The Relevance of Sex and Age as Non-Modifiable Risk Factors in Relation to Clinical-Pathological Parameters in Colorectal Cancer
Abstract
:1. Introduction
Study Aim and Objectives
2. Materials and Methods
2.1. Ethics Statement
2.2. Data Collection
2.2.1. Inclusion Criteria
- ●
- Consecutive cases of primary CRC diagnosed via histopathological examination of radical surgical resection specimens with regional lymphadenectomy.
2.2.2. Exclusion Criteria
- ●
- Patients with cancer types other than colorectal carcinomas.
- ●
- Patients with secondary colorectal tumors.
- ●
- Cases of CRC diagnosed via endoscopic biopsy or polypectomy specimens.
- ●
- Cases of recurrent CRC.
- ●
- Patients who underwent neoadjuvant radio-chemotherapy.
2.3. Histopathological Examination
2.3.1. Tumor Classification and Staging
2.3.2. Data Recorded
- ●
- Patient age:
- ●
- Sex: Female (F) or male (M).
- ●
- Year of diagnosis.
- ●
- Tumor location:
- •
- Right colon: Tumors in the cecum, ascending colon, hepatic flexure, and transverse colon.
- •
- Left colon: Tumors in the splenic flexure, descending colon, sigmoid colon, and rectosigmoid junction.
- •
- Rectum.
- ●
- Histological type (WHO [27] criteria):
- •
- ADK NOS (classic, conventional type).
- •
- Mucinous adenocarcinoma: ≥50% extracellular mucinous secretion.
- •
- Adenocarcinoma with mucinous component: <50% mucinous component.
- •
- Signet-ring cell carcinoma: ≥50% signet-ring cells.
- •
- Adenocarcinoma with signet-ring cell component: <50% signet-ring cells.
- •
- Medullary carcinoma: Solid areas of poorly differentiated malignant cells with eosinophilic cytoplasm, vesicular nuclei, and prominent nucleoli.
- ●
- Tumor differentiation grade (G):
- •
- ADK NOS was graded according to the WHO [27] criteria, based on the percentage of gland formation:
- −
- G1: Well-differentiated (>95% gland formation).
- −
- G2: Moderately differentiated (50–95%).
- −
- G3: Poorly differentiated (0–49%).
- −
- G4: Undifferentiated (no gland formation, no mucin, or neuroendocrine or squamous differentiation).
- •
- Grouped into low-grade (G1–G2) and high-grade malignancy (G3–G4) [35].
- ●
- Depth of tumor invasion (pT):
- •
- Individual categories: pT1 (submucosa), pT2 (muscularis propria), pT3 (subserosal fat), pT4 (serosa).
- •
- Grouped: Early invasion (pT1–pT2) and deep invasion (pT3–pT4).
- ●
- Lymph node status (pN):
- •
- Individual categories: pN0, pN1, pN2.
- •
- Grouped: No lymph node metastases (pN0) or lymph nodal metastases present (pN1 + pN2).
- ●
- Distant metastases (pM1): Pathologically documented.
- ●
- Lymphovascular invasion (LVI): Presence/absence (LV1/LV0).
- ●
- Synchronous multiple tumors:
- •
- Defined as the presence of two or more distinct primary CRCs diagnosed within a six-month period. Tumors within the same intestinal segment were considered synchronous if they were at least 4 cm apart [36].
- •
- For statistical analysis of G and pT parameters, the characteristics of the main tumor (deepest invasion and most lymph nodes involved) were considered.
2.4. Statistical Analysis
3. Results
3.1. Evaluation of CRC Case Distribution by Age at Diagnosis and Patient Sex
3.2. Analysis of Synchronous Tumor Cases by Patient Age and Tumor Location
3.3. Evaluation of Cases Based on Tumor Localization in the Large Intestine
3.4. Evaluation of Cases Based on Histological Tumor Type
- ●
- Conventional adenocarcinomas (classic type, NOS)—1612 cases (88.96%)
- ●
- Mucinous adenocarcinomas—191 cases (10.54%)
- ●
- Signet-ring cell carcinomas—7 cases (0.39%)
- ●
- Medullary carcinomas—2 cases (0.11%).
