Francisella tularensis: Understanding Reported Occupational Exposures and Laboratory Methods Used for the Identification of Francisella tularensis. Appl. Biosaf. 2018, 23, 11–18. [Google Scholar] [CrossRef]
- Nelson, C.A.; Brown, J.; Riley, L.; Dennis, A.; Oyer, R.; Brown, C. Lack of Tularemia Among Health Care Providers with Close Contact with Infected Patients—A Case Series. Open Forum Infect. Dis. 2019, 7, ofz499. [Google Scholar] [CrossRef]
- Government of Canada. Pathogen Safety Data Sheets. Infectious Substances-Francisella tularensis. Available online: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/francisella-tularensis-material-safety-data-sheets-msds.html (accessed on 17 November 2023).
- Asano, S.; Mori, K.; Yamazaki, K.; Sata, T.; Kanno, T.; Sato, Y.; Kojima, M.; Fujita, H.; Akaike, Y.; Wakasa, H. Temporal differences of onset between primary skin lesions and regional lymph node lesions for tularemia in Japan: A clinicopathologic and immunohistochemical study of 19 skin cases and 54 lymph node cases. Virchows Arch. 2012, 460, 651–658. [Google Scholar] [CrossRef]
- Geyer, S.J.; Burkey, A.; Chandler, F.W. Tularemia. In Pathology of Infectious Diseases; Connor, D.H., Ed.; Appleton & Lange: Stamford, CT, USA, 1997; pp. 869–873. [Google Scholar]
- Eliasson, H.; Bäck, E. Tularaemia in an emergent area in Sweden: An analysis of 234 cases in five years. Scand. J. Infect. Dis. 2007, 39, 880–889. [Google Scholar] [CrossRef]
- Evans, M.E.; Gregory, D.W.; Schaffner, W.; McGee, Z.A. Tularemia: A 30-year experience with 88 cases. Medicine 1985, 64, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Tularemia—Missouri, 2000–2007. MMWR Morb. Mortal. Wkly. Rep. 2009, 58, 744–748. [Google Scholar]
- Eren Gok, S.; Kocagul Celikbas, A.; Baykam, N.; Atay Buyukdemirci, A.; Eroglu, M.N.; Evren Kemer, O.; Dokuzoguz, B. Evaluation of tularemia cases focusing on the oculoglandular form. J. Infect. Dev. Ctries. 2014, 8, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Raja, H.; Starr, M.R.; Bakri, S.J. Ocular manifestations of tick-borne diseases. Surv. Ophthalmol. 2016, 61, 726–744. [Google Scholar] [CrossRef]
- Terrada, C.; Azza, S.; Bodaghi, B.; Le Hoang, P.; Drancourt, M. Rabbit hunter uveitis: Case report of tularemia uveitis. BMC Ophthalmol. 2016, 16, 157. [Google Scholar] [CrossRef]
- Altuntas, E.E.; Polat, K.; Durmuş, K.; Uysal, I.Ö.; Müderris, S. Tularemia and the oculoglandular syndrome of Parinaud. Braz. J. Infect. Dis. 2012, 16, 90–91. [Google Scholar] [CrossRef]
- Lester Rothfeldt, L.K.; Jacobs, R.F.; Wheeler, J.G.; Weinstein, S.; Haselow, D.T. Variation in Tularemia Clinical Manifestations-Arkansas, 2009–2013. Open Forum Infect. Dis. 2017, 4, ofx027. [Google Scholar] [CrossRef] [PubMed]
- Matyas, B.T.; Nieder, H.S.; Telford, S.R., 3rd. Pneumonic tularemia on Martha’s Vineyard: Clinical, epidemiologic, and ecological characteristics. Ann. N. Y. Acad. Sci. 2007, 1105, 351–377. [Google Scholar] [CrossRef]
- Maurin, M. Francisella tularensis, Tularemia and Serological Diagnosis. Front. Cell. Infect. Microbiol. 2020, 10, 512090. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). WHO Guidelines on Tularaemia: Epidemic and Pandemic Alert and Response. Available online: https://stacks.cdc.gov/view/cdc/6943 (accessed on 17 November 2023).
- Peterson, J.M.; Schriefer, M.E. Francisella. In Manual of Clinical Microbiology, 11th ed.; Jorgensen, J., Pfaller, M., Carroll, K., Funke, G., Pfaller, M.A., Landry, M.L., Richter, S.S., Warnock, D.W., Eds.; American Society for Microbiology Press: Washington, DC, USA, 2015; pp. 851–862. [Google Scholar]
- Ellis, J.; Oyston, P.C.; Green, M.; Titball, R.W. Tularemia. Clin. Microbiol. Rev. 2002, 15, 631–646. [Google Scholar] [CrossRef]
- Lai, X.H.; Zhao, L.F.; Chen, X.M.; Ren, Y. Rapid Identification and Characterization of Francisella by Molecular Biology and Other Techniques. Open Microbiol. J. 2016, 10, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Moreno, C.; Bhartee, H.; Vasudevan, A.; Adiga, R.; Salzer, W. Tetracyclines for Treatment of Tularemia: A Case Series. Open Forum Infect. Dis. 2018, 5, ofy176. [Google Scholar] [CrossRef] [PubMed]
- Hofinger, D.M.; Cardona, L.; Mertz, G.J.; Davis, L.E. Tularemic meningitis in the United States. Arch. Neurol 2009, 66, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Dentan, C.; Pavese, P.; Pelloux, I.; Boisset, S.; Brion, J.P.; Stahl, J.P.; Maurin, M. Treatment of tularemia in pregnant woman, France. Emerg. Infect. Dis. 2013, 19, 996–998. [Google Scholar] [CrossRef]
- Yeşilyurt, M.; Kiliç, S.; Çelebi, B.; Gül, S. Tularemia during pregnancy: Report of four cases. Scan. J. Infect. Dis. 2013, 45, 324–328. [Google Scholar] [CrossRef]
- Yeni, D.K.; Büyük, F.; Ashraf, A.; Shah, M.S.U.D. Tularemia: A re-emerging tick-borne infectious disease. Folia Microbiol. 2021, 66, 1–14. [Google Scholar] [CrossRef]
- World Health Organization. Plague. Available online: https://www.who.int/health-topics/plague#tab=tab_1 (accessed on 18 November 2023).
