Inherited Hypertrabeculation? Genetic and Clinical Insights in Blood Relatives of Genetically Affected Left Ventricular Excessive Trabeculation Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Populations
2.2. Methods
2.2.1. Anamnestic Questionnaire
2.2.2. ECG Scan
2.2.3. Cardiac Ultrasound
2.2.4. Genetic Testing
2.2.5. Statistical Analysis
3. Results
3.1. Family and Personal Analysis
3.2. Genetic Based Analysis
3.3. Morphology Based Analysis
4. Discussion
4.1. Baseline Characteristics of the Total Population
4.2. Comparing GEN-Pos and GEN-Neg Subgroups
4.3. Comparing JENNI-Pos and JENNI-Neg Subgroups
4.4. Clinical Symptoms
5. Conclusions
Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LVET | left ventricular excessive trabeculation |
CMR | Cardiac magnetic resonance imaging |
ECHO | Echocardiography |
ECG | Electrocardiogram |
LV | Left ventricle |
RV | Right ventricle |
SLI | Sokolow–Lyon index value |
CVC | Cornell Voltage Criteria |
EDV | End-diastolic volume |
ESV | End-systolic volume |
SV | Stroke Volume |
EF | Ejection Fraction |
i | Body surface area indexed value |
GEN-pos | Blood relatives, who carried the index patient’s genetic mutation |
GEN-neg | Blood relatives, who were not affected with the index patient’s genetic mutation |
JENNI-pos | Blood relatives, who fulfilled the LVET ultrasound criteria according to Jenni |
JENNI-neg | Blood relatives, who did not meet the LVET ultrasound criteria according to Jenni |
References
- Petersen, S.E.; Jensen, B.; Aung, N.; Friedrich, M.G.; McMahon, C.J.; Mohiddin, S.A.; Pignatelli, R.H.; Ricci, F.; Anderson, R.H.; Bluemke, D.A. Excessive Trabeculation of the Left Ventricle: JACC: Cardiovascular Imaging Expert Panel Paper. JACC Cardiovasc. Imaging 2023, 16, 408–425. [Google Scholar] [CrossRef]
- Jenni, R.; Oechslin, E.; Schneider, J.; Attenhofer Jost, C.; Kaufmann, P.A. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: A step towards classification as a distinct cardiomyopathy. Heart 2001, 86, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Selvanayagam, J.B.; Wiesmann, F.; Robson, M.D.; Francis, J.M.; Anderson, R.H.; Watkins, H.; Neubauer, S. Left ventricular non-compaction: Insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 2005, 46, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Jacquier, A.; Thuny, F.; Jop, B.; Giorgi, R.; Cohen, F.; Gaubert, J.Y.; Vidal, V.; Bartoli, J.M.; Habib, G.; Moulin, G. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur. Heart J. 2010, 31, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Stacey, R.B.; Andersen, M.M.; St. Clair, M.; Hundley, W.G.; Thohan, V. Comparison of systolic and diastolic criteria for isolated LV noncompaction in CMR. JACC Cardiovasc. Imaging 2013, 6, 931–940. [Google Scholar] [CrossRef]
- Captur, G.; Muthurangu, V.; Cook, C.; Flett, A.S.; Wilson, R.; Barison, A.; Sado, D.M.; Anderson, S.; McKenna, W.J.; Mohun, T.J.; et al. Quantification of left ventricular trabeculae using fractal analysis. J. Cardiovasc. Magn. Reson. 2013, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Chuang, M.L.; Manning, W.J. Pitfalls in comparison of left ventricular mass measurements by echocardiography and cardiovascular magnetic resonance imaging. In Nephrol Dial Transplant; Oxford University Press: Oxford, UK, 2006; Volume 21, p. 2668, author reply 2668–2669. [Google Scholar]