3.5. Distribution of Cases Based on Histological Grade, Depth of Tumor Invasion (pT), Regional Lymph Node Status (pN), Presence of Distant Metastases (pM), and Lymphovascular Invasion (LVI)
3.6. Evaluation of the Relationship Between Patient Age and Other Clinicopathological Parameters
- ●
- Group I: patients ≤49 years old
- ●
- Group II: patients aged 50 to 69 years
- ●
- Group III: patients aged 70 to 93 years (see Table 3).
3.7. Analysis of the Relationship Between Sex and Clinicopathological Parameters
- ●
- Non-mucinous adenocarcinoma (ADK) was identified in both males and females.
- ●
- Mucinous ADK was identified slightly more frequently in females (11.69% vs. 10.66%).
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer. Data Version: Globocan 2022 (Version 1.1). 8 February 2024. Available online: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf (accessed on 17 March 2024).
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.; Huang, J.; Lok, V.; Wang, J.; Fung, F.; Ding, H.; Zheng, Z.-J. Differences in Incidence and Mortality Trends of Colorectal Cancer Worldwide Based on Sex, Age, and Anatomic Location. Clin. Gastroenterol. Hepatol. 2020, 19, 955–966.e61. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Gastroenterol. Rev./Przegląd Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef]
- Zhang, J.; Dhakal, I.B.; Zhao, Z.; Li, L. Trends in mortality from cancers of the breast, colon, prostate, esophagus, and stomach in East Asia: Role of nutrition transition. Eur. J. Cancer Prev. 2012, 21, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- Vieira, A.R.; Abar, L.; Chan, D.S.M.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.; Norat, T. Foods and beverages and colorectal cancer risk: A systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol. 2017, 28, 1788–1802. [Google Scholar] [CrossRef]
- Joshi, R.K.; Kim, W.J.; Lee, S.A. Association between obesity-related adipokines and colorectal cancer: A case-control study and meta-analysis. World J Gastroenterol. 2014, 20, 7941–7949. [Google Scholar] [CrossRef] [PubMed]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. Body Fatness and Cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; De, P. Trends in colorectal cancer incidence and related lifestyle risk factors in 15–49-year-olds in Canada, 1969–2010. Cancer Epidemiol. 2016, 42, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Hernández, A.I.; Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Frühbeck, G. Mechanisms linking excess adiposity and carcinogenesis promotion. Front. Endocrinol. 2014, 5, 65. [Google Scholar]
- Zhu, B.; Sun, Y.; Qi, L.; Zhong, R.; Miao, X. Dietary legume consumption reduces risk of colorectal cancer: Evidence from a meta-analysis of cohort studies. Sci. Rep. 2015, 5, 8797. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.M.; Wei, C.; Ensor, J.E.; Smolenski, D.J.; Amos, C.I.; Levin, B.; Berry, D.A. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 2013, 24, 1207–1222. [Google Scholar] [CrossRef] [PubMed]
- Young, J.P.; Win, A.K.; Rosty, C.; Flight, I.; Roder, D.; Young, G.P.; Frank, O.; Suthers, G.K.; Hewett, P.J.; Ruszkiewicz, A.; et al. Rising incidence of early-onset colorectal cancer in Australia over two decades: Report and review. J. Gastroenterol. Hepatol. 2014, 30, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, N.; Ugai, T.; Zhong, R.; Hamada, T.; Fujiyoshi, K.; Giannakis, M.; Wu, K.; Cao, Y.; Ng, K.; Ogino, S. Rising incidence of early-onset colorectal cancer—A call to action. Nat. Rev. Clin. Oncol. 2020, 18, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Pilleron, S.; Sarfati, D.; Janssen-Heijnen, M.; Vignat, J.; Ferlay, J.; Bray, F.; Soerjomataram, I. Global cancer incidence in older adults, 2012 and 2035: A population-based study. Int. J. Cancer. 2019, 144, 49–58. [Google Scholar] [CrossRef]