- European Centre for Disease Prevention and Control. Plague. In Annual Epidemiological Report for 2019; ECDC: Stockholm, Sweden, 2021. [Google Scholar]
- Perry, R.D.M.; Fetherston, J.D. Yersinia pestis–etiologic agent of plague. Clin. Microbiol. Rev. 1997, 10, 35–66. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Plague. Available online: https://www.cdc.gov/plague/site.html (accessed on 15 September 2024).
- Jullien, S.; de Silva, N.L.; Garner, P. Plague Transmission from Corpses and Carcasses. Emerg. Infect. Dis. 2021, 27, 2033–2041. [Google Scholar] [CrossRef]
- Prentice, M.B.; Rahalison, L. Plague. Lancet 2007, 369, 1196–1207. [Google Scholar] [CrossRef]
- Crook, L.D.; Tempest, B. Plague. A clinical review of 27 cases. Arch. Intern. Med. 1992, 152, 1253–1256. [Google Scholar] [CrossRef]
- Zhou, D.; Han, Y.; Yang, R. Molecular and physiological insights into plague transmission, virulence and etiology. Microbes Infect. 2006, 8, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Butler, T. A clinical study of bubonic plague. Observations of the 1970 Vietnam epidemic with emphasis on coagulation studies, skin histology and electrocardiograms. Am. J. Med. 1972, 53, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Yang, R. Plague: Recognition, Treatment, and Prevention. J. Clin. Microbiol. 2017, 56, e01519-17. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, L.L.; Ettestad, P.; Fogarty, J.D.; Dennis, D.T.; Romig, D.; Mertz, G. Gentamicin and tetracyclines for the treatment of human plague: Review of 75 cases in new Mexico, 1985–1999. Clin. Infect. Dis. 2004, 38, 663–669. [Google Scholar] [CrossRef]
- Nelson, C.A.; Meaney-Delman, D.; Fleck-Derderian, S.; Cooley, K.M.; Yu, P.A.; Mead, P.S. Antimicrobial Treatment and Prophylaxis of Plague: Recommendations for Naturally Acquired Infections and Bioterrorism Response. MMWR Recomm. Rep. 2021, 70, 1–27. [Google Scholar] [CrossRef]
- US Centers for Disease Control and Prevention. Plague—Prevention. CDC: Atlanta, GA, USA, 2018 [Updated 27 November 2018, Cited 30 November 2020]. Available online: https://www.cdc.gov/plague/prevention/index.html (accessed on 15 April 2024).
- Stout, J. Clinical Manifestations, Diagnosis, and Treatment of Plague (Yersinia pestis Infection). Prevention. 2024. Available online: https://www.uptodate.com/contents/clinical-manifestations-diagnosis-and-treatment-of-plague-yersinia-pestis-infection?search=bubonic%20plague&source=search_result&selectedTitle=1%7E43&usage_type=default&display_rank=1#H16) (accessed on 15 April 2024).
- Breitschwerdt, E.B. Bartonellosis, One Health and all creatures great and small. Vet. Dermatol. 2017, 8, 111–121. [Google Scholar]
- Regier, Y.; Rourke, F.O.; Kempf, V.A. Bartonella spp.—A chance to establish One Health concepts in veterinary and human medicine. Parasit Vectors 2016, 9, 261, Correction in Parasit Vectors 2016, 9, 330. [Google Scholar] [CrossRef] [PubMed]
- Drancourt, M.; Tran-Hung, L.; Courtin, J.; Lumley, H.D.; Raoult, D. Bartonella quintana in a 4000-year-old human tooth. J. Infect. Dis. 2005, 191, 607–611. [Google Scholar] [CrossRef]
- Cheslock, M.A.; Embers, M.E. Human Bartonellosis: An Underappreciated Public Health Problem? Trop. Med. Infect. Dis. 2019, 4, 69. [Google Scholar] [CrossRef]
- Minnick, M.F.; Anderson, B.E.; Lima, A.; Battisti, J.M.; Lawyer, P.G.; Birtles, R.J. Oroya fever and verruga peruana: Bartonelloses unique to South America. PLoS Negl. Trop. Dis. 2014, 8, e2919. [Google Scholar] [CrossRef]
- Saisongkorh, W.; Rolain, J.M.; Suputtamongkol, Y.; Raoult, D. Emerging Bartonella in humans and animals in Asia and Australia. J. Med. Assoc. Thail. 2009, 92, 707–731. [Google Scholar]
- Sanchez Clemente, N.; Ugarte-Gil, C.A.; Solórzano, N.; Maguiña, C.; Pachas, P.; Blazes, D.; Bailey, R.; Mabey, D.; Moore, D. Bartonella bacilliformis: A systematic review of the literature to guide the research agenda for elimination. PLoS Negl. Trop. Dis. 2012, 6, e1819. [Google Scholar] [CrossRef] [PubMed]
- Ben-Tekaya, H.; Gorvel, J.P.; Dehio, C. Bartonella and Brucella–weapons and strategies for stealth attack. Cold Spring Harb. Perspect. Med. 2013, 3, a010231. [Google Scholar] [CrossRef] [PubMed]
- BMJ Best Practice. Bartonella Infection. Available online: https://bestpractice.bmj.com/topics/en-gb/1152 (accessed on 19 November 2023).