- van Waning, J.I.; Moesker, J.; Heijsman, D.; Boersma, E.; Majoor-Krakauer, D. Systematic Review of Genotype-Phenotype Correlations in Noncompaction Cardiomyopathy. J. Am. Heart Assoc. 2019, 8, e012993. [Google Scholar] [CrossRef] [PubMed]
- Vergani, V.; Lazzeroni, D.; Peretto, G. Bridging the gap between hypertrabeculation phenotype, noncompaction phenotype and left ventricular noncompaction cardiomyopathy. J. Cardiovasc. Med. 2020, 21, 192–199. [Google Scholar] [CrossRef]
- Negri, F.; De Luca, A.; Fabris, E.; Korcova, R.; Cernetti, C.; Grigoratos, C.; Aquaro, G.D.; Nucifora, G.; Camici, P.G.; Sinagra, G. Left ventricular noncompaction, morphological, and clinical features for an integrated diagnosis. Heart Fail. Rev. 2019, 24, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Ichida, F. Left ventricular noncompaction—Risk stratification and genetic consideration. J. Cardiol. 2020, 75, 1–9. [Google Scholar] [CrossRef]
- van Waning, J.I.; Caliskan, K.; Michels, M.; Schinkel, A.F.L.; Hirsch, A.; Dalinghaus, M.; Hoedemaekers, Y.M.; Wessels, M.W.; AS, I.J.; Hofstra, R.M.W.; et al. Cardiac Phenotypes, Genetics, and Risks in Familial Noncompaction Cardiomyopathy. J. Am. Coll. Cardiol. 2019, 73, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, A.; Solberg, E.E.; Papadakis, M.; Adami, P.E.; Biffi, A.; Caselli, S.; La Gerche, A.; Niebauer, J.; Pressler, A.; Schmied, C.M.; et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: Position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2019, 40, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Grebur, K.; Mester, B.; Fekete, B.A.; Kiss, A.R.; Gregor, Z.; Horváth, M.; Farkas-Sütő, K.; Csonka, K.; Bödör, C.; Merkely, B.; et al. Genetic, clinical and imaging implications of a noncompaction phenotype population with preserved ejection fraction. Front. Cardiovasc. Med. 2024, 11, 1337378. [Google Scholar] [CrossRef] [PubMed]
- Grigoratos, C.; Barison, A.; Ivanov, A.; Andreini, D.; Amzulescu, M.S.; Mazurkiewicz, L.; De Luca, A.; Grzybowski, J.; Masci, P.G.; Marczak, M.; et al. Meta-Analysis of the Prognostic Role of Late Gadolinium Enhancement and Global Systolic Impairment in Left Ventricular Noncompaction. JACC Cardiovasc. Imaging 2019, 12, 2141–2151. [Google Scholar] [CrossRef]
- Kiss, A.R.; Gregor, Z.; Popovics, A.; Grebur, K.; Szabó, L.E.; Dohy, Z.; Kovács, A.; Lakatos, B.K.; Merkely, B.; Vágó, H.; et al. Impact of Right Ventricular Trabeculation on Right Ventricular Function in Patients With Left Ventricular Non-compaction Phenotype. Front. Cardiovasc. Med. 2022, 9, 843952. [Google Scholar] [CrossRef] [PubMed]
- Gregor, Z.; Kiss, A.R.; Grebur, K.; Dohy, Z.; Kovács, A.; Merkely, B.; Vágó, H.; Szűcs, A. Characteristics of the right ventricle in left ventricular noncompaction with reduced ejection fraction in the light of dilated cardiomyopathy. PLoS ONE 2023, 18, e0290981. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, S.; Kühnisch, J.; Schultze-Berndt, A.; Seidel, F. Left Ventricular Noncompaction in Children: The Role of Genetics, Morphology, and Function for Outcome. J. Cardiovasc. Dev. Dis. 2022, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Filho, D.C.S.; do Rêgo Aquino, P.L.; de Souza Silva, G.; Fabro, C.B. Left Ventricular Noncompaction: New Insights into a Poorly Understood Disease. Curr. Cardiol. Rev. 2021, 17, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Ichida, F. Left ventricular noncompaction. Circ. J. 2009, 73, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Roston, T.M.; Guo, W.; Krahn, A.D.; Wang, R.; Van Petegem, F.; Sanatani, S.; Chen, S.R.; Lehman, A. A novel RYR2 loss-of-function mutation (I4855M) is associated with left ventricular non-compaction and atypical catecholaminergic polymorphic ventricular tachycardia. J. Electrocardiol. 2017, 50, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Li, Y.; Wei, J.; Song, Z.; Wang, H.; Yao, J.; Chen, Y.X.; Belke, D.; Estillore, J.P.; Wang, R.; et al. Increased Ca(2+) Transient Underlies RyR2-Related Left Ventricular Noncompaction. Circ. Res. 2023, 133, 177–192. [Google Scholar] [CrossRef]
- D’Amato, G.; Luxán, G.; de la Pompa, J.L. Notch signalling in ventricular chamber development and cardiomyopathy. FEBS J. 2016, 283, 4223–4237. [Google Scholar] [CrossRef] [PubMed]
- Casas, G.; Rodríguez-Palomares, J.F.; Ferreira-González, I. Left ventricular noncompaction: A disease or a phenotypic trait? Rev. Esp. Cardiol. Engl. Ed. 2022, 75, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Chuang, M.L.; Gona, P.; Hautvast, G.L.; Salton, C.J.; Breeuwer, M.; O’Donnell, C.J.; Manning, W.J. CMR reference values for left ventricular volumes, mass, and ejection fraction using computer-aided analysis: The Framingham Heart Study. J. Magn. Reson. Imaging 2014, 39, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Grebur, K.; Gregor, Z.; Kiss, A.R.; Horváth, M.; Mester, B.; Czimbalmos, C.; Tóth, A.; Szabó, L.E.; Dohy, Z.; Vágó, H.; et al. Different methods, different results? Threshold-based versus conventional contouring techniques in clinical practice. Int. J. Cardiol. 2023, 381, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Franklin by Genoox: Tel Aviv, Israel. Available online: https://franklin.genoox.com (accessed on 10 January 2025).
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [PubMed]
- Amberger, J.S.; Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and Genetic Phenotypes. Curr. Protoc. Bioinform. 2017, 58, 1.2.1–1.2.12. [Google Scholar] [CrossRef]
- Online Mendelian Inheritance in Man, OMIM® by McKusick-Nathans Institute of Genetic Medicine. Johns Hopkins University: Baltimore, MD, USA. Available online: https://omim.org/ (accessed on 10 January 2025).
- Rehm, H.L.; Berg, J.S.; Brooks, L.D.; Bustamante, C.D.; Evans, J.P.; Landrum, M.J.; Ledbetter, D.H.; Maglott, D.R.; Martin, C.L.; Nussbaum, R.L.; et al. ClinGen--the Clinical Genome Resource. N. Engl. J. Med. 2015, 372, 2235–2242. [Google Scholar] [CrossRef]
- The Clinical Genome Resource (ClinGen): Advancing genomic knowledge through global curation. Genet. Med. 2025, 27, 101228. [CrossRef] [PubMed]
- Sattar, Y.; Chhabra, L. Electrocardiogram. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2024. [Google Scholar]