- Safiri, S.; Sepanlou, S.G.; Ikuta, K.S.; Bisignano, C.; Salimzadeh, H.; Delavari, A.; Ansari, R.; Roshandel, G.; Merat, S.; Fitzmaurice, C.; et al. The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019, 4, 913–933. [Google Scholar] [CrossRef]
- Araghi, M.; Soerjomataram, I.; Bardot, A.; Ferlay, J.; Cabasag, C.J.; Morrison, D.S.; De, P.; Tervonen, H.; Walsh, P.M.; Bucher, O.; et al. Changes in colorectal cancer incidence in seven high-income countries: A population-based study. Lancet Gastroenterol. Hepatol. 2019, 4, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Chou, C.-L.; Chang, S.-C.; Lin, T.-C.; Chen, W.-S.; Jiang, J.-K.; Wang, H.-S.; Yang, S.-H.; Liang, W.-Y.; Lin, J.-K. Differences in clinicopathological characteristics of colorectal cancer between younger and elderly patients: An analysis of 322 patients from a single institution. Am. J. Surg. 2011, 202, 574–582. [Google Scholar] [CrossRef]
- Hamilton, S.R.; Aaltonen, L.A. (Eds.) Carcinoma of the colon and rectum. In World Health Organization Classification of Tumours; Pathology and genetics of tumors of the digestive system; IARC Press: Lyon, France, 2000; pp. 105–119. [Google Scholar]
- Hamilton, S.R.; Bosman, F.T.; Boffetta, P.; Theise, N.D. Carcinoma of the colon and rectum. In WHO Classification of Tumours of the Digestive System; Bosman, F.T., Carneiro, F., Hruban, R.H., Theise, N.D., Eds.; IARC Press: Lyon, France, 2010; pp. 134–146. [Google Scholar]
- Edge, S.B.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A. AJCC Cancer Staging Handbook, 7th ed.; Springer: New York, NY, USA, 2010; pp. 173–206. [Google Scholar]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer: New York, NY, USA, 2017; pp. 251–274. [Google Scholar]
- Ulanja, M.B.; Beutler, B.D.; Rishi, M.; Ogala, C.; Patterson, D.R.; Gullapalli, N.; Ambika, S. Colorectal Cancer Presentation and Survival in Young Individuals: A Retrospective Cohort Study. Cancers 2018, 10, 472. [Google Scholar] [CrossRef] [PubMed]
- Ulanja, M.B.; Rishi, M.; Beutler, B.D.; Sharma, M.; Patterson, D.R.; Gullapalli, N.; Ambika, S. Colon Cancer Sidedness, Presentation, and Survival at Different Stages. J. Oncol. 2019, 2019, 4315032. [Google Scholar] [CrossRef] [PubMed]
- Santucci, C.; Mignozzi, S.; Malvezzi, M.; Boffetta, P.; Collatuzzo, G.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for the year 2024 with focus on colorectal cancer. Ann Oncol. 2024, 35, 308–316. [Google Scholar] [CrossRef]
- Christenson, E.S.; Tsai, H.L.; Le, D.T.; Jaffee, E.M.; Dudley, J.; Xian, R.R.; Gocke, C.D.; Eshleman, J.R.; Lin, M.T. Colorectal cancer in patients of advanced age is associated with increased incidence of BRAF p.V600E mutation and mismatch repair deficiency. Front. Oncol. 2023, 13, 1193259. [Google Scholar] [CrossRef] [PubMed]
- Weisenberger, D.J.; Levine, A.J.; Long, T.I.; Buchanan, D.D.; Walters, R.; Clendenning, M.; Rosty, C.; Joshi, A.D.; Stern, M.C.; LeMarchand, L.; et al. Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol. Biomark. Prev. 2015, 24, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Odze, R.D.; Nagtegaal, I.D.; Arends, M.; Salto-Tellez, M. Colorectal Adenocarcinoma: Tumours of the Colon and Rectum. In World Health Organization Classification of Tumours of the Digestive System, 5th ed.; WHO Classification of Tumours Editorial Board, Ed.; IARC Press: Lyon, France, 2019; Volume 1, pp. 177–187. [Google Scholar]
- He, W.; Wei, M.; Yang, X.; Chen, B.; Wu, Q.; Zheng, E.; Deng, X.; Wang, Z. Do inflammatory markers predict prognosis in patients with synchronous colorectal cancer? Medicine 2017, 96, e6607. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.N.; Thornton, A.J.; Hamling, J.S. Epidemiological evidence on environmental tobacco smoke and cancers other than lung or breast. Regul. Toxicol. Pharmacol. 2016, 80, 134–163. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Data Version: Globocan 2022 (Version 1.1). 8 February 2024. Available online: https://gco.iarc.who.int/media/globocan/factsheets/populations/642-romania-fact-sheet.pdf (accessed on 24 August 2024).