- Eskow, E.; Rao, R.V.; Mordechai, E. Concurrent infection of the central nervous system by Borrelia burgdorferi and Bartonella henselae: Evidence for a novel tick-borne disease complex. Arch. Neurol. 2001, 58, 1357–1363. [Google Scholar] [CrossRef]
- Angelakis, E.; Billeter, S.A.; Breitschwerdt, E.B.; Chomel, B.B.; Raoult, D. Potential for tick-borne bartonelloses. Emerg. Infect. Dis. 2010, 16, 385–391. [Google Scholar] [CrossRef]
- Angelakis, E.; Pulcini, C.; Waton, J.; Imbert, P.; Socolovschi, C.; Edouard, S.; Dellamonica, P.; Raoult, D. Scalp eschar and neck lymphadenopathy caused by Bartonella henselae after Tick Bite. Clin. Infect. Dis. 2010, 50, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.W.; Kim, C.M.; Yun, N.R.; Kim, D.M.; Kim, S.S.; Choi, S.; Chu, H. Scalp eschar and neck lymphadenopathy after tick bite (SENLAT) caused by Bartonella henselae in Korea: A case report. BMC Infect. Dis. 2020, 20, 216. [Google Scholar] [CrossRef]
- Boulouis, H.J.; Chang, C.C.; Henn, J.B.; Kasten, R.W.; Chomel, B.B. Factors associated with the rapid emergence of zoonotic Bartonella infections. Vet. Res. 2005, 36, 383–410. [Google Scholar] [CrossRef]
- Kempf, V.A.; Schaller, M.; Behrendt, S.; Volkmann, B.; Aepfelbacher, M.; Cakman, I.; Autenrieth, I.B. Interaction of Bartonella henselae with endothelial cells results in rapid bacterial rRNA synthesis and replication. Cell Microbiol. 2000, 2, 431–441. [Google Scholar] [CrossRef]
- Mändle, T.; Einsele, H.; Schaller, M.; Neumann, D.; Vogel, W.; Autenrieth, I.B.; Kempf, V.A. Infection of human CD34+ progenitor cells with Bartonella henselae results in intraerythrocytic presence of B. henselae. Blood 2005, 106, 1215–1222. [Google Scholar] [CrossRef]
- Vayssier-Taussat, M.; Le Rhun, D.; Deng, H.K.; Biville, F.; Cescau, S.; Danchin, A.; Marignac, G.; Lenaour, E.; Boulouis, H.J.; Mavris, M.; et al. The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. PLoS Pathog. 2010, 6, e1000946. [Google Scholar] [CrossRef] [PubMed]
- Dehio, C. Bartonella-host-cell interactions and vascular tumour formation. Nat. Rev. Microbiol. 2005, 3, 621–631. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, F.; Mändle, T.; Urbich, C.; Dimmeler, S.; Michaelis, U.R.; Brandes, R.P.; Flötenmeyer, M.; Döring, C.; Hansmann, M.L.; Lauber, K.; et al. Reprogramming of myeloid angiogenic cells by Bartonella henselae leads to microenvironmental regulation of pathological angiogenesis. Cell Microbiol. 2015, 17, 1447–1463. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.A.; Balakrishnan, N.; Linder, K.E.; Messa, J.B.; Breitschwerdt, E.B. Concurrent Bartonella henselae infection in a dog with panniculitis and owner with ulcerated nodular skin lesions. Vet. Dermatol. 2015, 26, 60–63. [Google Scholar] [CrossRef]
- Kaiser, P.O.; Riess, T.; O’Rourke, F.; Linke, D.; Kempf, V.A.J. Bartonella spp.: Throwing light on uncommon human infections. Int. J. Med. Microbiol. 2011, 301, 7–15. [Google Scholar] [CrossRef]
- Jacomo, V.; Kelly, P.J.; Raoult, D. Natural history of Bartonella infections (an exception to Koch’s postulate). Clin. Diagn. Lab. Immunol. 2002, 9, 8–18. [Google Scholar] [CrossRef]
- Regnery, R.L.; Olson, J.G.; Perkins, B.A.; Bibb, W. Serological response to “Rochalimaea henselae” antigen in suspected cat-scratch disease. Lancet. 1992, 339, 1443–1445. [Google Scholar] [CrossRef]
- Zangwill, K.M.; Hamilton, D.H.; Perkins, B.A.; Regnery, R.L.; Plikaytis, B.D.; Hadler, J.L.; Cartter, M.L.; Wenger, J.D. Cat scratch disease in Connecticut. Epidemiology, risk factors, and evaluation of a new diagnostic test. N. Engl. J. Med. 1993, 329, 8–13. [Google Scholar] [CrossRef]
- Szelc-Kelly, C.M.; Goral, S.; Perez-Perez, G.I.; Perkins, B.A.; Regnery, R.L.; Edwards, K.M. Serologic responses to Bartonella and Afipia antigens in patients with cat scratch disease. Pediatrics. 1995, 96, 1137–1142. [Google Scholar] [CrossRef]
- Klotz, S.A.; Ianas, V.; Elliott, S.P. Cat-scratch Disease. Am. Fam. Physician 2011, 83, 152–155. [Google Scholar]