- You, Z.; He, T.; Ding, Y.; Yang, L.; Jiang, X.; Huang, L. Predictive value of electrocardiographic left ventricular hypertrophy in the general population: A meta-analysis. J. Electrocardiol. 2020, 62, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, D.B.; Tasic, I.S.; Kostic, S.T.; Stamenkovic, B.N.; Lovic, M.B.; Djordjevic, N.D.; Koracevic, G.P.; Lovic, D.B. Electrocardiographic criteria which have the best prognostic significance in hypertensive patients with echocardiographic hypertrophy of left ventricle: 15-year prospective study. Clin. Cardiol. 2020, 43, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Surawicz, B.; Childers, R.; Deal, B.J.; Gettes, L.S.; Bailey, J.J.; Gorgels, A.; Hancock, E.W.; Josephson, M.; Kligfield, P.; Kors, J.A.; et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part III: Intraventricular conduction disturbances: A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: Endorsed by the International Society for Computerized Electrocardiology. Circulation 2009, 119, e235–e240. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Fang, T.; Huang, J.; Guo, Y.; Alam, M.; Qian, H. Hypertrophic Cardiomyopathy: From Phenotype and Pathogenesis to Treatment. Front. Cardiovasc. Med. 2021, 8, 722340. [Google Scholar] [CrossRef] [PubMed]
- Mestroni, L.; Brun, F.; Spezzacatene, A.; Sinagra, G.; Taylor, M.R. Genetic Causes of Dilated Cardiomyopathy. Prog. Pediatr. Cardiol. 2014, 37, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Groeneweg, J.A.; van der Heijden, J.F.; Dooijes, D.; van Veen, T.A.B.; van Tintelen, J.P.; Hauer, R.N. Arrhythmogenic cardiomyopathy: Diagnosis, genetic background, and risk management. Neth. Heart J. 2014, 22, 316–325. [Google Scholar] [CrossRef]
- Marian, A.J.; Asatryan, B.; Wehrens, X.H.T. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc. Res. 2020, 116, 1600–1619. [Google Scholar] [CrossRef]
- Oechslin, E.; Jenni, R. Left ventricular non-compaction revisited: A distinct phenotype with genetic heterogeneity? Eur. Heart J. 2011, 32, 1446–1456. [Google Scholar] [CrossRef] [PubMed]
- Meshkov, N.A.; Myasnikov, P.R.; Kiseleva, V.A.; Kulikova, V.O.; Sotnikova, A.E.; Kudryavtseva, M.M.; Zharikova, A.A.; Koretskiy, N.S.; Mershina, A.E.; Ramensky, E.V.; et al. Genetic landscape in Russian patients with familial left ventricular noncompaction. Front. Cardiovasc. Med. 2023, 10, 1205787. [Google Scholar] [CrossRef] [PubMed]
- Hensley, N.; Dietrich, J.; Nyhan, D.; Mitter, N.; Yee, M.S.; Brady, M. Hypertrophic cardiomyopathy: A review. Anesth. Analg. 2015, 120, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Tayal, U.; Ware, J.S.; Lakdawala, N.K.; Heymans, S.; Prasad, S.K. Understanding the genetics of adult-onset dilated cardiomyopathy: What a clinician needs to know. Eur. Heart J. 2021, 42, 2384–2396. [Google Scholar] [CrossRef]
- Zaragoza, M.V.; Arbustini, E.; Narula, J. Noncompaction of the left ventricle: Primary cardiomyopathy with an elusive genetic etiology. Curr. Opin. Pediatr. 2007, 19, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, J.; Ptaszynski, R.; Cigarrán, H.; Calvo, J.; Martín, M. Left ventricular noncompaction cardiomyopathy: Recent advances. Kardiol. Pol. 2022, 80, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Topriceanu, C.-C.; Pereira, C.A.; Moon, C.J.; Captur, G.; Ho, Y.C. Meta-Analysis of Penetrance and Systematic Review on Transition to Disease in Genetic Hypertrophic Cardiomyopathy. Circulation 2024, 149, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Romero, E.; Ochoa, J.P.; Barriales-Villa, R.; Bermúdez-Jiménez, F.J.; Climent-Payá, V.; Zorio, E.; Espinosa, M.A.; Gallego-Delgado, M.; Navarro-Peñalver, M.; Arana-Achaga, X.; et al. Penetrance of Dilated Cardiomyopathy in Genotype-Positive Relatives. J. Am. Coll. Cardiol. 2024, 83, 1640–1651. [Google Scholar] [CrossRef]