- Cucu, A.M. Raport Național Privind Starea de Sănătate a Populației României—2018; Institutul Național de Sănătate Publică: București, Romania, 2019. Available online: https://insp.gov.ro/download/cnepss/stare-de-sanatate/rapoarte_si_studii_despre_starea_de_sanatate/starea_de_sanatate/starea_de_sanatate/RAPORTUL-NATIONAL-AL-STARII-DE-SANATATE-A-POPULATIEI-%25E2%2580%2593-2018.pdf (accessed on 22 January 2024).
- Lam, A.K.; Chan, S.S.; Leung, M. Synchronous colorectal cancer: Clinical, pathological and molecular implications. World J. Gastroenterol. 2014, 20, 6815–6820. [Google Scholar] [CrossRef]
- Thomas, V.; Cotter, M.B.; Tosetto, M.; Khaw, Y.L.; Geraghty, R.; Winter, D.C.; Ryan, E.J.; Sheahan, K.; Furney, S.J. Personalised mapping of tumour development in synchronous colorectal cancer patients. npj Genom. Med. 2020, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Marzouk, O.; Schofield, J. Review of Histopathological and Molecular Prognostic Features in Colorectal Cancer. Cancers 2011, 3, 2767–2810. [Google Scholar] [CrossRef]
- Park, H.-C.; Shin, A.; Kim, B.-W.; Jung, K.-W.; Won, Y.-J.; Oh, J.H.; Jeong, S.-Y.; Yu, C.S.; Lee, B.H. Data on the Characteristics and the Survival of Korean Patients With Colorectal Cancer From the Korea Central Cancer Registry. Ann. Coloproctol. 2013, 29, 144–149. [Google Scholar] [CrossRef]
- Compton, C.C.; Fielding, L.P.; Burgart, L.J.; Conley, B.; Cooper, H.S.; Hamilton, S.R.; E Hammond, M.; E Henson, D.; Hutter, R.V.; Nagle, R.B.; et al. Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch. Pathol. Lab. Med. 2000, 124, 979–994. [Google Scholar] [CrossRef]
- Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 2010, 60, 277–300. [Google Scholar] [CrossRef] [PubMed]
- Hansen, I.O.; Jess, P. Possible better long-term survival in left versus right-sided colon cancer—A systematic review. Dan Med. J. 2012, 59, A4444. [Google Scholar] [PubMed]
- Yang, J.; Du, X.L.; Li, S.; Wu, Y.; Lv, M.; Dong, D.; Zhang, L.; Chen, Z.; Wang, B.; Wang, F.; et al. The risk and survival outcome of subsequent primary colorectal cancer after the first primary colorectal cancer: Cases from 1973 to 2012. BMC Cancer 2017, 17, 783. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Paik, H.Y.; Yoon, H.; Lee, J.E.; Kim, N.; Sung, M.K. Sex- and gender-specific disparities in colorectal cancer risk. World J. Gastroenterol. 2015, 21, 5167–5175. [Google Scholar] [CrossRef] [PubMed]
- Benedix, F.; Kube, R.; Meyer, F.; Schmidt, U.; Gastinger, I.; Lippert, H.; the Colon/Rectum Carcinomas (Primary Tumor) Study Group. Comparison of 17,641 Patients with Right- and Left-Sided Colon Cancer: Differences in Epidemiology, Perioperative Course, Histology, and Survival. Dis. Colon. Rectum. 2010, 53, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, P.; Cash, B.; Flood, A.; Dobhan, R.; Eastone, J.; Coyle, W.; Kikendall, J.W.; Kim, H.M.; Weiss, D.G.; Emory, T.; et al. Colonoscopic screening of average-risk women for colorectal neoplasia. N. Engl. J. Med. 2005, 352, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Slattery, M.L.; Potter, J.D.; Curtin, K.; Edwards, S.; Ma, K.-N.; Anderson, K.; Schaffer, D.; Samowitz, W.S. Estrogens reduce and withdrawal of estrogens increase risk of microsatellite instability-positive colon cancer. Cancer Res. 2001, 61, 126–130. [Google Scholar]