- Dehio, C. Molecular and cellular basis of Bartonella pathogenesis. Annu. Rev. Microbiol. 2004, 58, 365–390. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, R.A.; Margileth, A.M. Cat scratch disease. Infect. Dis. Clin. N. Am. 1987, 1, 575–590. [Google Scholar] [CrossRef]
- Carithers, H.A. Cat-scratch disease. An overview based on a study of 1,200 patients. Am. J. Dis. Child. 1985, 139, 1124–1133. [Google Scholar] [CrossRef]
- Lenoir, A.A.; Storch, G.A.; DeSchryver-Kecskemeti, K.; Shackelford, G.D.; Rothbaum, R.J.; Wear, D.J.; Rosenblum, J.L. Granulomatous hepatitis associated with cat scratch disease. Lancet 1988, 1, 1132–1136. [Google Scholar] [CrossRef]
- Delahoussaye, P.M.; Osborne, B.M. Cat-scratch disease presenting as abdominal visceral granulomas. J. Infect. Dis. 1990, 161, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Arisoy, E.S.; Correa, A.G.; Wagner, M.L.; Kaplan, S.L. Hepatosplenic cat-scratch disease in children: Selected clinical features and treatment. Clin. Infect. Dis. 1999, 28, 778–784. [Google Scholar] [CrossRef]
- Albert, D.M.; Salman, A.R.; Winthrop, K.L.; Bartley, G.B. The Continuing Ophthalmic Challenge of Bartonella henselae. Ophthalmol. Sci. 2021, 1, 100048. [Google Scholar] [CrossRef]
- Maman, E.; Bickels, J.; Ephros, M.; Paran, D.; Comaneshter, D.; Metzkor-Cotter, E.; Avidor, B.; Varon-Graidy, M.; Wientroub, S.; Giladi, M. Musculoskeletal manifestations of cat scratch disease. Clin. Infect. Dis. 2007, 45, 1535–1540. [Google Scholar] [CrossRef]
- Maria, H.K.S.; Gazzoli, E.; Drummond, M.R.; Almeida, A.R.; Santos, L.S.D.; Pereira, R.M.; Tresoldi, A.T.; Velho, P.E.N.F. Two-year history of lymphadenopathy and fever caused by Bartonella henselae in a child. Rev. Inst. Med. Trop. Sao Paulo 2022, 64, e15. [Google Scholar] [CrossRef]
- Acar, A.; Çakar Özdal, P.; Başarır, B.; Özdemir Yalçınsoy, K.; Altan, Ç.; Budakoğlu, Ö. A Case Series of Cat-Scratch Disease with Ocular Manifestations: Clinical Findings and Treatment Approach. Turk. J. Ophthalmol. 2023, 53, 226–233. [Google Scholar] [CrossRef]
- Hong, H.; Li, T.; Ying, Y.; An, Q.; Liu, H.; Liang, K. Cat-scratch disease manifesting as uveitis and binocular fundus nodular lesions: A case report. BMC Ophthalmol. 2023, 23, 345. [Google Scholar] [CrossRef] [PubMed]
- Hempel, A.; Manzoor, F.; Petrescu, D. Hemophagocytic lymphohistiocytosis secondary to unrecognized Bartonella henselae infection: A case report. Trop. Dis. Travel Med. Vaccines. 2023, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Mada, P.K.; Zulfiqar, H.; Joel Chandranesan, A.S. StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430874/ (accessed on 20 November 2023).
- Gutiérrez, R.; Vayssier-Taussat, M.; Buffet, J.P.; Harrus, S. Guidelines for the Isolation, Molecular Detection, and Characterization of Bartonella Species. Vector Borne Zoonotic Dis. 2017, 17, 42–50. [Google Scholar] [CrossRef]
- Maurin, M.; Rolain, J.M.; Raoult, D. Comparison of in-house and commercial slides for detection by immunofluorescence of immunoglobulins G and M against Bartonella henselae and Bartonella quintana. Clin. Diagn. Lab. Immunol. 2002, 9, 1004–1009. [Google Scholar]
- Alattas, N.H.; Patel, S.N.; Richardson, S.E.; Akseer, N.; Morris, S.K. Pediatric Bartonella henselae Infection: The Role of Serologic Diagnosis and a Proposed Clinical Approach for Suspected Acute Disease in the Immunocompetent Child. Pediatr. Infect. Dis. J. 2020, 39, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, M.J.; Herremans, M.; Verbakel, H.; Bergmans, A.M.; Roord, J.J.; van Dijken, P.J.; Peeters, M.F. Serological testing for Bartonella henselae infections in The Netherlands: Clinical evaluation of immunofluorescence assay and ELISA. Clin. Microbiol. Infect. 2007, 13, 627–634. [Google Scholar] [CrossRef]
- Spach, D.H.; Kaplan, S.L. Microbiology, Epidemiology, Clinical Manifestations, and Diagnosis of Cat Scratch Disease. Diagnostic Tests. 2024. Available online: https://www.uptodate.com/contents/microbiology-epidemiology-clinical-manifestations-and-diagnosis-of-cat-scratch-disease?search=Bartonella%20henselae&source=search_result&selectedTitle=1~55&usage_type=default&display_rank=1#H3749137032 (accessed on 20 November 2023).