- Yang, Q.L.; Zuo, L.; Ma, Z.L.; Lei, C.H.; Zhu, X.L.; Wang, X.Y.; Wang, B.; Zhao, X.L.; Zhang, J.; Wang, Y.; et al. Gender- and age-related differences in distinct phenotypes of hypertrophic cardiomyopathy-associated mutation MYBPC3-E334K. Heart Vessel. 2021, 36, 1525–1535. [Google Scholar] [CrossRef]
- Velzen, V.G.H.; Schinkel, F.L.A.; Baart, J.S.; Oldenburg, A.R.; Frohn-Mulder, M.E.I.; Slegtenhorst, V.A.M.; Michels, M. Outcomes of Contemporary Family Screening in Hypertrophic Cardiomyopathy. Circ. Genom. Precis. Med. 2018, 11, e001896. [Google Scholar] [CrossRef] [PubMed]
- Michels, M. Family Screening: Who, When, and How. In Hypertrophic Cardiomyopathy; Naidu, S.S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 189–198. [Google Scholar]
- Sanna, G.D.; Piga, A.; Parodi, G.; Sinagra, G.; Papadakis, M.; Pantazis, A.; Sharma, S.; Gati, S.; Finocchiaro, G. The Electrocardiogram in the Diagnosis and Management of Patients With Left Ventricular Non-Compaction. Curr. Heart Fail. Rep. 2022, 19, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Sokolow, M.; Lyon, T.P. The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads. Am. Heart J. 1949, 37, 161–186. [Google Scholar] [CrossRef] [PubMed]
- De Lazzari, M.; Brunetti, G.; Frasson, E.; Zorzi, A.; Cipriani, A.; Migliore, F.; De Conti, G.; Motta, R.; Perazzolo Marra, M.; Corrado, D. Thinning of compact layer and systolic dysfunction in isolated left ventricular non-compaction: A cardiac magnetic resonance study. Int. J. Cardiol. 2024, 397, 131614. [Google Scholar] [CrossRef]
- Haland, T.F.; Saberniak, J.; Leren, I.S.; Edvardsen, T.; Haugaa, K.H. Echocardiographic comparison between left ventricular non-compaction and hypertrophic cardiomyopathy. Int. J. Cardiol. 2017, 228, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, M.; Zheng, C.; Liu, H.; Guo, Y.; Xie, X.; Zou, Z.; Zhou, X.; Xia, L.; Luo, M.; et al. Evaluation of isolated left ventricular noncompaction using cardiac magnetic resonance tissue tracking in global, regional and layer-specific strains. Sci. Rep. 2021, 11, 7183. [Google Scholar] [CrossRef] [PubMed]
- Gregor, Z.; Kiss, A.R.; Szabó, L.E.; Tóth, A.; Grebur, K.; Horváth, M.; Dohy, Z.; Merkely, B.; Vágó, H.; Szűcs, A. Sex- and age- specific normal values of left ventricular functional and myocardial mass parameters using threshold-based trabeculae quantification. PLoS ONE 2021, 16, e0258362. [Google Scholar] [CrossRef]
- Ezaki, K.; Nakagawa, M.; Taniguchi, Y.; Nagano, Y.; Teshima, Y.; Yufu, K.; Takahashi, N.; Nomura, T.; Satoh, F.; Mimata, H.; et al. Gender differences in the ST segment: Effect of androgen-deprivation therapy and possible role of testosterone. Circ. J. 2010, 74, 2448–2454. [Google Scholar] [CrossRef] [PubMed]