- Foster, P.A. Oestrogen and colorectal cancer: Mechanisms and controversies. Int. J. Color. Dis. 2013, 28, 737–749. [Google Scholar] [CrossRef]
- López, P.J.T.; Albero, J.S.; Rodríguez-Montes, J.A. Primary and Secondary Prevention of Colorectal Cancer. Clin. Med. Insights Gastroenterol. 2014, 7, 33–46. [Google Scholar] [CrossRef] [PubMed]
Year of Diagnosis | No of Cases | Annual Percent Change | Males | Annual Percent Change | Females | Annual Percent Change |
---|---|---|---|---|---|---|
year 2009 | 134 (7.11%) | 75 (6.83%) | 59 (7.50%) | |||
year 2010 | 155 (8.22%) | 15.67 | 90 (8.20%) | 20 | 65 (8.26%) | 10.17 |
year 2011 | 171 (9.07%) | 10.32 | 99 (9.02%) | 10 | 72 (9.15%) | 10.77 |
year 2012 | 197 (10.45%) | 15.20 | 115 (10.47%) | 16.16 | 82 (10.42%) | 13.89 |
year 2013 | 199 (10.56%) | 1.02 | 115 (10.47%) | 0 | 84 (10.67%) | 2.44 |
year 2014 | 202 (10.72%) | 1.51 | 125 (11.38%) | 8.70 | 77 (9.78%) | −8.33 |
year 2015 | 194 (10.29%) | −3.96 | 113 (10.29%) | −9.60 | 81 (10.29%) | 5.19 |
year 2016 | 191 (10.13%) | −1.55 | 112 (10.20%) | −0.88 | 79 (10.04%) | −2.47 |
year 2017 | 213 (11.30%) | 11.52 | 121 (11.02%) | 8.04 | 92 (11.69%) | 16.46 |
year 2018 | 229 (12.15%) | 7.51 | 133 (12.11%) | 9.92 | 96 (12.20%) | 4.35 |
Patients | ≤20 Years | 21–30 Years | 31–40 Years | 41–50 Years | 51–60 Years | 61–70 Years | 71–80 Years | 81–90 Years | 91–100 Years |
---|---|---|---|---|---|---|---|---|---|
Males (%) | 1 (0.09) | 6 (0.55) | 17 (1.55) | 68 (6.19) | 230 (20.95) | 397 (36.16) | 298 (27.14) | 78 (7.10) | 3 (0.27) |
Females (%) | 0 | 3 (0.38) | 14 (1.78) | 67 (8.51) | 170 (21.60) | 242 (30.75) | 233 (29.61) | 58 (7.37) | 0 |
Parameters | Group I 18–49 Years | Group II 50–69 Years | Group III 70–93 Years | Chi Squared/ Fisher’s Exact Test | |||
---|---|---|---|---|---|---|---|
No cases | 155 | (%) | 992 | (%) | 738 | (%) | p value |
Females | 70 | 45.16 | 407 | 41.03 | 310 | 42.01 | 0.6145 |
Males | 85 | 54.84 | 585 | 58.97 | 428 | 57.99 | |
Synchronous tumors | 11 | 15.07 | 31 | 42.47 | 31 | 42.47 | |
Right colon | 55 | 38.19 | 271 | 28.20 | 252 | 35.64 | 0.0030 |
Left colon | 55 | 38.19 | 406 | 42.25 | 290 | 41.02 | |
Rectum | 34 | 23.61 | 284 | 29.55 | 165 | 23.34 | |
Nonmucinous ADK | 130 | 90.28 | 864 | 89.91 | 618 | 87.41 | 0.4859 |
Mucinous ADK | 13 | 9.03 | 92 | 9.57 | 86 | 12.16 | |
Other types | 1 | 0.69 | 5 | 0.52 | 3 | 0.42 | |
G1–G2 | 128 | 82.58 | 837 | 84.38 | 613 | 83.06 | 0.7069 |
G3–G4 | 27 | 17.42 | 155 | 15.63 | 125 | 16.94 | |
pT1 | 0 | 0.00 | 31 | 3.13 | 8 | 1.08 | 0.0096 |
pT2 | 15 | 9.68 | 119 | 12.00 | 85 | 11.52 | |