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar] [CrossRef]
- Raoult, D. Introduction to Rickettsioses, Ehrlichioses, and Anaplasmoses. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Bennet, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020; Volume 2, pp. 2344–2348. [Google Scholar]
- Raoult, D.; Berbis, P.; Roux, V.; Xu, W.; Maurin, M. A new tick-transmitted disease due to Rickettsia slovaca. Lancet 1997, 350, 112–113. [Google Scholar] [CrossRef]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.E.; et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [PubMed]
- Lakos, A. TIBOLA—A new tick-borne infection. Orv. Hetil. 1997, 138, 3229–3232. [Google Scholar]
- Oteo, J.A.; Ibarra, V.; Blanco, J.R.; Martínez de Artola, V.; Márquez, F.J.; Portillo, A.; Raoult, D.; Anda, P. Dermacentor-borne necrosis erythema and lymphadenopathy: Clinical and epidemiological features of a new tick-borne disease. Clin. Microbiol. Infect. 2004, 10, 327–331. [Google Scholar] [CrossRef]
- Raoult, D.; Lakos, A.; Fenollar, F.; Beytout, J.; Brouqui, P.; Fournier, P.E. Spotless rickettsiosis caused by Rickettsia slovaca and associated with Dermacentor ticks. Clin. Infect. Dis. 2002, 34, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Blanton, L.S.; Walker, D.H. Rickettsia rickettsii and Other Spotted Fever Group Rickettsiae (Rocky Mountain Spotted Fever and Other Spotted Fevers). In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Bennet, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020; Volume 2, pp. 2349–2357. [Google Scholar]
- Lakos, A.; Kőrösi, A.; Földvári, G. Contact with horses is a risk factor for tick-borne lymphadenopathy (TIBOLA): A case control study. Wien Klin. Wochenschr. 2012, 124, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Bechah, Y.; Socolovschi, C.; Raoult, D. Identification of rickettsial infections by using cutaneous swab specimens and PCR. Emerg. Infect. Dis. 2011, 17, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Portillo, A.; de Sousa, R.; Santibáñez, S.; Duarte, A.; Edouard, S.; Fonseca, I.P.; Marques, C.; Novakova, M.; Palomar, A.M.; Santos, M.; et al. Guidelines for the Detection of Rickettsia spp. Vector Borne Zoonotic Dis. 2017, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Biggs, H.M.; Behravesh, C.B.; Bradley, K.K.; Dahlgren, F.S.; Drexler, N.A.; Dumler, J.S.; Folk, S.M.; Kato, C.Y.; Lash, R.R.; Levin, M.L.; et al. Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses, Ehrlichioses, and Anaplasmosis—United States. MMWR Recomm. Rep. 2016, 65, 1–44. [Google Scholar] [CrossRef]
- Todd, S.R.; Dahlgren, F.S.; Traeger, M.S.; Beltrán-Aguilar, E.D.; Marianos, D.W.; Hamilton, C.; McQuiston, J.H.; Regan, J.J. No visible dental staining in children treated with doxycycline for suspected Rocky Mountain Spotted Fever. J. Pediatr. 2015, 166, 1246–1251. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Other Spotted Fever Group Rickettsioses. Available online: https://www.cdc.gov/other-spotted-fever/site.html (accessed on 15 September 2024).
- Centers for Disease Control and Prevention (CDC). Typhus Fevers. Available online: https://www.cdc.gov/typhus/site.html (accessed on 15 September 2024).
- Singh, O.B.; Panda, P.K. Scrub Typhus. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558901/ (accessed on 20 November 2023).
- Xu, G.; Walker, D.H.; Jupiter, D.; Melby, P.C.; Arcari, C.M. A review of the global epidemiology of scrub typhus. PLoS Negl. Trop. Dis. 2017, 11, e0006062. [Google Scholar] [CrossRef]
- Izzard, L.; Fuller, A.; Blacksell, S.D.; Paris, D.H.; Richards, A.L.; Aukkanit, N.; Nguyen, C.; Jiang, J.; Fenwick, S.; Day, N.P.J.; et al. Isolation of a novel Orientia species (O. chuto sp. nov.) from a patient infected in Dubai. J. Clin. Microbiol. 2010, 48, 4404–4409. [Google Scholar] [CrossRef]
- Rajapakse, S.; Rodrigo, C.; Fernando, D. Scrub typhus: Pathophysiology, clinical manifestations and prognosis. Asian Pac. J. Trop. Med. 2012, 5, 261–264. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Kim, S.; Wook, Y.D.; Lee, J.W.; Kim, K.I.; Lee, S.H. Scrub typhus: Clinical, pathologic, and imaging findings. Radiographics. 2007, 27, 161–172. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Varghese, G.M. Scrub typhus: A reemerging infection. Curr. Opin. Infect. Dis. 2020, 33, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Paris, D.H. Orientia tsutsugamushi (Scrub Typhus). In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Bennet, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020; Volume 2, pp. 2377–2381. [Google Scholar]
- Dubourg, G.; Socolovschi, C.; Del Giudice, P.; Fournier, P.E.; Raoult, D. Scalp eschar and neck lymphadenopathy after tick bite: An emerging syndrome with multiple causes. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1449–1456. [Google Scholar] [CrossRef]
- Edouard, S.; Gonin, K.; Turc, Y.; Angelakis, E.; Socolovschi, C.; Raoult, D. Eschar and neck lymphadenopathy caused by Francisella tularensis after a tick bite: A case report. J. Med. Case Rep. 2011, 5, 108. [Google Scholar] [CrossRef]
- Parola, P.; Rovery, C.; Rolain, J.M.; Brouqui, P.; Davoust, B.; Raoult, D. Rickettsia slovaca and R. raoultii in tick-borne Rickettsioses. Emerg. Infect. Dis. 2009, 15, 1105–1108. [Google Scholar] [CrossRef]
- Körner, S.; Makert, G.R.; Ulbert, S.; Pfeffer, M.; Mertens-Scholz, K. The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited-A Systematic Review. Front. Vet. Sci. 2021, 8, 655715. [Google Scholar] [CrossRef] [PubMed]
- Radolf, J.D.; Strle, K.; Lemieux, J.E.; Strle, F. Lyme Disease in Humans. Curr. Issues Mol. Biol. 2021, 42, 333–384. [Google Scholar]
- Skar, G.L.; Simonsen, K.A. Lyme Disease. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK431066/ (accessed on 21 November 2023).