- Bayram, N.; Akoğlu, H.; Sanri, E.; Karacabey, S.; Efeoğlu, M.; Onur, O.; Denizbasi, A. Diagnostic Accuracy of the Electrocardiography Criteria for Left Ventricular Hypertrophy (Cornell Voltage Criteria, Sokolow-Lyon Index, Romhilt-Estes, and Peguero-Lo Presti Criteria) Compared to Transthoracic Echocardiography. Cureus 2021, 13, e13883. [Google Scholar] [CrossRef] [PubMed]
- Cambon-Viala, M.; Gerard, H.; Nguyen, K.; Richard, P.; Ader, F.; Pruny, J.F.; Donal, E.; Eicher, J.C.; Huttin, O.; Selton-Suty, C.; et al. Phenotype/Genotype Relationship in Left Ventricular Noncompaction: Ion Channel Gene Mutations Are Associated With Preserved Left Ventricular Systolic Function and Biventricular Noncompaction: Phenotype/Genotype of Noncompaction. J. Card. Fail. 2021, 27, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, R.; Kinoshita, K.; Hata, Y.; Abe, M.; Matsuoka, K.; Hirono, K.; Kano, M.; Nakazawa, M.; Ichida, F.; Nishida, N.; et al. A mutant HCN4 channel in a family with bradycardia, left bundle branch block, and left ventricular noncompaction. Heart Vessel. 2018, 33, 802–819. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.R.; Gregor, Z.; Furak, A.; Tóth, A.; Horváth, M.; Szabo, L.; Czimbalmos, C.; Dohy, Z.; Merkely, B.; Vago, H.; et al. Left ventricular characteristics of noncompaction phenotype patients with good ejection fraction measured with cardiac magnetic resonance. Anatol. J. Cardiol. 2021, 25, 565–571. [Google Scholar] [CrossRef]
- Zemrak, F.; Ahlman, M.A.; Captur, G.; Mohiddin, S.A.; Kawel-Boehm, N.; Prince, M.R.; Moon, J.C.; Hundley, W.G.; Lima, J.A.; Bluemke, D.A.; et al. The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: The MESA study. J. Am. Coll. Cardiol. 2014, 64, 1971–1980. [Google Scholar] [CrossRef]
- Dreisbach, J.G.; Mathur, S.; Houbois, C.P.; Oechslin, E.; Ross, H.; Hanneman, K.; Wintersperger, B.J. Cardiovascular magnetic resonance based diagnosis of left ventricular non-compaction cardiomyopathy: Impact of cine bSSFP strain analysis. J. Cardiovasc. Magn. Reson. 2020, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.T.; Thaman, R.; Blanes, J.G.; Ward, D.; Sevdalis, E.; Papra, E.; Kiotsekoglou, A.; Tome, M.T.; Pellerin, D.; McKenna, W.J.; et al. Natural history and familial characteristics of isolated left ventricular non-compaction. Eur. Heart J. 2005, 26, 187–192. [Google Scholar] [CrossRef]
- Lafreniere-Roula, M.; Bolkier, Y.; Zahavich, L.; Mathew, J.; George, K.; Wilson, J.; Stephenson, E.A.; Benson, L.N.; Manlhiot, C.; Mital, S. Family screening for hypertrophic cardiomyopathy: Is it time to change practice guidelines? Eur. Heart J. 2019, 40, 3672–3681. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol | Affected Protein | Relation to Cardiomyopathies and Arrhythmogenic Diseases | Number of Families | |||||
---|---|---|---|---|---|---|---|---|
LVET | HCM | DCM | ACM | Oth. Ar | Cong. CM | |||
TTN | Titin | + | + | + | + | 9 | ||
MYH7 | Myosin, Heavy Chain 7 | + | + | + | + | + | 2 | |
MYBPC3 | Myosin-Binding Protein C3 | + | + | + | + | 1 | ||
LMNA | Lamin A | * | + | + | 1 | |||
DES | Desmin | * | + | + | 1 | |||
RYR2 | Ryanodine receptor 2 | * | + | + | + | 1 | ||
MYPN | Myopalladin | + | + | + | 1 | |||
SCN5A | Sodium Voltage-Gated Channel Alpha Subunit 5 | * | + | + | + | 1 | ||