pT3 | 78 | 50.32 | 535 | 53.93 | 418 | 55.83 | |
pT4 | 62 | 40.00 | 307 | 30.95 | 227 | 31.57 | |
pN0 | 66 | 42.58 | 485 | 48.89 | 395 | 53.52 | 0.0158 |
pN1 | 44 | 28.39 | 269 | 27.12 | 204 | 27.64 | |
pN2 | 45 | 29.03 | 238 | 23.99 | 139 | 18.83 | |
Mx | 137 | 88.39 | 925 | 93.25 | 706 | 95.66 | 0.0017 |
pM1 | 18 | 11.61 | 67 | 6.75 | 32 | 4.34 | |
LV0 | 68 | 43.87 | 521 | 52.52 | 408 | 55.28 | 0.0332 |
LV1 | 87 | 56.13 | 471 | 47.48 | 330 | 44.72 |
Females | Males | Chi Squared/ Fisher’s Exact Test | |||
---|---|---|---|---|---|
No cases | 787 | % | 1098 | % | |
Group I (18–49 years) | 70 | 8.89 | 85 | 7.74 | 0.6145 |
Group II (50–69 years) | 407 | 51.72 | 585 | 53.28 | |
Group III (70–93 years) | 310 | 39.39 | 428 | 38.98 | |
Synchronous tumors | 25 | 34.25 | 48 | 65.75 | |
Right colon | 286 | 37.53 | 292 | 27.81 | <0.0001 |
Left colon | 307 | 40.29 | 444 | 42.29 | |
Rectum | 169 | 22.18 | 314 | 29.90 | |
Nonmucinous ADK | 692 | 87.93 | 974 | 88.71 | 0.5941 |
Mucinous ADK | 92 | 11.69 | 117 | 10.66 | |
Other types | 3 | 0.38 | 7 | 0.64 | |
G1–G2 | 661 | 83.99 | 917 | 83.52 | 0.7833 |
G3–G4 | 126 | 16.01 | 181 | 16.48 | |
pT1 | 13 | 1.65 | 26 | 2.37 | 0.3283 |
pT2 | 102 | 12.96 | 117 | 10.66 | |
pT3 | 426 | 54.13 | 599 | 54.55 | |
pT4 | 246 | 31.26 | 356 | 32.42 | |
pN0 | 396 | 50.32 | 550 | 50.09 | 0.8464 |
pN1 | 211 | 26.81 | 306 | 27.87 | |
pN2 | 180 | 22.87 | 242 | 22.04 | |
Mx | 734 | 93.27 | 1034 | 94.17 | 0.4216 |
pM1 | 53 | 6.73 | 64 | 5.83 | |
LV0 | 415 | 52.73 | 582 | 53.01 | 0.9066 |
LV1 | 372 | 47.27 | 516 | 46.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barna, R.; Dema, A.; Jurescu, A.; Văduva, A.O.; Lăzureanu, D.-C.; Vița, O.; Natarâș, B.; Hurmuz, I.; Vidac, A.; Tăban, S.; et al. The Relevance of Sex and Age as Non-Modifiable Risk Factors in Relation to Clinical-Pathological Parameters in Colorectal Cancer. Life 2025, 15, 156. https://doi.org/10.3390/life15020156
Barna R, Dema A, Jurescu A, Văduva AO, Lăzureanu D-C, Vița O, Natarâș B, Hurmuz I, Vidac A, Tăban S, et al. The Relevance of Sex and Age as Non-Modifiable Risk Factors in Relation to Clinical-Pathological Parameters in Colorectal Cancer. Life. 2025; 15(2):156. https://doi.org/10.3390/life15020156
Chicago/Turabian StyleBarna, Robert, Alis Dema, Aura Jurescu, Adrian Ovidiu Văduva, Dorela-Codruța Lăzureanu, Octavia Vița, Bianca Natarâș, Ioana Hurmuz, Adelina Vidac, Sorina Tăban, and et al. 2025. "The Relevance of Sex and Age as Non-Modifiable Risk Factors in Relation to Clinical-Pathological Parameters in Colorectal Cancer" Life 15, no. 2: 156. https://doi.org/10.3390/life15020156
APA StyleBarna, R., Dema, A., Jurescu, A., Văduva, A. O., Lăzureanu, D.-C., Vița, O., Natarâș, B., Hurmuz, I., Vidac, A., Tăban, S., & Dema, S. (2025). The Relevance of Sex and Age as Non-Modifiable Risk Factors in Relation to Clinical-Pathological Parameters in Colorectal Cancer. Life, 15(2), 156. https://doi.org/10.3390/life15020156