- Stanek, G.; Strle, F. Lyme borreliosis-from tick bite to diagnosis and treatment. FEMS Microbiol. Rev. 2018, 42, 233–258. [Google Scholar] [CrossRef]
- Lantos, P.M.; Rumbaugh, J.; Bockenstedt, L.K.; Falck-Ytter, Y.T.; Aguero-Rosenfeld, M.E.; Auwaerter, P.G.; Baldwin, K.; Bannuru, R.R.; Belani, K.K.; Bowie, W.R.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 Guidelines for the Prevention, Diagnosis, and Treatment of Lyme Disease. Arthritis Care Res. 2021, 73, 1–9. [Google Scholar] [CrossRef]
- Orihel, T.C.; Eberhard, M.L. Zoonotic filariasis. Clin. Microbiol. Rev. 1998, 11, 366–381. [Google Scholar] [CrossRef]
- Mulyaningsih, B.; Umniyati, S.R.; Hadisusanto, S.; Edyansyah, E. Study on vector mosquito of zoonotic Brugia malayi in Musi Rawas, South Sumatera, Indonesia. Vet. World 2019, 12, 1729–1734. [Google Scholar] [CrossRef] [PubMed]
- Newman, T.E.; Juergens, A.L. Filariasis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556012/ (accessed on 22 November 2023).
- Centers for Disease Control and Prevention (CDC). Filarial Worms. About Lymphatic Filariasis. Available online: https://www.cdc.gov/filarial-worms/about/lymphatic-filariasis.html (accessed on 15 September 2024).
- WHO. Lymphatic Filariasis: A Handbook of Practical Entomology for National Lymphatic Filariasis Elimination Programmes. Available online: https://www.who.int/publications/i/item/9789241505642 (accessed on 22 November 2023).
- Edeson, J.F.B.; Wilson, T. The epidemiology of filariasis due to Wuchereria bancrofti and Brugia malayi. Annu. Rev. Entomol. 1964, 9, 245–268. [Google Scholar] [CrossRef]
- Kazura, J.W. Tissue Nematodes, Including Trichinellosis, Dracunculiasis, Filariasis, Loiasis, and Onchocerciasis. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Bennet, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Philadelphia, PA, USA, 2020; Volume 2, pp. 3446–3448. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Filarial Worms. Clinical Testing and Diagnosis for Loiasis. Available online: https://www.cdc.gov/filarial-worms/hcp/diagnosis-testing/index.html (accessed on 15 September 2024).
- Supali, T.; Djuardi, Y.; Pfarr, K.M.; Wibowo, H.; Taylor, M.J.; Hoerauf, A.; Houwing-Duistermaat, J.J.; Yazdanbakhsh, M.; Sartono, E. Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin. Infect. Dis. 2008, 46, 1385–1393. [Google Scholar] [CrossRef]
- Burmayan, A.; Brundage, C.M. Caseous lymphadenitis outbreak in a small ruminant herd. Open. Vet. J. 2021, 11, 530–534. [Google Scholar] [PubMed]
- Spier, S.J.; Azevedo, V. Corynebacterium pseudotuberculosis infection in horses: Increasing frequency and spread to new regions of North America. Equine Vet. Educ. 2017, 29, 436–439. [Google Scholar] [CrossRef]
- Goldberger, A.C.; Lipsky, B.A.; Plorde, J.J. Suppurative granulomatous lymphadenitis caused by Corynebacterium ovis (pseudotuberculosis). Am. J. Clin. Pathol. 1981, 76, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.F.; Wong, F.M.; Quesada, J. Corynebacterium pseudotuberculosis: First case of human infection. Am. J. Clin. Pathol. 1966, 46, 562–567. [Google Scholar] [CrossRef]
- House, R.W.; Schousboe, M.; Allen, J.P.; Grant, C.C. Corynebacterium ovis (pseudo-tuberculosis) lymphadenitis in a sheep farmer: A new occupational disease in New Zealand. N. Z. Med. J. 1986, 99, 659–662. [Google Scholar]
- Heggelund, L.; Gaustad, P.; Håvelsrud, O.E.; Blom, J.; Borgen, L.; Sundset, A.; Sørum, H.; Frøland, S.S. Corynebacterium pseudotuberculosis Pneumonia in a Veterinary Student Infected During Laboratory Work. Open Forum Infect. Dis. 2015, 2, ofv053. [Google Scholar] [CrossRef]
- Keslin, M.H.; McCoy, E.L.; McCusker, J.J.; Lutch, J.S. Corynebacterium pseudotuberculosis: A new cause of infectious and eosinophilic pneumonia. Am. J. Med. 1979, 67, 228–231. [Google Scholar] [CrossRef]
- Peel, M.M.; Palmer, G.G.; Stacpoole, A.M.; Kerr, T.G. Human lymphadenitis due to Corynebacterium pseudotuberculosis: Report of ten cases from Australia and review. Clin. Infect. Dis. 1997, 24, 185–191. [Google Scholar] [CrossRef] [PubMed]
Disease | Organism | Reservoirs and Vectors | Geographical Distribution |
---|---|---|---|
Tularemia | F. tularensis (divided into four subspecies):
F. hispaniensis F. opportunistica | Reservoirs: Rabbits, beavers, muskrats, squirrels, voles, hares, hamsters, mice, rats, lemmings Vectors: Ticks, mosquitoes, biting flies, horse flies, fleas, lice | Worldwide in the Northern hemisphere |