MIB1 | MIB E3 Ubiquitin Protein Ligase 1 | + | * | 1 | ||||
KCNQ1 | Potassium Voltage-Gated Channel Subfamily Q Member 1 | * | * | + | 1 |
Family Code Number | (A) Cumulative Family Anamnesis | (B) Family Genetics | |||||||
---|---|---|---|---|---|---|---|---|---|
Sudden Cardiac Death | Syncope | Arrhythmia | Pace-Maker or ICD | Stroke | Red Flags (n) | Affected Gene of the Index Patient | Presence of the Mutation in the Family | Number of Affected Family Members/Studied Family Members | |
LVET014 | 0 | MYH7 | no | 0/2 | |||||
LVET016 | x | x | x | x | 4 | KCNQ1 | yes | 2/5 | |
LVET031 | x | x | x | x | 4 | MIB1 | yes | 1/5 | |
LVET002 | x | x | x | x | 4 | TTN | yes | 1/3 | |
LVET041 | 0 | SCN5A | yes | 1/1 | |||||
LVET045 | x | x | 2 | TTN | yes | 1/1 | |||
LVET020 | 0 | TTN | no | 0/2 | |||||
LVET006 | x | x | x | 3 | TTN | yes | 3/4 | ||
LVET023 | x | x | 2 | MYPN | yes | 2/2 | |||
LVET029 | x | x | x | 3 | TTN | no | 0/2 | ||
LVET004 | x | x | 2 | RYR2, TTN | yes | 2/3 | |||
LVET049 | x | x | x | 3 | TTN | yes | 1/4 | ||
LVET013 | x | x | x | 3 | DES | no | 0/7 | ||
LVET030 | x | x | 2 | LMNA | yes | 1/1 | |||
LVET040 | x | 1 | TTN | yes | 1/3 | ||||
LVET025 | x | x | 2 | MYBPC3 | yes | 2/5 | |||
LVET028 | x | x | x | 3 | MYH7 | yes | 2/3 | ||
LVET046 | 0 | TTN | yes | 1/2 | |||||
Total (n) | Average | Total (n) | |||||||
5 | 7 | 11 | 5 | 10 | 2.79 | 14 | 21/55 | ||
Percentage (%) | Deviation | Percentage (%) | |||||||
27.78% | 38.89% | 61.11% | 27.78% | 55.56% | 1.50 | 77.78% | 38.18% |
A | Total Family Members n = 55 | Age (average years, deviation years) | 43 | ±20.8 |
Sex (male n, male %) | 27 | 49.09% | ||
B | Subjective Symptoms (n, %) | Syncope | 8 | 14.55% |
Chest pain | 18 | 32.73% | ||
Dyspnoea | 16 | 29.09% | ||
Palpitation | 18 | 32.73% | ||
Total Subjective Symptoms | 41 | 74.54% | ||
Anamnestic Information (n, %) | Documented Arrhythmia | 15 | 27.27% | |
Non-documented Arrhythmia | 9 | 16.36% | ||
Cardiac hospitalization | 10 | 18.18% | ||
Stroke | 0 | 0.00% | ||
Ischemic disease | 1 | 1.82% |
A | n | Syncope | Chest Pain | Dyspnoe | Palpitation | Documented Arrhythmia | Non-Documented Arrhythmia | Cardiac Hospitalization | B | ECG Abnormality | |||||
Anamnesis | GEN-pos (21) | 3 | 7 | 7 | 7 | 6 | 6 | 2 | ECG Characteristics | 7 | |||||
GEN-neg (34) | 5 | 11 | 9 | 11 | 3 | 10 | 8 | 8 | |||||||
p | 0.966 | 0.940 | 0.586 | 0.940 | 0.743 | 0.947 | 0.191 | p | 0.428 | r | 0.107 | ||||
B | n | Frq. (b/m) | P dur. (ms) | P amp. (mV) | PQ (ms) | QRS (ms) | SLI_LV (mV) | SLI_RV (mV) | CVC (mV) | QT (ms) | QTc (Bazett) (ms) | T dur. (ms) | T amp. (mV) | ||
ECG | GEN-pos (21) | 77.2 ± 14.6 | 97.4 ± 15.9 | 0.11 ± 0.03 | 155.8 ± 18.3 | 102.1 ± 16.9 | 15.7 ± 5.4 | 4.6 ± 4.1 | 12.2 ± 7.1 | 368.4 ± 26.0 | 414.4 ± 32.7 | 170.3 ± 19.8 | 0.3 ± 0.2 | ||
GEN-neg (34) | 71.7 ± 12.1 | 97.6 ± 13.5 | 0.12 ± 0.03 | 151.4 ± 24.8 | 99.8 ± 14.0 | 20.1 ± 7.1 | 4.0 ± 7.0 | 11.2 ± 5.1 | 382.3 ± 32.4 | 415.9 ± 44.1 | 172.6 ± 24.8 | 0.3 ± 0.2 | |||
p | 0.10 | 0.503 | 0.019 * | 0.506 | 0.295 | <0.001 * | 0.445 | 0.687 | 0.199 | 0.131 | 0.890 | 0.488 | |||
C | n | JENNI-poz n (%) | LV_EDVi (mL/m2) | LV_ESVi (mL/m2) | LV_SVi (mL/m2) | LV_EF (%) | LV_GLS (%) | ||||||||
ECHO | GEN-pos (21) | 17 (81.0%) | 58.0 ± 18.5 | 25.2 ± 8.7 | 33.3 ± 9.6 | 57.2 ± 3.8 | −19.9 ± 2.4 | ||||||||
GEN-neg (30) | 1 (3.3%) | 59.6 ± 11.4 | 26.0 ± 6.7 | 35.6 ± 6.9 | 58.6 ± 4.1 | −20.1 ± 2.5 | |||||||||
p | <0.001 * | 0.228 | 0.379 | 0.168 | 0.120 | 0.359 |
A | n | Syncope | Chest pain | Dyspnoe | Palpitation | Documented Arrhythmia | Non-documented Arrhythmia | Cardiac Hospitalization | B | ECG Abnormality | |||||
Anamnesis | JENNI-pos (18) | 3 | 6 | 5 | 6 | 6 | 4 | 3 | ECG Characteristics | 5 | |||||
JENNI-neg (37) | 5 | 12 | 11 | 12 | 3 | 12 | 7 | 10 | |||||||
p | 0.756 | 0.947 | 0.881 | 0.947 | 0.966 | 0.434 | 0.839 | p | 0.953 | r | 0.08 | ||||
B | n | Frq. (b/m) | P dur. (ms) | P amp. (mV) | PQ (ms) | QRS (ms) | SLI_LV (mV) | SLI_RV (mV) | Cornell (mV) | QT (ms) | QTc (Bazett) (ms) | T dur. (ms) | T amp. (mV) | ||
ECG | JENNI-pos (18) | 76.8 ± 15.7 | 99.6 ± 15.3 | 0.11 ± 0.03 | 153.9 ± 19.5 | 101.9 ± 13.7 | 17.6 ± 5.1 | 4.4 ± 3.8 | 12.8 ± 6.4 | 368.0 ± 27.6 | 412.6 ± 34.6 | 169.3 ± 15.6 | 0.3 ± 0.2 | ||
JENNI-neg (37) | 72.4 ± 12.3 | 95.9 ± 14.1 | 0.12 ± 0.02 | 154.1 ± 25.1 | 99.1 ± 16.1 | 18.5 ± 7.4 | 4.0 ± 2.7 | 10.3 ± 4.9 | 379.5 ± 29.1 | 413.8 ± 42.3 | 172.1 ± 15.6 | 0.3 ± 0.2 | |||
p | 0.174 | 0.197 | 0.213 | 0.49 | 0.315 | 0.399 | 0.812 | 0.056 | 0.067 | 0.914 | 0.309 | 0.953 | |||
C | n | GEN-poz n (%) | GEN-neg n (%) | LV_EDVi (mL/m2) | LV_ESVi (mL/m2) | LV_SVi (mL/m2) | LV_EF (%) | LV_GLS (%) | |||||||
ECHO | JENNI-pos (18) | 17 | 1 | 60.9 ± 17.9 | 26.7 ± 8.5 | 34.2 ± 9.6 | 56.2 ± 7.7 | −20.0 ± 2.5 | |||||||
JENNI-neg (33) | 4 | 29 | 57.9 ± 12.5 | 25.1 ± 6.9 | 34.9 ± 7.3 | 59.0 ± 4.3 | −20.0 ± 2.4 | ||||||||
p | <0.001 * | <0.001 * | 0.844 | 0.568 | 0.379 | 0.010 * | 0.492 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mester, B.; Lipták, Z.; Farkas-Sütő, K.A.; Grebur, K.; Gyulánczi, F.K.; Fábián, A.; Fekete, B.A.; György, T.A.; Bödör, C.; Kovács, A.; et al. Inherited Hypertrabeculation? Genetic and Clinical Insights in Blood Relatives of Genetically Affected Left Ventricular Excessive Trabeculation Patients. Life 2025, 15, 150. https://doi.org/10.3390/life15020150
Mester B, Lipták Z, Farkas-Sütő KA, Grebur K, Gyulánczi FK, Fábián A, Fekete BA, György TA, Bödör C, Kovács A, et al. Inherited Hypertrabeculation? Genetic and Clinical Insights in Blood Relatives of Genetically Affected Left Ventricular Excessive Trabeculation Patients. Life. 2025; 15(2):150. https://doi.org/10.3390/life15020150
Chicago/Turabian StyleMester, Balázs, Zoltán Lipták, Kristóf Attila Farkas-Sütő, Kinga Grebur, Flóra Klára Gyulánczi, Alexandra Fábián, Bálint András Fekete, Tamás Attila György, Csaba Bödör, Attila Kovács, and et al. 2025. "Inherited Hypertrabeculation? Genetic and Clinical Insights in Blood Relatives of Genetically Affected Left Ventricular Excessive Trabeculation Patients" Life 15, no. 2: 150. https://doi.org/10.3390/life15020150
APA StyleMester, B., Lipták, Z., Farkas-Sütő, K. A., Grebur, K., Gyulánczi, F. K., Fábián, A., Fekete, B. A., György, T. A., Bödör, C., Kovács, A., Merkely, B., & Szűcs, A. (2025). Inherited Hypertrabeculation? Genetic and Clinical Insights in Blood Relatives of Genetically Affected Left Ventricular Excessive Trabeculation Patients. Life, 15(2), 150. https://doi.org/10.3390/life15020150