Bubonic plague | Yersinia pestis | Reservoirs: Most important: Rodents (found in 200 mammalian species) Vectors: Fleas | All continents except Oceania; since the 1990s most cases have occurred in Africa Three most endemic countries: Democratic Republic of Congo, Madagascar, and Peru |
Bartonellosis (Cat scratch disease) | Bartonella henselae | Reservoirs: Cats (possible: other mammals) Vectors: Cat fleas (among cats) sand flies, human body lice. Possible: ticks, red ants, spiders | Worldwide |
TIBOLA | Rickettsia slovaca Rickettsia raoultii Rickettsia rioja Rickettsia massiliae | Reservoirs: Ticks Vectors: Ticks (most often Dermacentor marginatus) | Worldwide |
Borreliosis | Borrelia burgdorferi sensu lato complex | Reservoirs: White-footed mouse, chipmunks, voles, shrews, birds, squirrels, raccoons, skunks, shrews Vectors: Ticks (genus Ixodes) | Worldwide |
Scrub typhus | Orientia tsutsugamushi |
Reservoirs: Larval trombiculid mites (chiggers) Vectors: Larval trombiculid mites (chiggers) | Asia–Pacific region (endemic in Korea, China, Taiwan, Japan, Pakistan, India, Thailand, Laos, Malaysia, Vietnam, Sri Lanka, and Australia) |
Malayan filariasis | Brugia malayi | Reservoirs: Domestic cats, dogs, primates, pangolins, humans Vectors: Mosquitos (main Anopheles, Mansonia) | Southern and Southeast Asia and parts of the Pacific |
Disease | Clinical Manifestations | Diagnosis | Therapy |
---|---|---|---|
Tularemia | Ulceroglandular tularemia: fever, skin lesion, and lymphadenopathy (cervical/occipital/inguinal) Glandular tularemia: regional lymphadenopathy without skin lesion Oculoglandular tularemia: eye pain, photophobia, increased lacrimation, sometimes lymphadenopathy Pharyngeal (oropharyngeal) tularemia: fever, severe throat pain, neck lymphadenopathy Pneumonic tularemia: fever, cough, pleuritic chest pain Typhoidal tularemia: sepsis or chronic febrile illness, without regional lymphadenopathy | Serology (most commonly used: ELISA, tube agglutination, and microagglutination tests) Culture (modified Mueller–Hinton broth and thioglycollate broth) Molecular testing–PCR DFA staining of clinical specimens and immunohistochemical staining of tissue | Mild or moderate disease: Adults: Doxycycline (100 mg p.o. BID for 14 to 21 days) or Ciprofloxacin (500 to 750 mg p.o. BID for 10 to 14 days) Children: Gentamicin (5 mg/kg IM or IV daily, divided every 8 or 12 h for 7 to 10 days) or Ciprofloxacin (20 to 40 mg/kg per day p.o. divided two doses for 10 to 14 days, maximum daily dose 1 g) Severe disease: Adults: Streptomycin (10 mg/kg IM BID for 7 to 10 days (max. daily dose 2 g) or Gentamicin (5 mg/kg IM or IV daily, divided every 8 h for 7 to 10 days Children: Streptomycin (30 to 40 mg/kg per day IM, in divided doses every 12 h for 7 to 10 days, maximum daily dose 2 g) or Gentamicin (5 mg/kg IM or IV daily, divided every 8 or 12 h for 7 to 10 days) |
Bubonic plague | High fever, chills, weakness, headache, swelling of inguinal, axillary, or cervical lymph nodes, overlying skin may be warm and erythematous | Cultures of blood, bubo aspirates, swabs of skin lesions (brain heart infusion broth, sheep blood agar, chocolate agar or MacConkey agar) Microscopy evaluation of a bubo aspirate (Watson or Giemsa stain and Gram stain) Serology (passive hemagglutination test) DFA PCR | Adults: Gentamicin 5 mg/kg IM or IV QD Streptomycin 1 g IM or IV BID Ciprofloxacin 400 mg IV every 8 h; 750 mg p.o. BID Levofloxacin 750 mg IV, p.o. QD Moxifloxacin 400 mg IV, p.o. QD Doxycycline 200 mg loading dose, then 100 mg IV, p.o. BID Children: Gentamicin 4.5–7.5 mg/kg IM or IV QD Streptomycin 15 mg/kg IM or IV BID Ciprofloxacin IV: 10 mg/kg BID or TID (maximum 400 mg/dose). Oral: 15 mg/kg BID or TID (maximum 500 mg/dose every 8 h or 750 mg/dose every 12 h) Levofloxacin: <50 kg–8 mg/kg IV or p.o. BID (maximum 250 mg/dose) ≥50 kg–500 to 750 mg IV or p.o. BID Moxifloxacin: for pediatric patients with plague, other agents are recommended due to higher rates of QTc prolongation Doxycycline: <45 kg–4.4 mg/kg loading dose, then 2.2 mg/kg IV or p.o. BID ≥45 kg–200 mg loading dose, then 100 mg IV or p.o. BID |
Bartonella henselae infection | CSD, regional granulomatous lymphadenitis Parinaud oculoglandular syndrome (atypical manifestation of CSD) Ocular manifestations of CSD: neuroretinitis, choroiditis, optic nerve granuloma, vascular-occlusive events FUO Endocarditis (patients with CHD or valvular abnormalities) Immunocompromised: BA, BP, bacteremia, endocarditis, FUO | Serological testing (IFA, ELISA) Culture (specific conditions and extended incubation—not routinely used) Histopathology PCR of tissue specimens or blood | Lymphadenitis: Adults: Azithromycin 500 mg on day 1 and then 250 mg for 4 days or Doxycycline 2 × 100 mg or Ciprofloxacin 2 × 500 mg or Trimethoprim-sulfamethoxazole 4 mg/kg orally (trimethoprim component) BID (max. 160 mg trimethoprim per dose) Children: Azithromycin < 45 kg 10 mg/kg orally on day 1, followed by 5 mg/kg orally for 4 days |
TIBOLA | Eschar (typically on the scalp) and enlarged, often tender, cervical lymph nodes | Serologic tests: IFA, micro immunofluorescence (MIF) antibody test, ELISA, Western blot immunoassay PCR: from blood, swab specimen of the eschar, skin biopsy samples, and other tissues | Adults: Doxycycline 100 mg p.o. BID for five to seven days Children: Doxycycline ≤ 45 kg 2.2 mg/kg BID (maximum daily dose 200 mg) >45 kg should receive 100 mg BID |
Borreliosis | Early localized or disseminated disease: Erythema migrans plus nonspecific clinical findings (e.g., fatigue, anorexia, headache, neck stiffness, myalgias, arthralgias, regional lymphadenopathy, fever) | In early localized illness: clinical presentation Serologic testing (two-tier testing protocol: screening assay and immunoblot for confirmation) | Adults: Doxycycline 100 mg p.o. BID for 10 days or Amoxicillin 500 mg p.o. TID for 14 days or Cefuroxime axetil 500 mg p.o. BID for 14 days Children (age 8 years or younger): Amoxicillin 50 mg/kg per day in three divided doses for 14 days or Cefuroxime axetil 30 mg/kg per day in two divided doses for 14 days |
Scrub typhus | Acute febrile illness characterized by an eschar at the mite bite site, possible skin rash and other symptoms, which include localized and subsequent generalized lymphadenopathy, gastrointestinal symptoms, malaise, cough, headache and myalgia, and sometimes complications such as respiratory and renal failure, meningoencephalitis, and severe multiorgan failure | Serologic testing (IgM enzyme-linked immunosorbent assay and rapid diagnostic tests) Biopsy of an eschar or generalized rash PCR testing of blood samples Culture (available in only a few specialized laboratory centers) | Adults: Doxycycline 200 mg p.o. QD followed by 100 mg BID until the patient clinically improves, has been afebrile for 48 h, and has received treatment for a minimum of 7 days or Azithromycin 500 mg p.o. on the first day followed by 250 mg daily for 2 to 4 more days or 1 g initially, followed by 500 mg once daily for 2 days Children: Doxycycline 2.2 mg/kg IV or p.o. BID Azithromycin (for children < 8 years) 10 mg/kg/day for 5 days |
Malayan filariasis | Acute lymphadenitis or lymphangitis, chronic lymphedema (elephantiasis), subcutaneous swelling, funiculo-epididymoorchitis, pulmonary eosinophilia, chyluria | Blood smears for microfilariae Ultrasound of lymphatic vessels Serology | Adults: Diethylcarbamazine 6 mg/kg/day as a single dose or in 3 divided doses for 1 or 12 days (14 to 21 days in patients with tropical pulmonary eosinophilia) or/plus Doxycycline 200 mg/day for 4–6 weeks Children: ≥18 months: 6 mg/kg p.o. as a single dose or 6 mg/kg/day in 3 divided doses for 12 days (14 to 21 days in patients with tropical pulmonary eosinophilia) Note: For patients with microfilaria in the blood, some clinicians recommend starting with a lower dosage with gradual increase over 3 days to 6 mg/kg/day in 3 divided doses on day 4 through the end of the treatment course |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oršolić, M.; Sarač, N.; Balen Topić, M. Vector-Borne Zoonotic Lymphadenitis—The Causative Agents, Epidemiology, Diagnostic Approach, and Therapeutic Possibilities—An Overview. Life 2024, 14, 1183. https://doi.org/10.3390/life14091183
Oršolić M, Sarač N, Balen Topić M. Vector-Borne Zoonotic Lymphadenitis—The Causative Agents, Epidemiology, Diagnostic Approach, and Therapeutic Possibilities—An Overview. Life. 2024; 14(9):1183. https://doi.org/10.3390/life14091183
Chicago/Turabian StyleOršolić, Martina, Nikolina Sarač, and Mirjana Balen Topić. 2024. "Vector-Borne Zoonotic Lymphadenitis—The Causative Agents, Epidemiology, Diagnostic Approach, and Therapeutic Possibilities—An Overview" Life 14, no. 9: 1183. https://doi.org/10.3390/life14091183
APA StyleOršolić, M., Sarač, N., & Balen Topić, M. (2024). Vector-Borne Zoonotic Lymphadenitis—The Causative Agents, Epidemiology, Diagnostic Approach, and Therapeutic Possibilities—An Overview. Life, 14(9), 1183. https://doi.org/10.3390/life14091183